LTC1657_15 [Linear]

Parallel 16-Bit Rail-to-Rail Micropower DAC;
LTC1657_15
型号: LTC1657_15
厂家: Linear    Linear
描述:

Parallel 16-Bit Rail-to-Rail Micropower DAC

文件: 总16页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1657/LTC1657L  
Parallel 16-Bit Rail-to-Rail  
Micropower DAC  
U
FEATURES  
DESCRIPTIO  
TheLTC®1657/LTC1657Larecompletesinglesupply,rail-  
to-rail voltage output, 16-bit digital-to-analog converters  
(DAC) in a 28-pin SSOP or PDIP package. They include a  
rail-to-rail output buffer amplifier, an internal reference  
and a double buffered parallel digital interface.  
16-Bit Monotonic Over Temperature  
Deglitched Rail-to-Rail Voltage Output: 8nV•s  
ICC: 650µA Typ  
Maximum DNL Error: ±1LSB  
Settling Time: 20µs to ±1LSB  
Built-In Reference: 2.048V (LTC1657)  
The LTC1657/LTC1657L have separate reference input  
pins that can be driven by an external reference. The full-  
scale output can be 1 or 2 times the reference voltage  
dependingonhowtheX1/X2pinisconnected.TheLTC1657  
operates from a 4.5V to 5.5V supply and has an onboard  
2.048V reference. The LTC1657L operates from a 2.7V to  
5.5V supply and has an onboard 1.25V reference.  
1.25V (LTC1657L)  
Internal Power-On Reset to Zero Volts  
Asynchronous CLR Pin  
Output Buffer Configurable for Gain of 1 or 2  
Parallel 16-Bit or 2-Byte Double Buffered Interface  
Narrow 28-Lead SSOP Package  
Multiplying CapaUbility  
The LTC1657/LTC1657L are similar to Linear Technol-  
ogy Corporation’s LTC1450/LTC1450L 12-bit VOUT DAC  
family, allowing an upgrade path. They are the only  
buffered 16-bit parallel DACs in a 28-lead SSOP package  
and include an onboard reference for stand alone  
performance.  
APPLICATIO S  
Instrumentation  
Digital Calibration  
Industrial Process Control  
Automatic Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Communication Test Equipment  
W
LTC1657: 4.5V TO 5.5V  
LTC1657L: 2.7V TO 5.5V  
BLOCK DIAGRA  
23  
22  
24  
V
CC  
REFOUT  
REFHI  
19 D15 (MSB)  
REFERENCE  
LTC1657: 2.048V  
LTC1657L: 1.25V  
18  
17  
16  
15  
14  
13  
12  
D8  
MSB  
8-BIT  
INPUT  
REGISTER  
16-BIT  
DAC  
REGISTER  
DATA IN FROM  
MICROPROCESSOR  
DATA BUS  
16-BIT  
DAC  
+
LTC1657:  
V
OUT  
25  
11  
10  
9
D7  
0V TO 4.096V  
LTC1657L:  
0V TO 2.5V  
Differential Nonlinearity  
vs Input Code  
LSB  
8-BIT  
8
1.0  
0.8  
R
7
INPUT  
6
REGISTER  
0.6  
R
5
0.4  
D0 (LSB)  
CSMSB  
4
0.2  
3
0
1
2
WR  
FROM  
MICROPROCESSOR  
DECODE LOGIC  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
CSLSB  
28 LDAC  
27 CLR  
POWER-ON  
RESET  
FROM  
SYSTEM RESET  
GND  
20  
REFLO  
21  
X1/X2  
26  
0
16384  
32768  
49152  
65535  
1657 TA01  
DIGITAL INPUT CODE  
1657 TA02  
1
LTC1657/LTC1657L  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
VCC to GND .............................................. 0.5V to 7.5V  
TTL Input Voltage, REFHI, REFLO,  
X1/X2....................................................... 0.5V to 7.5V  
ORDER PART  
NUMBER  
1
2
LDAC  
CLR  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
WR  
CSLSB  
CSMSB  
(LSB) D0  
D1  
LTC1657CGN  
LTC1657CN  
LTC1657IGN  
LTC1657IN  
LTC1657LCGN  
LTC1657LCN  
LTC1657LIGN  
LTC1657LIN  
3
X1/X2  
V
OUT, REFOUT ............................ 0.5V to (VCC + 0.5V)  
4
V
OUT  
Operating Temperature Range  
5
V
CC  
LTC1657C/LTC1657LC .......................... 0°C to 70°C  
LTC1657I/LTC1657LI ...................... 40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
6
REFOUT  
REFHI  
REFLO  
GND  
D2  
7
D3  
8
D4  
9
D5  
10  
11  
12  
13  
14  
D15 (MSB)  
D14  
D6  
D7  
D13  
D8  
D12  
D9  
D11  
D10  
N PACKAGE  
28-LEAD PDIP  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 95°C/ W (GN)  
JMAX = 125°C, θJA = 58°C/ W (N)  
T
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V (LTC1657), VCC = 2.7V to 5.5V (LTC1657L),  
VOUT unloaded, REFOUT tied to REFHI, REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL PARAMETER  
DAC (Note 2)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
16  
16  
Bits  
Bits  
LSB  
LSB  
mV  
Monotonicity  
DNL  
INL  
Differential Nonlinearity  
Guaranteed Monotonic (Note 3)  
(Note 3)  
±0.5  
±4  
±1  
±12  
2
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
ZSE  
0
V
Measured at Code 200 (LTC1657)  
Measured at Code 200 (LTC1657L)  
±0.3  
±0.4  
±3  
±4  
mV  
mV  
OS  
V
TC  
OS  
Offset Error Tempco  
Gain Error  
±5  
±2  
µV/°C  
±16  
LSB  
Gain Error Drift  
LTC1657  
LTC1657L  
0.5  
1.0  
ppm/°C  
ppm/°C  
Power Supply  
V
Positive Supply Voltage  
For Specified Performance (LTC1657)  
For Specified Performance (LTC1657L)  
4.5  
2.7  
5.5  
5.5  
V
V
CC  
I
Supply Current  
(Note 4)  
650  
1200  
µA  
CC  
2
LTC1657/LTC1657L  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V (LTC1657), VCC = 2.7V to 5.5V (LTC1657L),  
VOUT unloaded, REFOUT tied to REFHI, REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL PARAMETER  
Op Amp DC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Short-Circuit Current Low  
V
V
Shorted to GND  
70  
80  
120  
140  
mA  
mA  
OUT  
OUT  
Short-Circuit Current High  
Output Impedance to GND  
Shorted to V  
CC  
Input Code = 0 (LTC1657)  
Input Code = 0 (LTC1657L)  
40  
120  
120  
275  
Output Line Regulation  
Input Code = 65535, LTC1657: V = 4.5V to 5.5V  
4
3
mV/V  
mV/V  
CC  
Input Code = 65535, LTC1657L: V = 2.7V to 5.5V  
CC  
AC Performance  
Voltage Output Slew Rate  
(Note 5)  
±0.3  
±0.7  
V/µs  
Voltage Output Settling Time  
(Note 5) to 0.0015% (16-Bit Settling Time)  
(Note 5) to 0.012% (13-Bit Settling Time)  
20  
10  
µs  
µs  
Digital Feedthrough  
(Note 6)  
0.3  
8
nVs  
nVs  
Midscale Glitch Impulse  
DAC Switch Between 8000 and 7FFF  
H H  
Output Voltage Noise Using  
Internal Reference at 1kHz  
X1/X2 Tied to V  
LTC1657  
LTC1657L  
(Notes 8, 9)  
OUT  
165  
105  
nV/Hz  
nV/Hz  
Output Voltage Noise Using  
External Reference at 1kHz  
X1/X2 Tied to V  
X1/X2 Tied to V  
(Notes 8, 9, 10)  
(Notes 8, 9)  
50  
nV/Hz  
OUT  
OUT  
Output Voltage Noise Density Using  
Internal Reference from 0.1Hz to 10Hz  
8
µV  
P-P  
Refererence Input Multiplying BW  
700  
kHz  
Reference Output (REFOUT)  
Reference Output Voltage  
LTC1657  
LTC1657L  
2.036  
1.240  
2.048  
1.250  
2.060  
1.260  
V
V
Reference Output  
15  
ppm/°C  
Temperature Coefficient  
Reference Line Regulation  
Reference Load Regulation  
Short-Circuit Current  
LTC1657: V = 4.5V to 5.5V  
±1.5  
±1.0  
mV/V  
mV/V  
CC  
LTC1657L: V = 2.7V to 5.5V  
CC  
Measured at I  
Measured at I  
= 100µA (LTC1657)  
= 100µA (LTC1657L)  
5
3
mV/A  
mV/A  
OUT  
OUT  
REFOUT Shorted to GND  
50  
100  
mA  
Reference Output Voltage Noise at 1kHz LTC1657  
LTC1657L  
150  
90  
nV/Hz  
nV/Hz  
Reference Output Voltage Noise Density  
from 0.1Hz to 10Hz  
6
µV  
P-P  
Reference Input  
REFHI, REFLO Input Range  
(Note 7) See Applications Information  
X1/X2 Tied to V  
X1/X2 Tied to GND  
LTC1657  
LTC1657L (Relative to REFLO)  
0
0
V
– 1.5  
V /2  
CC  
V
V
OUT  
CC  
REFHI Input Resistance  
16  
16  
25  
23  
kΩ  
kΩ  
3
LTC1657/LTC1657L  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range TA = TMIN to TMAX. VCC = 5V (LTC1657), VCC = 3V (LTC1657L), unless otherwise noted.  
LTC1657  
TYP  
LTC1657L  
TYP  
SYMBOL PARAMETER  
Digital I/O  
CONDITIONS  
MIN  
MAX  
MIN  
MAX UNITS  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Leakage  
2.4  
2.0  
V
IH  
0.8  
±10  
10  
0.6  
±10  
10  
V
µA  
pF  
IL  
I
V = GND to V  
IN CC  
LEAK  
C
Digital Input Capacitance  
(Note 7)  
IN  
Switching Characteristics  
t
t
t
t
t
t
t
t
CS (MSB or LSB) Pulse Width  
WR Pulse Width  
40  
40  
0
60  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
WR  
CS to WR Setup  
CWS  
CWH  
DWS  
DWH  
LDAC  
CLR  
CS to WR Hold  
0
0
Data Valid to WR Setup  
Data Valid to WR Hold  
LDAC Pulse Width  
CLR Pulse Width  
40  
0
60  
0
40  
40  
60  
60  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: D0 to D15 toggle between all 0s and all 1s with REFHI = 0V,  
CSMSB = CSLSB = WR = LDAC = High  
Note 2: External reference REFHI = 2.2V. V = 5V (LTC1657).  
Note 7: Guaranteed by design. Not subject to test.  
Note 8: DAC inputs all 1s.  
CC  
External reference REFHI = 1.3V. V = 3V (LTC1657L).  
CC  
Note 3: Nonlinearity is defined from code 128 to code 65535 (full scale).  
See Applications Information.  
Note 9: X1/X2 tied to GND, the voltage noise will be a factor of 2 greater.  
Note 10: Using 2.048V (1.25V) external reference with 3nV/Hz noise at  
1kHz for LTC1657/(LTC1657L).  
Note 4: Digital inputs at 0V or V  
.
CC  
Note 5: DAC switched between all 1s and all 0s. V = 4.096V.  
FS  
4
LTC1657/LTC1657L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1657 Integral Nonlinearity  
LTC1657 Differential Nonlinearity  
LTC1657L Differential Nonlinearity  
2.0  
1.6  
2.0  
1.6  
5
4
1.2  
1.2  
3
0.8  
2
0.8  
0.4  
0.4  
1
0
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–1  
–2  
–3  
–4  
–5  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
0
16384  
32768  
49152  
65535  
0
16384  
32768  
49152  
65535  
0
16384  
32768  
49152  
65535  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1657 G01  
1657 G02  
1657 G03  
LTC1657 Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
LTC1657L Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
LTC1657L Integral Nonlinearity  
5
4
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CODE ALL 1s  
CODE ALL 1s  
V  
1LSB  
V  
1LSB  
OUT  
OUT  
V
= 2.5V  
V
= 4.096V  
OUT  
OUT  
3
2
125°C  
125°C  
1
0
25°C  
–1  
–2  
–3  
–4  
–5  
25°C  
–55°C  
–55°C  
0
16384  
32768  
49152  
65535  
0
5
10  
0
5
10  
DIGITAL INPUT CODE  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1657 G04  
1657 G05  
1657 G06  
LTC1657 Minimum Output  
Voltage vs Output Sink Current  
LTC1657L Minimum Output  
Voltage vs Output Sink Current  
LTC1657 Full-Scale Voltage  
vs Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
4.110  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
CODE ALL 0s  
OUT  
V  
1LSB  
125°C  
25°C  
–55°C  
125°C  
25°C  
–55°C  
CODE ALL 0s  
V  
1LSB  
OUT  
0
5
10  
15  
0
5
10  
15  
–55  
–25  
5
35  
65  
95  
125  
OUTPUT SINK CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
TEMPERATURE (°C)  
1657 G07  
1657 G08  
1657 G09  
5
LTC1657/LTC1657L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1657L Full-Scale Voltage  
vs Temperature  
LTC1657 Offset Error  
vs Temperature  
LTC1657L Offset Error  
vs Temperature  
2.510  
2.505  
2.500  
2.495  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
– 0.8  
–1.0  
2.490  
–55 –25  
5
35  
65  
95  
125  
–55  
–10  
35  
80  
125  
–55  
–10  
35  
80  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1657 G10  
1657 G11  
1657 G12  
LTC1657 Supply Current  
vs Logic Input Voltage  
LTC1657L Supply Current  
vs Logic Input Voltage  
LTC1657 Supply Current  
vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
8
7
6
5
4
3
2
1
0
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
V
CC  
= 3V  
V
= 5V  
CC  
V
= 5.5V  
CC  
V
V
= 5V  
CC  
= 4.5V  
CC  
0
1
2
3
4
5
0
1
3
–55 –35 –15  
5
25 45 65 85 105 125  
2
LOGIC INPUT VOLTAGE (V)  
LOGIC INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1657 G13  
1657 G14  
1657 G15  
LTC1657L Supply Current  
vs Temperature  
LTC1657  
Large-Signal Transient Response  
LTC1657L  
Large-Signal Transient Response  
5
4
3
2
1
0
5
4
3
2
1
0
560  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
V
T
UNLOADED  
V
T
UNLOADED  
OUT  
= 25°C  
OUT  
= 25°C  
A
A
V
CC  
= 3.3V  
V
CC  
= 3V  
V
CC  
= 2.7V  
–55 –35 –15  
5
25 45 65 85 105 125  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
TEMPERATURE (°C)  
1657 G18  
1657 G17  
1657 G16  
6
LTC1657/LTC1657L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1657 0.1Hz to 10Hz  
Voltage Noise  
LTC1657L 0.1Hz to 10Hz  
Voltage Noise  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SEC)  
TIME (SEC)  
1659 G19  
1659 G20  
U
U
U
PI FU CTIO S  
WR (Pin 1): Write Input (Active Low). Used with CSMSB  
and/orCSLSBtocontroltheinputregisters. WhileWRand  
CSMSB and/or CSLSB are held low, data writes into the  
input register.  
REFLO (Pin 21): Lower input terminal of the DAC’s inter-  
nal resistor ladder. Typically connected to Analog Ground.  
An input code of (0000)H will connect the positive input of  
the output buffer to this end of the ladder. Can be used to  
offset the zero scale above ground.  
CSLSB (Pin 2): Chip Select Least Significant Byte (Active  
Low). Used with WR to control the LSB 8-bit input regis-  
ters. While WR and CSLSB are held low, the LSB byte  
writes into the LSB input register. Can be connected to  
CSMSB for simultaneous loading of both sets of input  
latches on a 16-bit bus.  
REFHI (Pin 22): Upper input terminal of the DAC’s internal  
resistor ladder. Typically connected to REFOUT. An input  
code of (FFFF)H will connect the positive input of the  
output buffer to 1LSB below this voltage.  
REFOUT (Pin 23): Output of the internal reference is  
2.048V (LTC1657), 1.25V (LTC1657L). Typically con-  
nected to REFHI to drive internal DAC resistor ladder.  
CSMSB (Pin 3): Chip Select Most Significant Byte (Active  
Low). Used with WR to control the MSB 8-bit input  
registers. While WR and CSMSB are held low, the MSB  
byte writes into the MSB input register. Can be connected  
to CSLSB for simultaneous loading of both sets of input  
latches on a 16-bit bus.  
VCC (Pin 24): Positive Power Supply Input. 4.5V VCC  
5.5V (LTC1657), 2.7V VCC 5.5V (LTC1657L). Requires  
a 0.1µF bypass capacitor to ground.  
VOUT (Pin 25): Buffered DAC Output.  
D0toD7(Pins4to11):InputdatafortheLeastSignificant  
Byte. Written into LSB input register when WR = 0 and  
CSLSB = 0.  
X1/X2(Pin26):GainSettingResistorPin. ConnecttoGND  
for G = 2 or to VOUT for G = 1. This pin should always be  
tied to a low impedance source, such as ground or VOUT  
,
D8 to D15 (Pins 12 to 19): Input data for the Most Signifi-  
cant Byte. Written into MSB input register when WR = 0  
and CSMSB = 0.  
to ensure stability of the output buffer when driving  
capacitive loads.  
GND (Pin 20): Ground.  
7
LTC1657/LTC1657L  
U
U
U
PI FU CTIO S  
CLR (Pin 27): Clear Input (Asynchronous Active Low). A  
low on this pin asynchronously resets all input and DAC  
registers to 0s.  
LDAC (Pin 28): Load DAC (Asynchronous Active Low).  
Used to asynchronously transfer the contents of the input  
registers to the DAC register which updates the output  
voltage. If held low, the DAC register loads data from the  
input registers which will immediately update VOUT  
.
U
DIGITAL INTERFACE TRUTH TABLE  
CLR  
CSMSB  
CSLSB  
WR  
LDAC  
FUNCTION  
L
X
X
X
L
H
L
X
H
X
L
X
X
X
H
L
X
X
L
Clears input and DAC registers to zero  
Loads DAC register with contents of input registers  
Freezes contents of DAC register  
Writes MSB byte into MSB input register  
Writes LSB byte into LSB input register  
Writes MSB and LSB bytes into MSB and LSB input registers  
Inhibits write to MSB and LSB input registers  
Inhibits write to MSB input register  
H
H
H
H
H
H
H
H
X
X
L
L
L
H
X
X
L
H
X
X
X
X
X
X
L
L
X
X
H
L
Inhibits write to LSB input register  
Data bus flows directly through input and DAC registers  
H
W U  
W
TIMING DIAGRAM  
t
CS  
CSLSB  
t
CS  
CSMSB  
t
t
t
t
WR  
CWH  
CWS  
t
WR  
WR  
t
LDAC  
LDAC  
DWH  
t
DWS  
DAC UPDATE  
DATA VALID  
DATA VALID  
DATA  
1657 TD  
8
LTC1657/LTC1657L  
U U  
DEFI ITIO S  
Resolution (n): Resolution is defined as the number of  
digital input bits (n). It defines the number of DAC output  
states(2n)thatdividethefull-scalerange.Resolutiondoes  
not imply linearity.  
DAC Transfer Characteristic:  
REFHIREFLO  
65536  
VOUT = G•  
CODE +REFLO  
(
)
Full-Scale Voltage (VFS): This is the output of the DAC  
when all bits are set to 1.  
G = 1 for X1/X2 connected to VOUT  
G = 2 for X1/X2 connected to GND  
CODE = Decimal equivalent of digital input  
(0 CODE 65535)  
VoltageOffsetError(VOS): Normally,theDACoffsetisthe  
voltageattheoutputwhentheDACisloadedwithallzeros.  
The DAC can have a true negative offset, but because the  
partisoperatedfromasinglesupply, theoutputcannotgo  
below zero. If the offset is negative, the output will remain  
near 0V resulting in the transfer curve shown in Figure 1.  
Zero-Scale Error (ZSE): The output voltage when the  
DAC is loaded with all zeros. Since this is a single supply  
part, this value cannot be less than 0V.  
Integral Nonlinearity (INL): End-point INL is the maxi-  
mum deviation from a straight line passing through the  
end points of the DAC transfer curve. Because the part  
operates from a single supply and the output cannot go  
below zero, the linearity is measured between full scale  
and the code corresponding to the maximum offset  
specification. The INL error at a given input code is  
calculated as follows:  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
DAC CODE  
1657 F01  
Figure 1. Effect of Negative Offset  
INL (In LSBs) = [VOUT – VOS – (VFS – VOS)  
(code/65535)]  
The offset of the part is measured at the code that corre-  
sponds to the maximum offset specification:  
VOUT = The output voltage of the DAC measured at  
the given input code  
VOS = VOUT – [(Code)(VFS)/(2n – 1)]  
Differential Nonlinearity (DNL): DNL is the difference  
between the measured change and the ideal one LSB  
change between any two adjacent codes. The DNL error  
between any two codes is calculated as follows:  
Least Significant Bit (LSB): One LSB is the ideal voltage  
difference between two successive codes.  
LSB = G • VREF/65536  
DNL = (VOUT – LSB)/LSB  
VOUT = The measured voltage difference between  
two adjacent codes  
G = 1 for X1/X2 connected to VOUT  
G = 2 for X1/X2 connected to GND  
Nominal LSBs: (VREFOUT tie to VREFHI, REFLO tie to GND,  
G = 2)  
DigitalFeedthrough: Theglitchthatappearsattheanalog  
outputcausedbyACcouplingfromthedigitalinputswhen  
they change state. The area of the glitch is specified in  
nV • s.  
LTC1657 LSB = 4.096V/65536 = 62.5µV  
LTC1657L LSB = 2.5V/65536 = 38.1µV  
9
LTC1657/LTC1657L  
U
OPERATIO  
Parallel Interface  
resistor ladder, an external reference can be used or the  
resistor ladder can be driven by an external source in  
multiplying applications. The external reference or source  
must be capable of driving the 16k (minimum) DAC ladder  
resistance.  
The data on the input of the DAC is written into the DAC’s  
inputregisterswhenChipSelect(CSLSBand/orCSMSB)  
and WR are at a logic low. The data that is written into the  
input registers will depend on which of the Chip Selects  
areatalogiclow(seeDigitalInterfaceTruthTable). IfWR  
and CSLSB are both low and CSMSB is high, then only  
data on the eight LSBs (D0 to D7) is written into the input  
registers. Similarly, if WR and CSMSB are both low and  
CSLSB is high, then only data on the eight MSBs (D8 to  
D15) is written into the input registers. Data is written into  
both the Least Significant Data Bits (D0 to D7) and the Most  
Significant Bits (D8 to D15) at the same time if WR, CSLSB  
and CSMSB are low. If WR is high or both CSMSB and  
CSLSB are high, then no data is written into the input  
registers.  
Internal reference output noise can be reduced with a  
bypasscapacitortoground.(Note:Thereferencedoesnot  
require a bypass capacitor to ground for nominal opera-  
tion.) When bypassing the reference, a small value resis-  
tor in series with the capacitor is recommended to help  
reduce peaking on the output. A 10resistor in series  
with a 4.7µF capacitor is optimum for reducing reference  
generated noise. Internal reference output voltage noise  
spectraldensityat1kHzistypically150nV/Hz(LTC1657),  
90nV/Hz (LTC1657L)  
DAC Resistor Ladder  
Once data is written into the input registers, it can be  
written into the DAC register. This will update the analog  
voltage output of the DAC. The DAC register is written by  
a logic low on LDAC. The data in the DAC register will be  
held when LDAC is high.  
The high and low end of the DAC ladder resistor string  
(REFHI and REFLO, respectively) are not connected inter-  
nally on this part. Typically, REFHI will be connected to  
REFOUT and REFLO will be connected to GND. X1/X2  
connected to GND will give the LTC1657/LTC1657L a full-  
scale output swing of 4.096V/2.5V.  
When WR, CSLSB, CSMSB and LDAC are all low, the  
registers are transparent and data on pins D0 to D15 flows  
directly into the DAC register.  
Either of these pins can be driven up to VCC – 1.5V when  
usingthebufferinthegain-of-1configuration.Theresistor  
string pins can be driven to VCC/2 when the buffer is in the  
gain of 2 configuration. The resistance between these two  
pins is typically 25k (16k min) (LTC1657), 23k (16k min)  
(LTC1657L).  
For an 8-bit data bus connection, tie the MSB byte data  
pins to their corresponding LSB byte pins (D15 to D7, D14  
to D6, etc).  
Power-On Reset  
TheLTC1657/LTC1657Lhaveaninternalpower-onreset  
that resets all internal registers to 0’s on power-up and  
VOUT pin forces to GND (equivalent to the CLR pin  
function).  
Voltage Output  
The output buffer for the LTC1657/LTC1657L can be  
configured for two different gain settings. By tying the  
X1/X2 pin to GND, the gain is set to 2. By tying the X1/X2  
pin to VOUT, the gain is set to unity.  
Reference  
The LTC1657/LTC1657L rail-to-rail buffered output can  
source or sink 5mA within 500mV of the positive supply  
voltage or ground at room temperature. The output stage  
is equipped with a deglitcher that results in a midscale  
glitchimpulseof8nVs. Theoutputswingstowithinafew  
millivolts of either supply rail when unloaded and has an  
equivalent output resistance of 40(LTC1657), 120Ω  
(LTC1657L) when driving a load to the rails.  
TheLTC1657/LTC1657Lincludeaninternal2.048V/1.25V  
reference,givingtheLTC1657/LTC1657Lafull-scalerange  
of4.096V/2.5Vinthegain-of-2configuration.Theonboard  
reference in the LTC1657/LTC1657L is not internally  
connected to the DAC’s reference resistor string but is  
provided on an adjacent pin for flexibility. Because the  
internal reference is not internally connected to the DAC  
10  
LTC1657/LTC1657L  
W U U  
APPLICATIO S I FOR ATIO  
U
Rail-to-Rail Output Considerations  
Similarly, limiting can occur near full scale when the REF  
pin is tied to VCC/2. If VREF = VCC/2 and the DAC full-scale  
error (FSE) is positive, the output for the highest codes  
limits at VCC as shown in Figure 1c. No full-scale limiting  
can occur if VREF is less than (VCC – FSE)/2.  
In any rail-to-rail DAC, the output swing is limited to  
voltages within the supply range.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 1b.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
POSITIVE  
FSE  
V
CC  
V
REF  
= V /2  
CC  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
CC  
V
REF  
= V /2  
CC  
OUTPUT  
VOLTAGE  
0
32768  
65535  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1657 F02  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC/2  
11  
LTC1657/LTC1657L  
U
TYPICAL APPLICATIO S  
the onboard reference is always sourcing current and  
never has to sink any current even when VOUT is at full  
scale. The LT1077 output will have a wide bipolar output  
swing of 4.096V to 4.096V as shown in the figure below.  
With this output swing, 1LSB = 125µV.  
This circuit shows how to make a bipolar output 16-bit  
DAC with a wide output swing using an LTC1657 and an  
LT1077. R1 and R2 resistively divide down the LTC1657  
output and an offset is summed in using the LTC1657  
onboard2.048VreferenceandR3andR4. R5ensuresthat  
A Wide Swing, Bipolar Output 16-Bit DAC  
5V  
0.1µF  
24  
5:19  
2
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
V
LTC1657  
OUT  
1
R1  
100k  
1%  
28  
27  
5V  
LDAC  
CLR  
3
2
X1/X2 REFLO GND REFHI REFOUT  
26 21 20 22 23  
7
+
6
(2)(D )(4.096)  
IN  
R2  
200k  
1%  
LT1077  
4
V
:
– 4.096V  
OUT  
65536  
R3  
100k  
1%  
R4  
200k  
1%  
5V  
1657 TA05  
R5  
100k  
1%  
TRANSFER CURVE  
32768  
4.096  
65535  
0
V
D
IN  
OUT  
4.096  
12  
LTC1657/LTC1657L  
U
TYPICAL APPLICATIO S  
Thiscircuitshowsadigitallyprogrammablecurrentsource  
from an external voltage source using an external op amp,  
an LT1218 and an NPN transistor (2N3440). Any digital  
word from 0 to 65535 is loaded into the LTC1657 and its  
output correspondingly swings from 0V to 4.096V. This  
voltage will be forced across the resistor RA. If RA is  
chosen to be 412, the output current will range from  
0mA at zero scale to 10mA at full scale. The minimum  
voltage for VS is determined by the load resistor RL and  
Q1’s VCESAT voltage. With a load resistor of 50, the  
voltage source can be 5V.  
Digitally Programmable Current Source  
5V  
22  
23  
5V < V < 100V  
S
FOR R 50  
0.1µF  
5:19  
2
L
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
(D )(4.096)  
IN  
3
R
L
I
=
7
OUT  
25  
3
(65536)(R )  
µP  
A
LTC1657  
V
+
1
OUT  
0mA TO 10mA  
6
Q1  
2N3440  
28  
27  
LT1218  
LDAC  
2
CLR  
X1/X2 REFLO GND  
26 21 20  
4
R
A
412Ω  
1%  
1657 TA04  
13  
LTC1657/LTC1657L  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
28-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.386 – 0.393*  
(9.804 – 9.982)  
0.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.004 – 0.009  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.053 – 0.069  
× 45°  
(1.351 – 1.748)  
(0.102 – 0.249)  
0.0075 – 0.0098  
(0.191 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.0250  
(0.635)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN28 (SSOP) 1098  
14  
LTC1657/LTC1657L  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
28-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.370*  
(34.789)  
MAX  
28 27 26 25 24  
23 22 21 20  
19 18 17 16 15  
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
0.325  
–0.015  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N28 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1657/LTC1657L  
U
TYPICAL APPLICATIO S  
This circuit shows how to measure negative offset. Since  
LTC1657/LTC1657L operate on a single supply, if their  
offset is negative, the output for code 0 limits at 0V. To  
measure this negative offset, a negative supply is needed,  
connect resistor R1 as shown in the figure. The output  
voltage is the offset when code 0 is loaded in.  
Negative Offset Measurement  
5V  
22  
23  
24  
0.1µF  
5:19  
2
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
LTC1657/LTC1657L  
V
OUT  
1
R1  
100k  
28  
27  
LDAC  
CLR  
X1/X2 REFLO GND  
–5V  
26  
21  
20  
1657 TA06  
Although LTC1657 output is up to 4.096V with its internal  
reference, highervoltagescanbeachievedwiththehelpof  
another op amp. The following circuit shows how to  
increasetheoutputswingofLTC1657byusinganLT1218.  
As shown in the configuration, the output of LTC1657 is  
amplified by 8 for an output swing of 0V to 32.768V, or a  
convenient 0.5mV/LSB.  
A Higher Voltage Output DAC  
5V  
24  
36V  
22  
23  
0.1µF  
TRANSFER CURVE  
5:19  
2
REFHI REFOUT  
V
CC  
32.768 (V)  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
0.1µF  
3
7
25  
3
2
µP  
LTC1657  
V
OUT  
+
1
6
V
28  
27  
OUT  
LT1218  
4
LDAC  
(D )(4.096)  
IN  
65536  
R2  
R1  
CLR  
X1/X2 REFLO GND  
26 21 20  
V
OUT  
=
1 +  
(
)
0
D
IN  
65535  
R1  
R2  
6.98k  
1%  
1k  
1%  
1657 TA07  
RELATED PARTS  
PART NUMBER  
LTC1446(L)  
LTC1450(L)  
LTC1458(L)  
LTC1650  
DESCRIPTION  
COMMENTS  
Dual 12-Bit V  
DACs in SO-8 Package  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V (3V), V  
= 5V (3V), V  
= 5V (3V), V  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
OUT  
OUT  
OUT  
OUT  
Single 12-Bit V  
DACs with Parallel Interface  
OUT  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Single 16-Bit V  
Industrial DAC in 16-Pin SO  
= ±5V, Low Power, Deglitched, 4-Quadrant Multiplying V  
OUT  
OUT  
LTC1654  
Dual 14-Bit V  
DAC  
Programmable Speed/Power, SO-8 Footprint  
OUT  
LTC1655(L)  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
= 5V (3V), Low Power, Deglitched, V  
= 0V to 4.096V  
OUT  
CC  
OUT  
(0V to 2.5V)  
LTC1658  
Single 14-Bit V  
DAC in MSOP Package  
2.7V to 5.5V Operation, Low Power  
OUT  
1657lf LT/TP 0201 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1658

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TR

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TRPBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CN8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CN8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CS8#TR

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8#TRPBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8PBF

14-Bit Rail-to-Rail Micropower DAC in MSOP
LINEAR_DIMENS

LTC1658IMS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear