LTC1605IN#PBF [Linear]

暂无描述;
LTC1605IN#PBF
型号: LTC1605IN#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总16页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1605  
16-Bit, 100ksps,  
Sampling ADC  
U
DESCRIPTION  
FEATURES  
The LTC®1605 is a 100ksps, sampling 16-bit A/D con-  
verter that draws only 55mW (typical) from a single 5V  
supply. This easy-to-use device includes sample-and-  
hold, precision reference, switched capacitor successive  
approximation A/D and trimmed internal clock.  
Sample Rate: 100ksps  
Single 5V Supply  
Bipolar Input Range: ±10V  
Power Dissipation: 55mW Typ  
Integral Nonlinearity: ±2.0LSB Max  
Guaranteed No Missing Codes  
Signal-to-Noise Ratio: 86dB Typ  
Operates with Internal or External Reference  
Internal Synchronized Clock  
28-Pin 0.3” PDIP, SSOP and SW Packages  
Improved 2nd Source to ADS7805 and AD976  
The LTC1605’s input range is an industry standard ±10V.  
Maximum DC specs include ±2.0LSB INL and 16-bits no  
missing codes over temperature. An external reference  
can be used if greater accuracy over temperature is  
needed.  
The ADC has a microprocessor compatible, 16-bit or two  
byte parallel output port. A convert start input and a data  
ready signal (BUSY) ease connections to FIFOs, DSPs and  
microprocessors.  
U
APPLICATIONS  
Industrial Process Control  
Multiplexed Data Acquisition Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
High Speed Data Acquisition for PCs  
Digital Signal Processing  
U
TYPICAL APPLICATION  
Typical INL Curve  
Low Power, 100kHz, 16-Bit Sampling ADC on 5V Supply  
2.0  
5V  
1.5  
1.0  
10µF  
0.1µF  
28  
27  
V
V
DIG ANA  
0.5  
6 TO 13  
15 TO 22  
16-BIT  
200Ω  
20k  
V
IN  
1
±10V  
INPUT  
0
16-BIT  
SAMPLING ADC  
OR 2 BYTE  
PARALLEL  
BUS  
D15 TO D0  
–0.5  
–1.0  
–1.5  
–2.0  
33.2k  
4k  
10k  
CAP  
REF  
4
3
26  
25  
BUSY  
CS  
2.2µF  
2.2µF  
BUFFER  
4k  
32768  
CODE  
0
16384  
49152  
65535  
DIGITAL  
CONTROL  
LOGIC AND  
TIMING  
CONTROL  
SIGNALS  
R/C 24  
REFERENCE  
1605 • TA02  
BYTE  
23  
AGND1 AGND2  
DGND  
14  
1605 • TA01  
2
5
1
LTC1605  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
(Notes 1, 2)  
ORDER PART  
TOP VIEW  
VANA .......................................................................... 7V  
VDIG to VANA ........................................................... 0.3V  
NUMBER  
V
1
2
3
4
5
6
7
8
9
28  
27  
V
V
IN  
DIG  
AGND1  
REF  
ANA  
V
DIG ........................................................................... 7V  
LTC1605ACG  
LTC1605ACN  
LTC1605ACSW  
LTC1605AIG  
LTC1605AIN  
LTC1605AISW  
LTC1605CG  
LTC1605CN  
LTC1605CSW  
LTC1605IG  
26 BUSY  
25 CS  
24 R/C  
23 BYTE  
22 D0  
21 D1  
20 D2  
19 D3  
18 D4  
17 D5  
16 D6  
15 D7  
Ground Voltage Difference  
DGND, AGND1 and AGND2 .............................. ±0.3V  
Analog Inputs (Note 3)  
CAP  
AGND2  
D15 (MSB)  
D14  
VIN ..................................................................... ±25V  
CAP ............................VANA + 0.3V to AGND2 – 0.3V  
REF....................................Indefinite Short to AGND2  
Momentary Short to VANA  
D13  
D12  
D11 10  
D10 11  
D9 12  
Digital Input Voltage (Note 4) ............ VSS – 0.3V to 10V  
Digital Output Voltage........ VDGND – 0.3V to VDIG + 0.3V  
Power Dissipation.............................................. 500mW  
Operating Ambient Temperature Range  
LTC1605IN  
LTC1605ISW  
D8 13  
DGND 14  
LTC1605C................................................ 0°C to 70°C  
LTC1605I............................................ – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
G PACKAGE  
28-LEAD PLASTIC SSOP  
N PACKAGE  
