LTC1599BCN [Linear]

16-Bit Byte Wide, Low Glitch Multiplying DAC with 4-Quadrant Resistors; 16位字节宽,低干扰乘法DAC,四象限电阻
LTC1599BCN
型号: LTC1599BCN
厂家: Linear    Linear
描述:

16-Bit Byte Wide, Low Glitch Multiplying DAC with 4-Quadrant Resistors
16位字节宽,低干扰乘法DAC,四象限电阻

文件: 总20页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1599  
16-Bit Byte Wide,  
Low Glitch Multiplying DAC with  
4-Quadrant Resistors  
U
FEATURES  
DESCRIPTIO  
True 16-Bit Performance over Industrial  
The LTC®1599 is a 2-byte parallel input 16-bit multiplying  
current output DAC that operates from a single 5V supply.  
INL and DNL are accurate to 1LSB over the industrial  
temperature range in both 2- and 4-quadrant multiplying  
modes. True 16-bit 4-quadrant multiplication is achieved  
with on-chip 4-quadrant multiplication resistors.  
Temperature Range  
DNL and INL: 1LSB Max  
On-Chip 4-Quadrant Resistors Allow Precise  
0V to 10V, 0V to 10V or ±10V Outputs  
2µ  
s Settling Time to 0.0015% (with LT®1468)  
Asynchronous Clear Pin Resets to Zero Scale  
or Midscale  
Glitch Impulse: 1.5nV-s  
24-Lead SSOP Package  
Low Power Consumption: 10µW Typ  
Power-On Reset to Zero Scale or Midscale  
2-Byte Parallel DUigital Interface  
TheLTC1599isavailablein24-pinPDIPandSSOPpackages  
and is specified over the commercial and industrial tempera-  
ture ranges. The device includes an internal deglitcher circuit  
that reduces the glitch impulse to 1.5nV-s (typ). The asyn-  
chronousCLR pinresetstheLTC1599tozeroscalewhen the  
CLVL pin is at a logic low and to midscale when the CLVL pin  
is at a logic high.  
For a full 16-bit wide parallel interface current output DAC,  
refer to the LTC1597 data sheet. For serial interface 16-bit  
current output DACs, refer to the LTC1595/LTC1596 data  
sheet.  
APPLICATIO S  
Process Control and Industrial Automation  
Direct Digital Waveform Generation  
Software-Controlled Gain Adjustment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Automatic Test Equipment  
U
TYPICAL APPLICATIO  
A 16-Bit, 4-Quadrant Multiplying DAC with a Minimum of External Components  
V
REF  
–V  
5V  
REF  
3 +  
0.1µF  
6
2 LT1468  
Integral Nonlinearity  
15pF  
1.0  
0.8  
6
4
3
2
1
20  
5
R1  
R
R2 REF  
V
CC  
0.6  
R
R
COM  
R2  
OFS  
FB  
15pF  
0.4  
R
R
OFS  
FB  
R1  
8
0.2  
I
OUT1  
I
2
3
7
DATA  
V
REF  
INPUTS  
0
6
16-BIT DAC  
V
=
OUT  
LTC1599  
LT1468  
0.2  
0.4  
0.6  
0.8  
–1.0  
+
OUT2F  
14 TO 18,  
21 TO 23  
8
–V  
REF  
I
9
OUT2S  
13  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
19  
DGND  
WR  
LD  
0
32768  
DIGITAL INPUT CODE  
49152  
16384  
65535  
CLR  
CLVL  
1599 G08  
1599 TA01  
1
LTC1599  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
VCC to DGND .............................................. 0.3V to 7V  
REF, ROFS, RFB, R1, R2 to DGND .......................... ±25V  
RCOM ........................................................ 0.3V to 12V  
Digital Inputs to DGND ............... 0.3V to (VCC + 0.3V)  
IOUT1, IOUT2F, IOUT2S to DGND .... 0.3V to( VCC + 0.3V)  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range  
LTC1599C ............................................... 0°C to 70°C  
LTC1599I............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
REF  
R2  
1
2
CLR  
24  
23 D0  
LTC1599ACG  
LTC1599BCG  
LTC1599AIG  
LTC1599BIG  
LTC1599ACN  
LTC1599BCN  
LTC1599AIN  
LTC1599BIN  
R
3
D1  
D2  
V
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
COM  
R1  
4
R
5
OFS  
CC  
R
6
DGND  
D3  
FB  
I
7
OUT1  
I
8
D4  
OUT2F  
I
9
D5  
OUT2S  
CLVL  
10  
11  
12  
D6  
LD  
D7  
WR  
MLBYTE  
G PACKAGE  
24-LEAD PLASTIC SSOP  
N PACKAGE  
24-LEAD PDIP  
TJMAX = 125°C, θJA = 95°C/ W (G)  
TJMAX = 125°C, θJA = 58°C/ W (N)  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V ±10%, VREF = 10V, IOUT1 = IOUT2F = IOUT2S = DGND = 0V,  
TA = TMIN to TMAX unless otherwise noted.  
LTC1599B  
TYP  
LTC1599A  
TYP  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Resolution  
16  
16  
16  
16  
Bits  
Bits  
Monotonicity  
INL  
DNL  
GE  
Integral Nonlinearity  
T = 25°C (Note 2)  
±2  
±2  
±0.25  
±0.35  
±1  
±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Differential Nonlinearity  
Gain Error  
T = 25°C  
±1  
±1  
±0.2  
±0.2  
±1  
±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Unipolar Mode  
T = 25°C (Note 3)  
±16  
±24  
2
3
±16  
±16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Bipolar Mode  
T = 25°C (Note 3)  
±16  
±24  
2
3
±16  
±16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Gain Temperature Coefficient  
Bipolar Zero Error  
Gain/Temperature (Note 4)  
1
3
1
3
ppm/°C  
T = 25°C  
±10  
±16  
±5  
±8  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
I
OUT1 Leakage Current  
Power Supply Rejection  
T = 25°C (Note 5)  
±5  
±15  
±5  
±15  
nA  
nA  
LKG  
A
T
to T  
MIN  
MAX  
PSRR  
V
= 5V ±10%  
±1  
±2  
±1  
±2  
LSB/V  
CC  
2
LTC1599  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V ±10%, VREF = 10V, IOUT1 = IOUT2F = IOUT2S = DGND = 0V,  
TA = TMIN to TMAX unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
R
DAC Input Resistance (Unipolar)  
R1, R2 Resistance (Bipolar)  
(Note 6)  
4.5  
9
6
10  
20  
20  
kΩ  
kΩ  
kΩ  
REF  
R1, R2  
, R  
(Notes 6, 13)  
(Note 6)  
14  
R
Feedback and Offset Resistances  
9
13.5  
OFS FB  
AC Performance (Note 4)  
Output Current Settling Time  
(Notes 7, 8)  
(Note 12)  
(Note 9)  
1
1.5  
1
µs  
nV-s  
nV-s  
Midscale Glitch Impulse  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
Total Harmonic Distortion  
Output Noise Voltage Density  
V
= ±10V, 10kHz Sine Wave  
1
mV  
P-P  
REF  
THD  
(Note 10)  
(Note 11)  
108  
10  
dB  
nV/Hz  
Analog Outputs (Note 4)  
Output Capacitance (Note 4)  
C
DAC Register Loaded to All 1s: C  
DAC Register Loaded to All 0s: C  
115  
70  
130  
80  
pF  
pF  
OUT  
OUT1  
OUT1  
Digital Inputs  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
2.4  
V
V
IH  
IL  
0.8  
±1  
8
I
0.001  
µA  
pF  
IN  
C
Digital Input Capacitance  
(Note 4) V = 0V  
IN  
IN  
Timing Characteristics  
t
t
t
t
t
t
t
t
Data to WR Setup Time  
Data to WR Hold Time  
WR Pulse Width  
80  
0
20  
–12  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
80  
0
WR  
BWS  
BWH  
LD  
MLBYTE to WR Setup Time  
MLBYTE to WR Hold Time  
LD Pulse Width  
–12  
–12  
55  
0
150  
150  
0
Clear Pulse Width  
50  
CLR  
LWD  
WR to LD Delay Time  
Power Supply  
V
Supply Voltage  
Supply Current  
4.5  
5
5.5  
10  
V
CC  
I
Digital Inputs = 0V or V  
µA  
CC  
CC  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 9: V = 0V. DAC register contents changed from all 0s to all 1s or  
all 1s to all 0s. LD high, WR and MLBYTE pulsed.  