28-LEAD PDIP  
SW PACKAGE  
28-LEAD PLASTIC SO WIDE  
TJMAX = 125°C, θJA = 95°C/W (G)  
T
JMAX = 125°C, θJA = 130°C/W (N)  
TJMAX = 125°C, θJA = 130°C/W (SW)  
Consult factory for Military grade parts.  
U
CONVERTER CHARACTERISTICS With external reference (Notes 5, 6).  
LTC1605  
LTC1605A  
PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
MIN  
16  
TYP  
MAX  
UNITS  
Resolution  
Bits  
Bits  
No Missing Codes  
Transition Noise  
15  
16  
1.0  
1.0  
LSB  
Integral Linearity Error  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Full-Scale Error Drift  
Full-Scale Error  
(Note 7)  
±3  
±2  
LSB  
Ext. Reference = 2.5V (Note 8)  
±10  
±10  
mV  
±2  
±7  
±2  
±5  
ppm/°C  
ppm/°C  
%
Ext. Reference = 2.5V (Notes 12, 13)  
Ext. Reference = 2.5V  
±0.50  
±8  
±0.25  
±8  
Full-Scale Error Drift  
Power Supply Sensitivity  
±2  
±2  
ppm/°C  
V
= V = V  
V = 5V ±5% (Note 9)  
DD  
LSB  
ANA  
DIG  
DD  
2
LTC1605  
U
U
(Note 5)  
ANALOG INPUT  
LTC1605/LTC1605A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
IN  
Analog Input Range (Note 9)  
4.75V V  
5.25V, 4.75V V 5.25V  
±10  
ANA  
DIG  
I
Analog Input Leakage Current  
Analog Input Capacitance  
CS = High  
±1  
µA  
IN  
C
IN  
10  
20  
pF  
R
kΩ  
U AnaloW g Input Impedance  
IN  
(Notes 5, 14)  
DYNAMIC ACCURACY  
LTC1605/LTC1605A  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
S/(N + D) Signal-to-(Noise + Distortion) Ratio  
1kHz Input Signal (Note 14)  
10kHz Input Signal  
20kHz, 60dB Input Signal  
87.5  
87  
30  
dB  
dB  
dB  
THD  
Total Harmonic Distortion  
1kHz Input Signal, First 5 Harmonics  
10kHz Input Signal, First 5 Harmonics  
– 102  
94  
dB  
dB  
Peak Harmonic or Spurious Noise  
1kHz Input Signal  
10kHz Input Signal  
102  
94  
dB  
dB  
Full-Power Bandwidth  
Aperture Delay  
(Note 15)  
275  
40  
kHz  
ns  
Aperture Jitter  
Sufficient to Meet AC Specs  
Transient Response  
Overvoltage Recovery  
Full-Scale Step (Note 9)  
(Note 16)  
2
µs  
150  
ns  
U U  
U
INTERNAL REFERENCE CHARACTERISTICS  
(Note 5)  
LTC1605/LTC1605A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.500  
±5  
MAX  
UNITS  
V
V
Output Voltage  
Output Tempco  
I
I
= 0  
= 0  
2.470  
2.520  
V
REF  
REF  
OUT  
OUT  
ppm/°C  
Internal Reference Source Current  
External Reference Voltage for Specified Linearity  
External Reference Current Drain  
CAP Output Voltage  
1
µA  
V
(Notes 9, 10)  
2.30  
2.50  
2.70  
100  
Ext. Reference = 2.5V (Note 9)  
µA  
V
I
2.50  
OUT  
U
= 0U  
DIGITAL INPUTS AND DIGITAL OUTPUTS  
(Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
V
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
V
= 4.75V  
= 4.75V  
I
I
I
I
= –10µA  
= 200µA  
= 160µA  
= 1.6mA  
4.5  
OH  
DD  
DD  
O
O
O
O
4.0  
V
V
Low Level Output Voltage  
0.05  
0.10  
V
OL  
0.4  
V
3
LTC1605  
DIGITAL INPUTS AND DIGITAL OUTPUTS  
U
U
(Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
= 0V to V , CS High  
MIN  
MAX  
±10  
15  
UNITS  
µA  
I
Hi-Z Output Leakage D15 to D0  
Hi-Z Output Capacitance D15 to D0  
Output Source Current  
V
OZ  
OUT  
DD  
C
OZ  
CS High (Note 9)  
pF  
I
I
V
V
= 0V  
–10  
10  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
Output Sink Current  
= V  
DD  
W U  
TIMING CHARACTERISTICS  
(Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
100  
SAMPLE(MAX)  
8
2
CONV  
Acquisition Time  
µs  
ACQ  
1
Convert Pulse Width  
(Note 11)  
(Note 9)  
40  
ns  
Data Valid Delay After R/C↓  
BUSY Delay from R/C↓  
BUSY Low  
8
65  
8
µs  
2
C = 50pF  
L
ns  
3
µs  
4
BUSY Delay After End of Conversion  
Aperture Delay  
220  
40  
ns  
5
ns  
6
Bus Relinquish Time  
BUSY Delay After Data Valid  
Previous Data Valid After R/C↓  
R/C to CS Setup Time  
Time Between Conversions  
10  
50  
35  
83  
83  
ns  
7
200  
7.4  
ns  
8
µs  
9
(Notes 9, 10)  
(Notes 9, 10)  
10  
10  
10  
ns  
10  
11  
12  
µs  
Bus Access and Byte DelayW U  
ns  
POWER REQUIREMENTS (Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
5.25  
16  
UNITS  
V
V
Positive Supply Voltage  
Positive Supply Current  
Power Dissipation  
(Notes 9, 10)  
4.75  
DD  
I
11  
55  
mA  
DD  
P
80  
mW  
DIS  
The  
indicates specifications which apply over the full operating  
Note 5: V = 5V, f  
specified.  
= 100kHz, t = t = 5ns unless otherwise  
SAMPLE r f  
DD  
temperature range; all other limits and typicals T = 25°C.  
A
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Linearity, offset and full-scale specifications apply for a V input  
with respect to ground.  
IN  
Note 2: All voltage values are with respect to ground with DGND, AGND1  
and AGND2 wired together (unless otherwise noted).  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 3: When these pin voltages are taken below ground or above V  
=
ANA  
V
= V , they will be clamped by internal diodes. This product can  
Note 8: Bipolar offset is the offset voltage measured from 0.5 LSB when  
the output code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111.  
DIG  
DD  
handle input currents of greater than 100mA below ground or above V  
without latch-up.  
DD  
Note 4: When these pin voltages are taken below ground, they will be  
clamped by internal diodes. This product can handle input currents of  
90mA below ground without latchup. These pins are not clamped to V  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
.
DD  
4
LTC1605  
ELECTRICAL CHARACTERISTICS  
Note 11: With CS low the falling R/C edge starts a conversion. If R/C  
returns high at a critical point during the conversion it can create small  
errors. For best results ensure that R/C returns high within 3µs after the  
start of the conversion.  
voltage (not divided by the full-scale range) and includes the effect of  
offset error.  
Note 14: All specifications in dB are referred to a full-scale ±10V input.  
Note 15: Full-power bandwidth is defined as full-scale input frequency at  
which a signal-to-(noise + distortion) degrades to 60dB or 10 bits of  
accuracy.  
Note 12: As measured with fixed resistors shown in Figure 4. Adjustable to  
zero with external potentiometer.  
Note 13: Full-scale error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions, divided by the transition  
Note 16: Recovers to specified performance after (2 • FS) input  
overvoltage.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in CAP Voltage vs  
Load Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
0.05  
0.04  
0.03  
0.02  
0.01  
12.5  
12.0  
12.0  
11.5  
11.0  
10.5  
f
= 100kHz  
f
= 100kHz  
SAMPLE  
SAMPLE  
0
11.5  
11.0  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
10.5  
10.0  
9.5  
10.0  
–80 –70 –60 –50 –40 –30 –20 –10  
LOAD CURRENT (mA)  
0
10  
4.50  
4.75  
5.00  
5.25  
5.50  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1605 • TPC03  
1605 • TPC01  
1605 • TPC02  
Power Supply Feedthrough vs  
Ripple Frequency  
Typical INL Curve  
Typical DNL Curve  
2.0  
1.5  
–20  
–30  
–40  
–50  
–60  
–70  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
32768  
CODE  
0
16384  
49152  
65535  
32768  
CODE  
0
16384  
49152  
65535  
1
10  
100  
1k  
10k 100k  
1M  
RIPPLE FREQUENCY (Hz)  
1605 • TPC04  
1605 • TPC05  
1605 • TPC06  
5
LTC1605  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1605 Nonaveraged 4096 Point FFT Plot  
0
–10  
–20  
–30  
–40  
–50  
f
=
100kHz  
SAMPLE  
IN  
f = 1kHz  
SINAD = 87.5dB  
THD = –101.7dB  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (kHz)  
1605 • TPC07  
Total Harmonic Distortion vs  
Input Frequency  
SINAD vs Input Frequency  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
–70  
–80  
–90  
–100  
–110  
1
10  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1605 • TPC08  
1605 • TPC09  
U
U
U
PIN FUNCTIONS  
AGND2 (Pin 5): Analog Ground. Tie to analog ground  
VIN (Pin 1): Analog Input. Connect through a 200Ω  
resistor to the analog input. Full-scale input range is  
±10V.  
plane.  
D15 to D8 (Pins 6 to 13): Three-State Data Outputs.  
Hi-Z state when CS is high or when R/C is low.  
AGND1 (Pin 2): Analog Ground. Tie to analog ground  
plane.  
DGND (Pin 14): Digital Ground.  
REF (Pin 3): 2.5V Reference Output. Bypass with 2.2µF  
tantalum capacitor. Can be driven with an external refer-  
ence.  
D7 to D0 (Pins 15 to 22): Three-State Data Outputs.  
Hi-Z state when CS is high or when R/C is low.  
BYTE (Pin 23): Byte Select. With BYTE low, data will be  
output with Pin 6 (D15) being the MSB and Pin 22 (D0)  
being the LSB. With BYTE high the upper eight bits and  
the lower eight bits will be switched. The MSB is output  
CAP (Pin 4): Reference Buffer Output. Bypass with 2.2µF  
tantalum capacitor.  
6
LTC1605  
U
U
U
PIN FUNCTIONS  
on Pin 15 and bit 8 is output on Pin 22. Bit 7 is output on  
BUSY (Pin 26): Output Shows Converter Status. It is low  
when a conversion is in progress. Data valid on the rising  
edge of BUSY. CS or R/C must be high when BUSY rises  
or another conversion will start without time for signal  
acquisition.  
Pin 6 and the LSB is output on Pin 13.  
R/C (Pin 24): Read/Convert Input. With CS low, a falling  
edge on R/C puts the internal sample-and-hold into the  
hold state and starts a conversion. With CS low, a rising  
edge on R/C enables the output data bits.  
V
ANA (Pin 27): 5V Analog Supply. Bypass to ground with  
a 0.1µF ceramic and a 10µF tantalum capacitor.  
CS (Pin 25): Chip Select. Internally OR’d with R/C. With  
R/C low, a falling edge on CS will initiate a conversion.  
With R/C high, a falling edge on CS will enable the output  
data.  
V
DIG (Pin 28): 5V Digital Supply. Connect directly to Pin  
27.  
TEST CIRCUITS  
Load Circuit for Output Float Delay  
Load Circuit for Access Timing  
5V  
5V  
1k  
1k  
DBN  
DBN  
DBN  
DBN  
1k  
C
C
L
1k  
50pF  
50pF  
L
LTC1605 • TC02  
LTC1605 • TC01  
A. HI-Z TO V AND V TO V  
B. HI-Z TO V AND V TO V  
OL OH  
A. V TO HI-Z  
OH  
B. V TO HI-Z  
OL  
OH  
OL  
OH  
OL  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
SAMPLE  
SAMPLE  
20k  
V
IN  
V
V
ANA  
DIG  
10k  
4k  
C
ZEROING SWITCHES  
4k  
REF  
2.5V REF  
+
REF BUF  
COMP  
16-BIT CAPACITIVE DAC  
CAP  
(2.5V)  
16  
D15  
D0  
SUCCESSIVE APPROXIMATION  
REGISTER  
OUTPUT LATCHES  
AGND1  
AGND2  
DGND  
INTERNAL  
CLOCK  
CONTROL LOGIC  
LTC1605 • BD  
CS  
R/C  
BYTE  
BUSY  
7
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
Conversion Details  
Driving the Analog Inputs  
The LTC1605 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 16-bit or two byte parallel output. The  
ADC is complete with a precision reference and an internal  
clock. The control logic provides easy interface to micro-  
processorsand DSPs. (Pleaserefertothe DigitalInterface  
section for the data format.)  
The nominal input range for the LTC1605 is ±10V or  
(±4VREF)andtheinputisovervoltageprotectedto±25V.  
Theinputimpedanceistypically20k,therefore,itshould  
be driven with a low impedance source. Wideband noise  
coupling into the input can be minimized by placing a  
1000pF capacitor at the input as shown in Figure 2. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If an  
amplifier is to be used to drive the input, care should be  
takentoselectanamplifierwithadequateaccuracy,linear-  
ity and noise for the application. The following list is a  
summary of the op amps that are suitable for driving the  
LTC1605. More detailed information is available in the  
LinearTechnologydatabooksandLinearViewTM CD-ROM.  
Conversion start is controlled by the CS and R/C inputs. At  
the start of conversion the successive approximation  
register(SAR)isreset. Onceaconversioncyclehasbegun  
it cannot be restarted.  
During the conversion, the internal 16-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, VIN is connected through the resistor divider to  
the sample-and-hold capacitor during the acquire phase  
andthecomparatoroffsetisnulledbytheautozeroswitches.  
In this acquire phase, a minimum delay of 2µs will provide  
enough time for the sample-and-hold capacitor to acquire  
the analog signal. During the convert phase, the autozero  
switches open, putting the comparator into the compare  
mode. The input switch switches CSAMPLE to ground,  
injecting the analog input charge onto the summing junc-  
tion. This input charge is successively compared with the  
binary-weighted charges supplied by the capacitive DAC.  
Bit decisions are made by the high speed comparator. At  
the end of a conversion, the DAC output balances the VIN  
input charge. The SAR contents (a 16-bit data word) that  
representstheVINareloadedintothe16-bitoutputlatches.  
200Ω  
A
IN  
V
IN  
1000pF  
33.2k  
CAP  
1605 • F02  
Figure 2. Analog Input Filtering  
LT1007 - Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
LT1097 - Low cost, low power precision amplifier. 300µA  
supply current. ±5V to ±15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
LT1227-140MHzvideocurrentfeedbackamplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
SAMPLE  
SI  
C
SAMPLE  
R
SAMPLE  
HOLD  
LT1360 - 37MHz voltage feedback amplifier. 3.8mA sup-  
ply current. ±5V to ±15V supplies. Good AC/DC specs.  
IN1  
V
+
IN  
R
IN2  
LT1363 - 50MHz voltage feedback amplifier. 6.3mA sup-  
ply current. Good AC/DC specs.  
C
V
DAC  
DAC  
COMPARATOR  
DAC  
S
A
R
LT1364/LT1365 - Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good AC/  
DC specs.  
16-BIT  
LATCH  
1605 • F01  
Figure 1. LTC1605 Simplified Equivalent Circuit  
LinearView is a trademark of Linear Technology Corporation  
8
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
applied to VIN and R4 is adjusted until the output code is  
changing between 0111 1111 1111 1110 and 0111 1111  
1111 1111. Figure 6 shows the bipolar transfer character-  
istic of the LTC1605.  
Internal Voltage Reference  
The LTC1605 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
trimmed to 2.50V. The full-scale range of the ADC is equal  
to (±4 • VREF) or nominally ±10V. The output of the  
reference is connected to the input of a unity-gain buffer  
through a4k resistor (seeFigure 3). The inputto the buffer  
or the output of the reference is available at REF (Pin 3).  
The internal reference can be overdriven with an external  
reference if more accuracy is needed. The buffer output  
drives the internal DAC and is available at CAP (Pin 4). The  
CAP pin can be used to drive a steady DC load of less than  
2mA. Driving an AC load is not recommended because it  
can cause the performance of the converter to degrade.  
1
V
±10V INPUT  
IN  
2
200Ω  
1%  
AGND1  
2.2µF  
+
LTC1605  
33.2k  
1%  
3
4
REF  
CAP  
+
2.2µF  
5
AGND2  
1605 • F04  
Figure 4. ±10V Input Without Trim  
1
V
±10V INPUT  
4k  
IN  
3
REF  
(2.5V)  
BANDGAP  
2
200Ω  
AGND1  
REFERENCE  
1%  
2.2µF  
V
ANA  
2.2µF  
+
+
+
3
33.2k  
1%  
REF  
5V  
LTC1605  
576k  
R4  
50k  
4
5
4
CAP  
(2.5V)  
CAP  
R3  
50k  
2.2µF  
INTERNAL  
CAPACITOR  
DAC  
2.2µF  
AGND2  
1605 • F05  
1605 • F03  
Figure 5. ±10V Input with Offset and Gain Trim  
Figure 3. Internal or External Reference Source  
011...111  
For minimum code transition noise the REF pin and the  
CAP pin should each be decoupled with a capacitor to  
filter wideband noise from the reference and the buffer  
(2.2µF tantalum).  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Offset and Gain Adjustments  
100...001  
100...000  
TheLTC1605offsetandfull-scaleerrorshavebeentrimmed  
at the factory with the external resistors shown in Figure 4.  
This allows for external adjustment of offset and full scale  
in applications where absolute accuracy is important. See  
Figure 5 for the offset and gain trim circuit. First adjust the  
offset to zero by adjusting resistor R3. Apply an input  
voltage of –152.6mV (0.5LSB) and adjust R3 so the code  
ischangingbetween1111111111111111and00000000  
00000000. Thegainerroristrimmedbyadjusting resistor  
R4. An input voltage of 9.999542V (+FS – 1.5LSB) is  
FS = 20V  
1LSB = FS/65536  
–1 0V  
1
LSB  
–FS/2  
FS/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
1605 • F06  
Figure 6. LTC1605 Bipolar Transfer Characteristics  
DC Performance  
Onewayofmeasuringthetransitionnoiseassociatedwith  
a high resolution ADC is to use a technique where a DC  
9
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
signal is applied to the input of the ADC and the resulting  
output codes are collected over a large number of conver-  
sions. For example in Figure 7 the distribution of output  
code is shown for a DC input that has been digitized 10000  
times. The distribution is Gaussian and the RMS code  
transition is about 1LSB.  
Timing and Control  
Conversion start and data read are controlled by two  
digital inputs: CS and R/C. To start a conversion and put  
the sample-and-hold into the hold mode bring CS and  
R/C low for no less than 40ns. Once initiated it cannot be  
restarted until the conversion is complete. Converter  
statusisindicatedbytheBUSYoutputandthisislowwhile  
the conversion is in progress.  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Therearetwomodesofoperation.Thefirstmodeisshown  
in Figure 8. The digital input R/C is used to control the start  
of conversion. CS is tied low. When R/C goes low the  
sample-and-hold goes into the hold mode and a conver-  
sion is started. BUSY goes low and stays low during the  
conversion and will go back high after the conversion has  
been completed and the internal output shift registers  
havebeenupdated.R/Cshouldremainlowfornolessthan  
40ns. During the time R/C is low the digital outputs are in  
a Hi-Z state. R/C should be brought back high within 3µs  
after the start of the conversion to ensure that no errors  
occur in the digitized result. The second mode, shown in  
Figure 9, uses the CS signal to control the start of a  
conversion and the reading of the digital output. In this  
mode the R/C input signal should be brought low no less  
than 10ns before the falling edge of CS. The minimum  
pulse width for CS is 40ns. When CS falls, BUSY goes low  
and will stay low until the end of the conversion. BUSY will  
go high after the conversion has been completed. The new  
data is valid when CS is brought back low again to initiate  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
CODE  
1605 • F07  
Figure 7. Histogram for 10000 Conversions  
DIGITAL INTERFACE  
Internal Clock  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 7µs. No external adjustments  
are required and, with the typical acquisition time of 1µs,  
throughput performance of 100ksps is assured.  
t
1
R/C  
t
11  
t
2
t
4
t
3
BUSY  
MODE  
t
t
6
5
ACQUIRE  
CONVERT  
ACQUIRE  
CONVERT  
HI-Z  
t
t
ACQ  
CONV  
t
9
PREVIOUS  
DATA VALID  
PREVIOUS  
DATA VALID  
DATA  
VALID  
DATA  
VALID  
HI-Z  
NOT VALID  
DATA MODE  
1605 • F08  
t
t
7
8
Figure 8. Conversion Timing with Outputs Enabled After Conversion (CS Tied Low)  
10  
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
t
t
t
t
10  
10  
10  
10  
R/C  
CS  
t
t
1
1
t
3
t
4
BUSY  
MODE  
t
6
ACQUIRE  
CONVERT  
ACQUIRE  
t
CONV  
HI-Z  
HI-Z  
DATA  
VALID  
DATA BUS  
t
t
7
12  
1605 • F09  
Figure 9. Using CS to Control Conversion and Read Timing  
t
t
10  
10  
R/C  
CS  
BYTE  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
PINS 6 TO 13  
PINS 15 TO 22  
HIGH BYTE  
LOW BYTE  
LOW BYTE  
HIGH BYTE  
t
t
t
7
12  
12  
1605 • F03  
Figure 10. Using CS and BYTE to Control Data Bus Read Timing  
0
–10  
–20  
–30  
–40  
f
=
100kHz  
SAMPLE  
IN  
f = 1kHz  
SINAD = 87.5dB  
THD = –101.7dB  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (kHz)  
1605 • F11  
Figure 11. LTC1605 Nonaveraged 4096 Point FFT Plot  
11  
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
band between DC and half the sampling frequency. THD is  
expressed as:  
a read. Again it is recommended that both R/C and CS  
return high within 3µs after the start of the conversion.  
2
2
2
2
Output Data  
V2 + V3 + V4 ... + VN  
THD = 20log  
V1  
The output data can be read as a 16-bit word or it can be  
read as two 8-bit bytes. The format of the output data is  
two’s complement. The digital input pin BYTE is used to  
control the two byte read. With the BYTE pin low the first  
eight MSBs are output on the D15 to D8 pins and the eight  
LSBs are output on the D7 to D0 pins. When the BYTE pin  
istakenhightheeightLSBsreplacetheeightMSBs(Figure  
10).  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
Board Layout, Power Supplies and Decoupling  
Wire wrap boards are not recommended for high resolu-  
tion or high speed A/D converters. To obtain the best  
performance from the LTC1605, a printed circuit board is  
required. Layout for the printed circuit board should  
ensure the digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track or  
underneath the ADC. The analog input should be screened  
by AGND.  
Dynamic Performance  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise at  
the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 11 shows a  
typical LTC1605 FFT plot which yields a SINAD of 87.5dB  
and THD of 102dB.  
Figures 12 through 15 show a layout for a suggested  
evaluation circuit which will help obtain the best perfor-  
mance from the 16-bit ADC. Pay particular attention to the  
design of the analog and digital ground planes. The DGND  
pin of the LTC1605 can be tied to the analog ground plane.  
Placing the bypass capacitor as close as possible to the  
power supply, the reference and reference buffer output is  
very important. Low impedance common returns for  
these bypass capacitors are essential to low noise opera-  
tion of the ADC, and the foil width for these tracks should  
beaswideaspossible. Also, sinceanypotentialdifference  
in grounds between the signal source and ADC appears as  
an error voltage in series with the input signal, attention  
should be paid to reducing the ground circuit impedance  
as much as possible. The digital output latches and the  
onboard sampling clock have been placed on the digital  
ground plane. The two ground planes are tied together at  
the power supply ground connection.  
Signal-to-Noise Ratio  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 11 shows a typical SINAD of 87.5dB  
with a 100kHz sampling rate and a 1kHz input.  
Total Harmonic Distortion  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
12  
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
Figure 12. Component Side Silkscreen for the Suggested LTC1605 Evaluation Circuit  
ANALOG  
GROUND PLANE  
DIGITAL  
GROUND PLANE  
ANALOG  
GROUND PLANE  
Figure 13. Bottom Side Showing Analog Ground Plane  
Figure 14. Component Side Showing Separate Analog  
and Digital Ground Plane  
13  
LTC1605  
U
W U U  
APPLICATIONS INFORMATION  
14  
LTC1605  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
0.397 – 0.407*  
(10.07 – 10.33)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0.301 – 0.311  
(7.65 – 7.90)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
0.205 – 0.212**  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
0° – 8°  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
(0.13 – 0.22)  
0.022 – 0.037  
(0.55 – 0.95)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
G28 SSOP 0694  
N Package  
28-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.370*  
(34.789)  
MAX  
28 27 26 25 24  
23 22 21 20  
19 18 17 16 15  
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N28 1197  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1605  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
SW Package  
28-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.697 – 0.712*  
(17.70 – 18.08)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.291 – 0.299**  
(7.391 – 7.595)  
2
3
5
7
8
9
10 11 12 13 14  
1
4
6
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
(0.356 – 0.482)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S28 (WIDE) 0996  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
®
LT 1019-2.5  
Precision Bandgap Reference  
Low Power 12-Bit, 100ksps ADCs  
Single 5V, 12-Bit, 1.25Msps ADC  
Low Power 14-Bit, 800ksps ADC  
Micropower Precision Series Reference  
Micropower 4-/8-Channel 12-Bit ADCs  
0.05% Max, 5ppm/°C Max  
LTC1274/LTC1277  
LTC1415  
10mW Power Dissipation, Parallel/Byte Interface  
55mW Power Dissipation, 72dB SINAD  
LTC1419  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
0.075% Max, 10ppm/°C Max, Only 130µA Supply Current  
Serial I/O, 3V and 5V Versions  
LT1460-2.5  
LTC1594/LTC1598  
1605fa LT/TP 0598 2K REV A • PRINTED IN THE USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1997  

相关型号:

LTC1605IN#TR

IC 1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP28, 0.300 INCH, PLASTIC, DIP-28, Analog to Digital Converter
Linear

LTC1605IN#TRPBF

IC 1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28, Analog to Digital Converter
Linear

LTC1605ISW

16-Bit, 100ksps, Sampling ADC
Linear

LTC1605ISW#PBF

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SO; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1605ISW#TR

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SO; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1605ISW#TRPBF

暂无描述
Linear

LTC1606

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606AC

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACG

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACG#TRPBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1606ACSW

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACSW#PBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SO; Pins: 28; Temperature Range: 0°C to 70°C
Linear