REF  
Note 2: ±1LSB = ±0.0015% of full scale = ±15.3ppm of full scale.  
Note 3: Using internal feedback resistor.  
Note 4: Guaranteed by design, not subject to test.  
Note 10: V = 6V  
at 1kHz. DAC register loaded with all 1s.  
REF  
RMS  
R = 600. Unipolar mode op amp = LT1468.  
L
Note 11: Calculation from e = 4kTRB where: k = Boltzmann constant  
(J/°K), R = resistance (), T = temperature (°K), B = bandwidth (Hz).  
Note 12: Midscale transition code 0111 1111 1111 1111 to  
1000 0000 0000 0000.  
n
Note 5: I  
with DAC register loaded to all 0s.  
(OUT1)  
Note 6: Typical temperature coefficient is 100ppm/°C.  
Note 7: I load = 100in parallel with 13pF.  
OUT1  
Note 13: R1 and R2 are measured between R1 and R  
, R2 and R  
COM  
.
COM  
Note 8: To 0.0015% for a full-scale change, measured from the falling  
edge of LD.  
3
LTC1599  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Unipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency  
Midscale Glitch Impulse  
Full-Scale Settling Waveform  
40  
50  
40  
30  
20  
10  
V
C
= 5V USING AN LT1468  
= 30pF  
USING AN LT1468  
CC  
C
V
= 30pF  
FEEDBACK  
FEEDBACK  
= 10V  
REF  
R
= 600  
L
REFERENCE = 6V  
RMS  
LD PULSE  
5V/DIV  
60  
70  
GATED  
SETTLING  
WAVEFORM  
500µV/DIV  
0
80  
1.5nV-s TYPICAL  
–10  
500kHz FILTER  
90  
–20  
30  
40  
80kHz FILTER  
–100  
–110  
500ns/DIV  
1599 G02  
USING LT1468 OP AMP  
CFEEDBACK = 20pF  
0V to 10V STEP  
30kHz FILTER  
10k 100k  
0.2  
0.4  
TIME (µs)  
0.8  
10  
100  
1k  
0
1.0  
0.6  
FREQUENCY (Hz)  
1599 G03  
1599 G01  
Bipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Zeros  
Bipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Ones  
Supply Current vs Input Voltage  
40  
50  
40  
50  
5
V
C
= 5V USING TWO LT1468s  
FEEDBACK  
= 600Ω  
V
C
= 5V USING TWO LT1468s  
FEEDBACK  
R = 600Ω  
L
V
= 5V  
CC  
CC  
CC  
= 15pF  
= 15pF  
ALL DIGITAL INPUTS  
TIED TOGETHER  
R
L
4
3
2
1
0
REFERENCE = 6V  
REFERENCE = 6V  
RMS  
RMS  
60  
60  
70  
70  
80  
80  
500kHz FILTER  
500kHz FILTER  
90  
90  
80kHz FILTER  
30kHz FILTER  
–100  
–110  
–100  
–110  
80kHz FILTER  
30kHz  
FILTER  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INTPUT VOLTAGE (V)  
1599 G04  
1599 G05  
1599 G06  
Logic Threshold vs Supply Voltage  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0
2
3
4
5
6
7
1
0
32768  
49152  
0
16384  
32768  
49152  
65535  
16384  
65535  
SUPPLY VOLTAGE (V)  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1599 G07  
1599 G08  
1598 G09  
4
LTC1599  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Integral Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
Differential Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1599 G10  
1599 G11  
1599 G12  
Differential Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
Integral Nonlinearity vs  
Suppy Voltage in Unipolar Mode  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
V
V
= 10V  
= 10V  
0.4  
REF  
0.2  
0.2  
V
V
= 2.5V  
= 2.5V  
REF  
0
0
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
REF  
2
3
4
5
6
7
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1599 G14  
1599 G13  
Integral Nonlinearity vs  
Suppy Voltage in Bipolar Mode  
Differential Nonlinearity vs  
Suppy Voltage in Unipolar Mode  
2.0  
1.5  
1.0  
0.8  
0.6  
1.0  
0.4  
V
REF  
= 10V  
= 2.5V  
REF  
0.5  
V
= 10V  
REF  
0.2  
V
V
= 2.5V  
REF  
0
0
V
REF  
= 10V  
0.2  
0.4  
0.6  
0.8  
–1.0  
V
= 10V  
– 0.5  
–1.0  
–1.5  
–2.0  
REF  
REF  
V
= 2.5V  
V
REF  
= 2.5V  
2
3
4
5
6
7
2
3
4
5
6
7
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1599 G15  
1599 G16  
5
LTC1599  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential Nonlinearity vs  
Unipolar Mulitplying Mode Frequency  
Response vs Digital Code  
Supply Voltage in Bipolar Mode  
1.0  
0.8  
0
ALL BITS ON  
D15 ON  
D14 ON  
D13 ON  
D12 ON  
D11 ON  
D10 ON  
D9 ON  
D8 ON  
D7 ON  
D6 ON  
D5 ON  
20  
40  
0.6  
0.4  
0.2  
V
V
= 10V  
= 10V  
REF  
0
60  
V
V
= 2.5V  
= 2.5V  
REF  
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
D4 ON  
D3 ON  
REF  
80  
D2 ON  
D1 ON  
D0 ON  
100  
ALL BITS OFF  
120  
2
3
4
5
6
7
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1599 G18  
1599 G17  
VREF  
30pF  
3
2 1 4 5  
6
LTC1599  
LT1468  
+
VOUT  
7
22  
Bipolar Mulitplying Mode Frequency  
Response vs Digital Code  
Bipolar Mulitplying Mode Frequency  
Response vs Digital Code  
0
20  
40  
60  
80  
0
ALL BITS ON  
ALL BITS OFF  
D14 ON  
D15 AND D14 ON  
D15 AND D13 ON  
D15 AND D12 ON  
D15 AND D11 ON  
D15 AND D10 ON  
D15 AND D9 ON  
D15 AND D8 ON  
D15 AND D7 ON  
D15 AND D6 ON  
D14 AND D13 ON  
D14 TO D12 ON  
D14 TO D11 ON  
D14 TO D10 ON  
D14 TO D9 ON  
D14 TO D8 ON  
D14 TO D7 ON  
D14 TO D6 ON  
D14 TO D5 ON  
20  
40  
60  
D15 AND D5 ON  
D15 AND D4 ON  
D15 AND D3 ON  
D15 AND D2 ON  
CODES FROM  
CODES FROM  
MIDSCALE  
TO ZERO SCALE  
D14 TO D4 ON  
D14 TO D3 ON  
D14 TO D2 ON  
D14 TO D1 ON  
MIDSCALE  
TO FULL SCALE  
80  
D15 AND D1 ON  
D15 AND D0 ON  
D14 TO D0 ON  
D15 ON  
D15 ON  
*
*
100  
100  
10  
100  
1k  
10k  
100k 1M  
10M  
10  
100  
1k  
10k  
100k 1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1599 G19  
1599 G20  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
V
V
REF  
REF  
+
+
LT1468  
LT1468  
V
OUT  
V
OUT  
12pF  
12pF  
12pF  
12pF  
15pF  
15pF  
3
2
1 4 5  
3
2
1 4 5  
6
6
LTC1599  
LT1468  
+
LTC1599  
LT1468  
+
7
22  
7
22  
6
LTC1599  
U
U
U
PIN FUNCTIONS  
CLVL (Pin 10): Clear Level. CLVL = 0, selects reset to zero  
code. CLVL = 1, selects reset to midscale code. Normally  
hardwired to a logic high or a logic low.  
REF (Pin 1): Reference Input. Typically ±10V, accepts up  
to ±25V. In 2-quadrant mode, this pin is the reference  
input. In 4-quadrant mode, this pin is driven by external  
inverting reference amplifier.  
LD (Pin 11): DAC Digital Input Load Control Input. When  
LD is taken to a logic low, data is loaded from the input  
register into the DAC register, updating the DAC output.  
R2 (Pin 2): 4-Quadrant Resistor R2. Typically ±10V,  
accepts up to ±25V. In 2-quadrant operation, connect this  
pin to ground. In 4-quadrant mode tie to the REF pin and  
to the output of an external amplifier. See Figures 1 and 3.  
WR (Pin 12): DAC Digital Write Control Input. When WR  
istakentoalogiclow,dataisloadedfromthe8digitalinput  
pins into the 16-bit wide input register. The MLBYTE pin  
determines whether the MSB or LSB byte is loaded.  
RCOM (Pin 3): Center Tap Point of the Two 4-Quadrant  
Resistors R1 and R2. Normally tied to the inverting input  
ofanexternalamplifierin4-quadrantoperation, otherwise  
connect this pin to ground. See Figures 1 and 3. The ab-  
solutemaximumvoltagerangeonthispinis0.3Vto12V.  
MLBYTE(Pin13):MSBorLSBByteSelect.WhenMLBYTE  
is taken to a logic low and WR is taken to a logic low, data  
is loaded from the 8 digital input pins into the first 8 bits  
ofthe16-bitwideinputregister. WhenMLBYTEistakento  
a logic high and WR is taken to a logic low, data is loaded  
fromthe8digitalinputpinsintothe8MSBbitsoftheinput  
register.  
R1 (Pin 4): 4-Quadrant Resistor R1. Typically ±10V,  
accepts up to ±25V. In 2-quadrant operation connect this  
pin to ground. In 4-quadrant mode tie to ROFS (Pin 5). See  
Figures 1 and 3.  
D7 to D3 (Pins 14 to 18): Digital Input Data Bits.  
DGND (Pin 19): Digital Ground. Tie to ground.  
ROFS (Pin 5): Bipolar Offset Resistor. Typically swings  
±10V, accepts up to ±25V. In 2-quadrant operation, tie to  
RFB. In 4-quadrant operation tie to R1.  
VCC (Pin20):ThePositiveSupplyInput.4.5VVCC 5.5V.  
Requires a bypass capacitor to ground.  
RFB (Pin6):FeedbackResistor.Normallytiedtotheoutput  
of the current to voltage converter op amp. Typically  
D2 to D0 (Pins 21 to 23): Digital Input Data Bits.  
swings ±10V. Swings ±VREF  
.
CLR (Pin 24): Digital Clear Control Function for the DAC.  
When CLR and CLVL are taken to a logic low, the DAC  
output and all internal registers are set to zero code. When  
CLRistakentoalogiclowandCLVListakentoalogichigh,  
theDACoutputandallinternalregistersaresettomidscale  
code.  
IOUT1 (Pin 7): DAC Current Output. Tie to the inverting  
input of the current to voltage converter op amp.  
IOUT2F (Pin 8): Force Complement Current Output. Nor-  
mally tied to ground.  
IOUT2S (Pin 9): Sense Complement Current Output. Nor-  
mally tied to ground.  
TRUTH TABLE  
Table 1  
CONTROL INPUTS  
CLR  
0
WR  
MLBYTE  
LD  
X
REGISTER OPERATION  
X
X
0
1
X
X
X
Reset Input and DAC Registers to Zero Scale When CLVL = 0 and Midscale When CLVL = 1  
Load the LSB Byte of the Input Register with All 8 Data Bits  
Load the MSB Byte of the Input Register with All 8 Data Bits  
Load the DAC Register with the Contents of the Input Register  
No Register Operation  
1
1
1
1
1
1
1
1
1
1
Flow-Through Mode. The DAC Register and the Selected Input Register Are Transparent. The Unselected Input  
Register Retains Its Previous Data Byte. Note Only One Byte Is Transparent at a Time, the Selected Byte Being  
Determined By the Logic Value of MLBYTE Prior to WR Being Pulsed Low.  
7
LTC1599  
W
BLOCK DIAGRA  
48k  
48k  
REF  
R2  
R
FB  
1
2
6
5
12k  
R
48k  
96k  
12k  
48k  
48k  
48k  
48k  
48k  
48k  
96k  
96k  
96k  
R
OFS  
12k  
12k  
R
3
COM  
R1  
4
7
8
9
I
I
OUT1  
V
CC  
20  
OUT2F  
I
OUT2S  
DECODER  
19 DGND  
D15  
(MSB)  
D14  
D13  
D12  
D11  
• • •  
D0  
(LSB)  
LD  
LOAD  
11  
RST  
RST  
24 CLR  
POWER-ON  
RESET  
LOGIC  
DAC REGISTER  
10 CLVL  
MSB ENABLE  
LSB ENABLE  
INPUT REGISTER  
MSB BYTE  
INPUT REGISTER  
LSB BYTE  
WR  
12  
13  
EN  
EN  
BYTE  
ENABLE  
LOGIC  
MLBYTE  
1599 BD  
14  
15  
18  
21  
22  
D1  
23  
• • • •  
D7  
D6  
D3  
D2  
D0  
W U  
W
TI I G DIAGRA  
t
t
BWH  
BWH  
MLBYTE  
t
t
BWS  
BWS  
WR  
D0 TO D7  
LD  
t
t
WR  
WR  
t
t
t
DS  
t
DH  
DS  
DH  
t
t
LD  
LWD  
CLR  
t
1599 TD  
CLR  
8
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
Description  
brought to a logic low level, the existing level of MLBYTE  
determines which byte is loaded into the input register. If  
the logic level of MLBYTE is changed while WR remains  
low, no change will occur. This is because WR is an edge  
triggered signal and once it goes low it locks out any  
furtherchangesinMLBYTE.WRmustbebroughthighand  
then low again to accept the new MLBYTE condition. The  
second register (DAC register) is updated with the data  
from the input register when the LD pin is brought to a  
logiclowlevel. UpdatingtheDACregisterupdatestheDAC  
outputwiththenewdata. Thedeglitcherisactivatedonthe  
falling edge of the LD pin. The asynchronous clear pin  
resets the LTC1599 to zero scale when the CLVL pin is at  
a logic low level and to midscale when the CLVL pin is at  
a logic high level. CLR resets both the input and DAC  
registers. The device also has a power-on reset. Table 1  
shows the truth table for the device.  
The LTC1599 is a 16-bit multiplying, current output DAC  
with a 2-byte (8-bit wide) digital interface. The device  
operates from a single 5V supply and provides both  
unipolar 0V to 10V or 0V to 10V and bipolar ±10V output  
ranges from a 10V or –10V reference input. It has three  
additional precision resistors on chip for bipolar opera-  
tion. Refer to the Block Diagram regarding the following  
description.  
The 16-bit DAC consists of a precision R-2R ladder for the  
13LSBs. The 3MSBs are decoded into seven segments of  
resistor value R (48k typ). Each of these segments and the  
R-2R ladder carries an equally weighted current of one  
eighth of full scale. The feedback resistor RFB and  
4-quadrant resistor ROFS have a value of R/4. 4-quadrant  
resistors R1 and R2 have a magnitude of R/4. R1 and R2  
together with an external op amp (see Figure 4) inverts the  
reference input voltage and applies it to the 16-bit DAC  
input REF, in 4-quadrant operation. The REF pin presents  
a constant input impedance of R/8 in unipolar mode and  
R/12inbipolarmode.Theoutputimpedanceofthecurrent  
output pin IOUT1 varies with DAC input code. The IOUT1  
capacitance due to the NMOS current steering switches  
alsovarieswithinputcodefrom70pFto115pF. IOUT2F and  
IOUT2S are normally tied to the system analog ground. An  
added feature of the LTC1599 is a proprietary deglitcher  
thatreducesglitchimpulseto1.5nV-sovertheDACoutput  
voltage range.  
Unipolar Mode  
(2-Quadrant Multiplying, VOUT = 0V to VREF  
)
The LTC1599 can be used with a single op amp to provide  
2-quadrant multiplying operation as shown in Figure 1.  
With a fixed 10V reference, the circuit shown gives a  
precision unipolar 0V to 10V output swing.  
Bipolar Mode  
(4-Quadrant Multiplying, VOUT = VREF to VREF  
)
The LTC1599 contains on chip all the 4-quadrant resistors  
necessary for bipolar operation. 4-quadrant multiplying  
operation can be achieved with a minimum of external  
components, a capacitor and a dual op amp, as shown in  
Figure 3. With a fixed 10V reference, the circuit shown  
gives a precision bipolar 10V to 10V output swing.  
Digital Section  
TheLTC1599hasabytewide(8-bit),digitalinputdatabus.  
The device is double-buffered with two 16-bit registers.  
The double-buffered feature permits the update of several  
DACs simultaneously. The input register is loaded directly  
from an 8-bit (or higher) microprocessor bus in a two step  
sequence. The MLBYTE pin selects whether the 8 input  
data bits are loaded into the LSB or the MSB byte of the  
input register. When MLBYTE is brought to a logic low  
level and WR is given a logic low going pulse, the 8 data  
bits are loaded into the LSB byte of the input register.  
Conversely, when MLBYTE is brought to a logic high level  
and WR is given a logic low going pulse, the 8 data bits are  
loaded into the MSB byte of the input register. If WR is  
Op Amp Selection  
Because of the extremely high accuracy of the 16-bit  
LTC1599, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 2 and 3 contain equations for evaluating the effects  
of op amp parameters on the LTC1599’s accuracy when  
9
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
configured in unipolar or bipolar modes of operation  
(Figures 1 and 3). These are the changes the op amp can  
cause to the INL, DNL, unipolar offset, unipolar gain error,  
bipolar zero and bipolar gain error. Table 4 contains a  
partiallistofLTCprecisionopampsrecommendedforuse  
with the LTC1599. The two sets of easy-to-use design  
equations simplify the selection of op amps to meet the  
system’s specified error budget. Select the amplifier from  
Table 4 and insert the specified op amp parameters in  
either Table 2 or Table 3. Add up all the errors for each  
category to determine the effect the op amp has on the  
accuracy of the LTC1599. Arithmetic summation gives an  
(unlikely) worst-case effect. RMS summation produces a  
more realistic effect.  
INLdegradationand0.15LSBDNLdegradationwitha10V  
full-scale range (20V range in bipolar). For the LTC1599  
configured in the unipolar mode, the same 500µV op amp  
offset will cause a 3.3LSB zero-scale error and a 3.45LSB  
gain error with a 10V full-scale range.  
While not directly addressed by the simple equations in  
Tables 2 and 3, temperature effects can be handled just as  
easily for unipolar and bipolar applications. First, consult  
an op amp’s data sheet to find the worst-case VOS and IB  
over temperature. Then, plug these numbers in the VOS  
and IB equations from Table 2 or Table 3 and calculate the  
temperature induced effects.  
For applications where fast settling time is important,  
Application Note 74, entitled “Component and Measure-  
ment Advances Ensure 16-Bit DAC Settling Time,” offers  
a thorough discussion of 16-bit DAC settling time and op  
amp selection.  
Op amp offset will contribute mostly to output offset and  
gain error and has minimal effect on INL and DNL. For the  
LTC1599,a500µVopampoffsetwillcauseabout0.55LSB  
Table 2. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in Unipolar Applications  
OP AMP  
(mV)  
INL (LSB)  
DNL (LSB)  
UNIPOLAR OFFSET (LSB)  
• 6.6 • (10V/V  
UNIPOLAR GAIN ERROR (LSB)  
V
V
OS  
• 1.2 • (10V/V  
)
REF  
V
• 0.3 • (10V/V  
)
V
)
V
OS  
• 6.9 • (10V/V )  
REF  
OS  
OS  
REF  
OS  
REF  
I (nA)  
B
I • 0.00055 • (10V/V  
)
REF  
I • 0.00015 • (10V/V  
)
I • 0.065 • (10V/V  
)
0
B
B
REF  
B
REF  
A
(V/V)  
10k/A  
3k/A  
0
131k/A  
VOL  
VOL  
VOL  
VOL  
Table 3. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in Bipolar Applications  
OP AMP  
(mV)  
INL (LSB)  
DNL (LSB)  
BIPOLAR ZERO ERROR (LSB)  
• 9.9 • (10V/V  
BIPOLAR GAIN ERROR (LSB)  
V
V
• 1.2 • (10V/V  
)
V
• 0.3 • (10V/V  
)
V
OS1  
)
V
OS1  
• 6.9 • (10V/V  
0
)
REF  
OS1  
OS1  
REF  
OS1  
REF  
REF  
I
(nA)  
I
• 0.00055 • (10V/V  
)
I
• 0.00015 • (10V/V  
)
I
• 0.065 • (10V/V  
)
REF  
B1  
B1  
REF  
B1  
REF  
B1  
A
V
10k/A  
3k/A  
0
196k/A  
VOL1  
VOL1  
VOL  
VOL1  
(mV)  
0
0
0
0
V
• 6.7 • (10V/V  
)
V
• 13.2 • (10V/V  
)
REF  
OS2  
OS2  
REF  
OS2  
I
(nA)  
0
0
I
• 0.065 • (10V/V  
)
I
• 0.13 • (10V/V  
)
REF  
B2  
B2  
REF  
B2  
A
65k/A  
131k/A  
VOL2  
VOL2  
VOL2  
Table 4. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC1599, with Relevant Specifications  
Amplifier Specifications  
VOLTAGE  
NOISE  
nV/Hz  
CURRENT  
NOISE  
pA/Hz  
SLEW  
RATE  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
t
POWER  
DISSIPATION  
mW  
SETTLING  
V
I
nA  
A
OL  
V/mV  
with LTC1599  
OS  
B
AMPLIFIER  
LT1001  
µV  
25  
50  
60  
70  
75  
µs  
2
800  
10  
14  
14  
2.7  
5
0.12  
0.008  
0.008  
0.3  
0.25  
0.2  
0.8  
0.7  
120  
120  
115  
19  
46  
11  
LT1097  
0.35  
0.25  
20  
1000  
1500  
4000  
5000  
LT1112 (Dual)  
LT1124 (Dual)  
LT1468  
0.16  
4.5  
0.75  
12.5  
90  
10.5/Op Amp  
69/Op Amp  
117  
10  
0.6  
22  
2.5  
10  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
5V  
0.1µF  
V
REF  
6
3
4
2
1
20  
5
R1  
R
R2 REF  
V
R
R
COM  
R2  
FB  
CC  
OFS  
33pF  
R
R
OFS  
FB  
R1  
8
I
OUT1  
2
3
DATA  
7
INPUTS  
6
V
OUT  
LTC1599  
16-BIT DAC  
LT1001  
0V TO –V  
REF  
I
14 TO 18,  
21 TO 23  
OUT2F  
8
+
I
OUT2S  
19  
9
13  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
DGND  
WR  
LD  
CLR  
CLVL  
Unipolar Binary Code Table  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
VOUT  
MSB  
LSB  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–VREF (65,535/65,536)  
–VREF (32,768/65,536) = –VREF/2  
–VREF (1/65,536)  
0V  
1599 F01  
Figure 1. Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
5V  
5
+
0.1µF  
7
1/2 LT1112  
6 –  
V
REF  
4
6
3
2
1
20  
5
R1  
R
COM  
V
CC  
R2 REF  
R
OFS  
R
FB  
33pF  
R
R
OFS  
FB  
R1  
R2  
8
DATA  
INPUTS  
I
OUT1  
I
2
3
7
1
V
OUT  
16-BIT DAC  
LTC1599  
1/2 LT1112  
+
0V TO V  
REF  
OUT2F  
14 TO 18,  
21 TO 23  
8
I
OUT2S  
19  
9
13  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
DGND  
WR  
LD  
CLR  
CLVL  
Unipolar Binary Code Table  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
VOUT  
MSB  
LSB  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
VREF (65,535/65,536)  
VREF (32,768/65,536) = VREF/2  
VREF (1/65,536)  
1599 F02  
0V  
Figure 2. Noninverting Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
11  
LTC1599  
APPLICATIONS INFORMATION  
U
W U U  
V
REF  
5V  
5
+
0.1µF  
7
1/2 LT1112  
6
6
4
3
2
1
20  
5
R1  
R
R2 REF  
V
CC  
R
R
FB  
COM  
R2  
OFS  
15pF  
R
R
OFS  
FB  
R1  
8
I
OUT1  
2
3
7
DATA  
INPUTS  
1
V
OUT  
–V  
16-BIT DAC  
LTC1599  
1/2 LT1112  
+
TO V  
REF  
REF  
I
OUT2F  
14 TO 18,  
21 TO 23  
8
I
OUT2S  
19  
9
13  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
DGND  
WR  
LD  
CLR  
CLVL  
Bipolar Offset Binary Code Table  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
VOUT  
MSB  
LSB  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
VREF (32,767/32,768)  
REF (1/32,768)  
0V  
–VREF (1/32,768)  
–VREF  
V
1599 F03  
Figure 3. Bipolar Operation (4-Quadrant Multiplication) VOUT = VREF to VREF  
Precision Voltage Reference Considerations  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s INL and DNL performance. If a reference is  
chosen with a loose output voltage temperature coeffi-  
cient, then the DAC output voltage along its transfer  
characteristic will be very dependent on ambient condi-  
tions. Minimizing the error due to reference temperature  
coefficient can be achieved by choosing a precision refer-  
ence with a low output voltage temperature coefficient  
and/or tightly controlling the ambient temperature of the  
circuit to minimize temperature gradients.  
Much in the same way selecting an operational amplifier  
for use with the LTC1599 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. As shown in the section describing  
the basic operation of the LTC1599, the output voltage of  
theDACcircuitisdirectlyaffectedbythevoltagereference;  
thus, any voltage reference error will appear as a DAC  
output voltage error.  
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit applica-  
tions: output voltage initial tolerance, output voltage tem-  
perature coefficient and output voltage noise.  
As precision DAC applications move to 16-bit and higher  
performance, reference output voltage noise may contrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practical  
for the system resolution desired. Precision voltage refer-  
ences, like the LT1236, produce low output noise in the  
0.1Hz to 10Hz region, well below the 16-bit LSB level in 5V  
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
(±0.05%), minimizes the gain error caused by the refer-  
ence; however, a calibration sequence that corrects for  
system zero- and full-scale error is always recommended.  
12  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
or 10V full-scale systems. However, as the circuit band-  
widths increase, filtering the output of the reference may  
be required to minimize output noise.  
resistance traces. This preserves the excellent accuracy  
(1LSB INL and DNL) of the LTC1599.  
A 16-Bit, 4mA to 20mA Current Loop Controller  
for Industrial Applications  
Table 5. Partial List of LTC Precision References Recommended  
for Use with the LTC1599, with Relevant Specifications  
INITIAL  
TOLERANCE  
TEMPERATURE  
DRIFT  
0.1Hz to 10Hz  
NOISE  
Modern process control systems must often deal with  
legacy 4mA to 20mA analog current loops as a means of  
interfacing with actuators and valves located at a distance.  
The circuit in Figure 5 provides an output to a current loop  
controlled by an LTC1599, a 16-bit current output DAC. A  
dual rail-to-rail op amp (U1, LT1366) controls a P-channel  
power FET (Q2) to produce a current mirror with a precise  
8:1 ratio as defined by a resistor array. The input current  
to this mirror circuit is produced by a grounded base  
cascode stage using a high gain transistor (Q1). The use  
of a bipolar transistor in this location results in an error  
term associated with U1B and Q1’s base current (0.2%  
for the device shown). For control applications however,  
absolute accuracy of the output to an actuator is usually  
not required. If a higher degree of absolute accuracy is  
required, Q1 can be replaced with an N-channel JFET;  
however, this requires a single amplifier at U1B with the  
ability to drive the gate below ground. An enhancement  
mode N-channel FET can be used in place of Q1 but  
MOSFET leakage current must be considered and gate  
overdrive must be avoided.  
REFERENCE  
LT1019A-5,  
LT1019A-10  
±0.05%  
5ppm  
12µV  
P-P  
LT1236A-5,  
LT1236A-10  
LT1460A-5,  
LT1460A-10  
±0.05%  
5ppm  
3µV  
P-P  
±0.075%  
10ppm  
20µV  
P-P  
Grounding  
As with any high resolution converter, clean grounding is  
important.Alowimpedanceanaloggroundplaneandstar  
groundingshouldbeused. IOUT2F andIOUT2S mustbetied  
to the star ground with as low a resistance as possible.  
When it is not possible to locate star ground close to  
IOUT2F andIOUT2S,separatetracesshouldbeusedtoroute  
thesepinstostarground.Thisminimizesthevoltagedrop  
from these pins to ground caused by the code dependent  
current flowing to ground. When the resistance of these  
circuit board traces becomes greater than 1, the circuit  
in Figure 4 eliminates voltage drop errors caused by high  
5V  
2
15V  
6
10V  
LT1236A-10  
4
0.1µF  
6
3
4
2
1
20  
5
R1  
R
V
R
FB  
R2 REF  
R
COM  
R2  
CC  
OFS  
33pF  
R
R
OFS  
FB  
R1  
8
DATA  
I
2
3
OUT1  
I
7
INPUTS  
6
V
OUT  
LTC1599  
16-BIT DAC  
LT1001  
0V TO –10V  
14 TO 18,  
21 TO 23  
OUT2F  
8
+
13  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
I
DGND  
19  
OUT2S  
3
+
9
WR  
LD  
6
LT1001  
2
CLR  
CLVL  
1599 F04  
Figure 4. Driving IOUT2F and IOUT2S with a Force/Sense Amplifier  
13  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
The output current of the DAC is converted to a voltage via  
U3 (LT1112), producing 0V to 2.5V at Pin 1 of U3. The  
resulting current in Q1 is determined by two elements of  
resistor array, RN1 (3mA max). The emitter of Q1 is  
maintained at 0V by the action of U1B.  
In the example shown, the use of a dual op amp requires  
a zener clamp to protect the gate of the MOS power  
transistor. If a separate shunt-regulated supply is pro-  
vided for the amplifier replacing U1A, the gate clamp (Z1)  
is not required.  
In applications that do not require 16-bit resolution and  
accuracy, the LTC1599 can be replaced by the 14-bit  
parallel LTC1591. Furthermore, the resistor array can be  
substituted with discrete resistors, and Q2 could be re-  
placed by a high gain bipolar PNP; for example, an FZT600  
from Zetex.  
As shown, this topology uses the LTC1599’s internal  
divider (R1 and R2) to reduce the reference from 5V to  
2.5V. If a 2.5V reference is used, it can be connected  
directly to REF (Pin 1). Alternatively, if the op amp is  
powered such that it has –10V output capability, the  
dividerandamplifierpriortotheREFinputarenotrequired  
and ROFS can be used for other purposes such as offset  
trim. The two RN1 resistors at the emitter of Q1 must be  
changed in this case.  
Notrimisprovidedashown, asitisexpectedthatsoftware  
control is preferable. The output range of 4mA to 20mA is  
defined by software, as the full output range is nominally  
0mA to 24mA.  
Note that the output of the current transmitter shows a  
network that is intended to provide a first line of defense  
against ESD and prevent oscillation (1000pF and 10)  
that could otherwise occur in the power MOSFET if lead  
inductance were more than a few inches. C1 should be as  
close as possible to Q2. Using MOSFETs that have higher  
threshold voltages may require changing Z1 in order to  
allow full current output.  
U1 is a rail-to-rail amplifier that can operate on suppy  
voltages up to 36V. This defines the maximum voltage on  
the loop power. If higher loop voltages are required, a  
separate low power amplifier at U1A, powered by a zener  
regulated supply and referenced to loop power, would  
allowvoltagesuptothebreakdownvoltagesofQ1andQ2.  
LOOP POWER  
24V  
3
4
5
6
R3  
1k  
0.1µF  
R
N1  
14 13 12 11  
2
IF 2.5V REF USED CONNECT  
R
R
N1  
N1  
Z1  
6.2V  
C2  
DIRECTLY TO REF  
15  
10  
2 –  
8
12  
LT1460-5  
4
100pF  
R4  
1k  
R5  
Q2  
Si9407AEX  
6
10Ω  
U1A  
1
5
6
I
OUT  
1/2 LT1366  
+
7
3
+
0.1µF  
C1  
1000pF  
7
5V  
1/2 LT1112  
4
0.1µF  
5
+
Q1  
6
3
4
R1  
2
R2  
1
REF  
20  
5
7
U1B  
MMBT6429  
HFE = 500  
R
R
V
R
1/2 LT1366  
COM  
FB  
CC  
OFS  
C3  
6
33pF  
R6  
1k  
R
R
OFS  
FB  
R1  
R2  
8
I
2
3
OUT1  
I
DATA  
7
INPUTS  
R
R
N1  
N1  
U3  
1
1
16  
9
8
U2  
LTC1599  
16-BIT DAC  
1/2 LT1112  
14 TO 18,  
21 TO 23  
OUT2F  
8
+
I
OUT2S  
9
13  
R
N1  
= 400× 8 RESISTOR ARRAY  
MLBYTE  
MLBYTE  
WR LD CLR CLVL  
12 11 24  
10  
19  
DGND  
WR  
LD  
CLR  
CLVL  
Figure 5. 16-Bit Current Loop Controller for Industrial Applications  
14  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
A 16-Bit General Purpose Analog Output Circuit  
alternative to a resistor divider is the LTC1043 switched  
capacitor building block. It can be configured as a high  
precision divide-by-2. Please consult the LTC1043 data  
sheet for more information.  
Industrial applications often use analog signals of 0V to  
5V, 0V to 10V, ±5V or ±10V. The topology in Figure 6 uses  
anLTC1599toproduceauniversalanalogoutput, capable  
of operation over all these ranges, with only software  
configuration. High precision analog switches are used to  
provideuncompromisingstabilityinallrangesandmatched  
resistors internal to the LTC1599 are used, as well as a  
configuration that minimizes the effects of channel resis-  
tance in the switches. Note that in all cases the analog  
switches have minimal current flowing through them. The  
use of unbuffered analog switches in series with the  
feedback/divider resistors would result in an error be-  
cause of temperature coefficient mismatch between the  
internalDACresistorsandtheswitchchannelresistances,  
as well as the channel resistance variation over the signal  
range. Quad analog switch U3 (DG212B) allows configu-  
ration of feedback terms and selection of the reference  
voltage. Switch C allows the buffered reference voltage to  
be injected into the summing node via Pin 5 (ROFS) for  
bipolar outputs. When active, switch D places ROFS in  
parallel with RFB, producing an output at full scale voltage  
equal to the voltage at the REF pin of the LTC1599.  
The NOR gate (U4) ensures that switches C and D are not  
enabled simultaneously. This eliminates contention be-  
tween the reference buffer and the output amplifier.  
This topology can be modified to accept a high current  
bufferfollowingtheLT1112,ifhigheroutputcurrentlevels  
are required or difficult loads need be driven. Adjustment  
of CFB’s value may be required for the buffer amplifier  
chosen.  
Note that the analog switches must handle the full output  
swinginthisconfiguration,butthereisavarietyofsuitable  
switchesonthemarketincludingtheLTC201.TheDG212B  
as shown is a newer generation part with lower leakage,  
providing a performance advantage.  
The DG333A, a quad single-pole, double-throw switch,  
could be used for a 2-channel version similar to this  
circuit. Alternatively, a single channel can be created with  
the additional switches used as switched capacitor divide-  
by-2, as shown on the LTC1043 data sheet. In choosing  
analog switches, keep in mind the logic levels and the  
signal levels required.  
The other switches in U3 (A and B) are used to select the  
10VreferenceproducedbytheLT1019,or5Vproducedby  
the R3 and R4 divider.  
Table 1. Configuration Settings for the Various Output Ranges  
V
MODE  
REFSEL  
BIPOLAR/UNIPOLAR  
GAIN  
OUT  
An inexpensive precision divider can be implemented  
using an 8-element resistor array, paralleling four resis-  
tors for R3 and four resistors for R4. Symmetry in the  
interconnection of these resistors will ensure compensa-  
tion for temperature gradient across the resistor array. An  
0V to 5V  
1
1
1
0
0
0
1
1
0
1
1
1
0V to 10V  
5V to 5V  
–10V to 10V  
15  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
16  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
Interfacing to the 68HC11  
8-BIT PARALLEL  
The circuit in Figure 7 is an example of using the 68HC11  
to control the LTC1599. Data is sent to the DAC using two  
8-bit parallel transfers from the controller’s Port B. The  
WR signal is generated by manipulating the logic output  
on Port A’s bit 3, the MLBYTE command is sent to the DAC  
using Port A’s bit 4, and the LD command comes from the  
SS output on Port D’s bit 5.  
LTC1599  
PORT B  
68HC11  
WR LD MLBYTE  
PORT A, BIT 3  
PORT D, BIT 5  
PORT A , BIT 4  
1599 F07  
Figure 7. Using the 68HC11 to Control the LTC1599  
The sample listing 68HC11 assembly code in Listing A is  
designed to emulate the Timing Diagram found earlier in  
thisdatasheet. Aftervariabledeclaration, themainportion  
of the program retrieves the least significant byte from  
memory, forces MLBYTE and WR to a logic low, and then  
writes the low byte data to Port B. It then sets WR and  
MLBYTE high. Next, the most significant byte is copied  
from memory and WR is again asserted low. The high byte  
is written to Port B and WR is returned high. The transfer  
of the 16 bits is completed by cycling the LD input low and  
then high using the SS output on Port D.  
************************************************************  
*
*
*
*
*
*
*
*
*
* This example program uses 8-bit parallel port B, port A and port D  
* to transfer 16-bit parallel data to the LTC1599 16-bit current output  
* DAC. Port B at $1004 is used for two eight bit transfers. Port A,  
* bit 3 is used for the LTC1599’s WR command and bit 4 is used for the  
* MLBYTE command. Port D’ SS output is used for the LTC1599’s LD  
* command  
*
************************************************************  
*
*****************************************  
* 68HC11 register definitions  
*
*****************************************  
*
* PIOC EQU  
$1002  
$1000  
$1004  
$1008  
Parallel I/O control register  
*
“STAF,STAI,CWOM,HNDS, OIN, PLS, EGA,INVB”  
Port A data register  
PORTA EQU  
*
“Bit7,Bit6,Bit5,Bit4,Bit3,Bit2,Bit1,Bit0”  
Port B data register  
“Bit7,Bit6,Bit5,Bit4,Bit3,Bit2,Bit1,Bit0”  
Port D data register  
PORTB EQU  
*
PORTD EQU  
*
“ - , - , SS* ,CSK ;MOSI,MISO,TxD ,RxD “  
Port D data direction register  
SPI control register  
This memory location holds the LTC1599’s bits 15 - 08  
This memory location holds the LTC1599’s bits 07 - 00  
DDRD  
SPCR  
EQU  
EQU  
$1009  
$1028  
$00  
MBYTE EQU  
LBYTE  
*
EQU  
$01  
*****************************************  
* Start OUTDATA Routine  
*
*****************************************  
*
ORG  
LDAA  
$C000  
#$2F  
Program start location  
INIT1  
*
-,-,1,0;1,1,1,1  
-, -, SS*-Hi, SCK-Lo, MOSI-Hi, MISO-Hi, X, X  
PORTD Keeps SS* a logic high when DDRD, Bit5 is set  
STAA  
LDAA  
STAA  
#$38  
DDRD  
-,-,1,1;1,0,0,0  
SS* , SCK, MOSI are configured as Outputs  
MISO, TxD, RxD are configured as Inputs  
*
* DDRD’s Bit5 is a 1 so that port D’s SS* pin is a general output  
17  
LTC1599  
U
W U U  
APPLICATIONS INFORMATION  
GETDATA PSHX  
PSHY  
PSHA  
LDY  
#$1000 Setup index  
*
*****************************************  
* Retrieve DAC data from memory and  
* send it to the LTC1599  
*
*
*****************************************  
*
LDAA  
BCLR  
LBYTE  
Retrieve the least significant byte from memory  
This sets PORTA, Bit4 output to a logic  
PORTA,Y %00010000  
*
*
*
low, forcing MLBYTE input to a logic low  
This forces a low on the LTC1599’s WR pin  
Transfer the least significant byte to the DAC  
This forces a high on the LTC1599’s WR pin  
This sets PORTA, Bit4 output to a logic  
BCLR  
STAA  
BSET  
BSET  
PORTA,Y %00001000  
PORTB  
PORTA,Y %00001000  
PORTA,Y %00010000  
high, forcing MLBYTE to a logic high  
LDAA  
BCLR  
STAA  
BSET  
MBYTE  
Retrieve the most significant byte from memory  
This forces a low on the LTC1599’s WR pin  
Transfer the most significant byte to the DAC  
This forces a high on the LTC1599’s WR pin  
PORTA,Y %00001000  
PORTB  
PORTA,Y %00001000  
*******************************************  
* The next two instructions exercise  
*
*
* the LD input, latching the data  
* that was just loaded  
*******************************************  
*
*
BCLR  
BSET  
PORTD,Y %00100000  
PORTD,Y %00100000  
LD goes low  
and returns high  
*
*******************************************  
* Data transfer routine completed  
*******************************************  
*
*
PULA  
PULY  
PULX  
RTS  
Restore the A register  
Restore the Y register  
Restore the X register  
18  
LTC1599  
U
TYPICAL APPLICATION  
16-Bit VOUT DAC Programmable Unipolar/Bipolar Configuration  
16  
15  
14  
LTC203AC  
3
UNIPOLAR/  
BIPOLAR  
1
2
3
2
+
6
LT1468  
2
4
15V  
LT1236A-10  
6
5V  
3
2
+
0.1µF  
6
2
LT1001  
4
3
1
20  
5
6
R
R1  
R2 REF  
V
CC  
R
R
FB  
COM  
R2  
OFS  
15pF  
R
R
FB  
OFS  
R1  
I
OUT1  
7
2
3
8
6
LT1468  
V
OUT  
LTC1599  
16-BIT DAC  
DATA  
I
OUT2F  
+
INPUTS  
8
I
14 TO 18,  
21 TO 23  
OUT2S  
9
WR LD CLR CLVL  
12 11 24  
10  
DGND  
19  
1596 TA02  
WR  
LD  
CLR  
CLVL  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
G Package  
24-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
8.07 – 8.33*  
(0.318 – 0.328)  
24 23 22 21 20 19 18 17 16 15 14  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
13  
0° – 8°  
7.65 – 7.90  
(0.301 – 0.311)  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G24 SSOP 1098  
5
7
8
1
2
3
4
6
9
10 11 12  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1599  
TYPICAL APPLICATION  
U
17-Bit Sign Magnitude DAC with Bipolar Zero Error of 140µV (0.92LSB at 17 Bits) at 25°C  
16  
15  
14  
LTC203AC  
3
5V  
+
3
2
0.1µF  
6
2
2
4
LT1468  
15pF  
15V  
1
2
LT1236A-10  
6
4
3
6
1
20  
5
R
R1  
R2  
REF  
V
R
R
COM  
CC  
OFS  
FB  
SIGN  
BIT  
20pF  
R
R
OFS  
FB  
R1  
R2  
I
2
3
OUT1  
7
8
6
16-BIT DAC  
LT1468  
V
OUT  
LTC1599  
DATA  
I
OUT2F  
8
+
INPUTS  
I
14 TO 18,  
21 TO 23  
OUT2S  
9
WR LD CLR CLVL  
10  
DGND  
19  
1596 TA03  
12 11 24  
WR  
LD  
CLR  
CLVL  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N Package  
24-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.265*  
(32.131)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.255 ± 0.015*  
(6.477 ± 0.381)  
+0.035  
–0.015  
0.125  
(3.175)  
MIN  
0.325  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
3
4
5
6
7
8
9
12  
1
2
+0.889  
8.255  
N24 1098  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
RELATED PARTS  
PART NUMBER  
LT1236  
DESCRIPTION  
COMMENTS  
Precision Reference  
16-Bit Accurate Op Amp  
0.05% Initial Accuracy, 5ppm Temperature Drift  
90MHz Gain Bandwidth, 22V/µs Slew Rate  
On-Chip 4-Quadrant Resistors  
LT1468  
LTC1591/LTC1597 Parallel 14/16-Bit Current Output DACs  
LTC1595/LTC1596 Serial 16-Bit Current Output DACs  
Low Glitch, ±1LSB Maximum INL, DNL  
Low Power, Deglitched, 4-Quadrant Multiplying V  
LTC1650  
LTC1657  
LTC1658  
16-Bit Voltage Output DAC  
DAC, ±4.5V Output Swing  
OUT  
16-Bit Parallel Voltage Output DAC  
14-Bit Rail-to-Rail Micropower DAC  
Low Power, 16-Bit Monotonic Over Temperature, Multiplying Capability  
Low Power Multiplying V DAC in MSOP. Output Swings from GND to REF.  
OUT  
1599f LT/TP 1199 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 1999  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY