LTC1662CN8#TRPBF [Linear]

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Digital to Analog Converter;
LTC1662CN8#TRPBF
型号: LTC1662CN8#TRPBF
厂家: Linear    Linear
描述:

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总16页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1662  
Ultralow Power, Dual  
10-Bit DAC in MSOP  
Features  
Description  
Ultralow Power: 1.5µA (Typ) I per DAC Plus  
The LTC®1662 is an ultralow power, fully buffered voltage  
output,dual10-bitdigital-to-analogconverter(DAC).Each  
DAC channel draws just 1.7µA (typ) total supply-plus-  
reference operating current, yet is capable of supplying  
DC output currents in excess of 1mA and reliably driving  
capacitive loads of up to 1000pF. A programmable sleep  
mode further reduces total operating current to 0.05µA.  
n
CC  
0.05µA Sleep Mode for Extended Battery Life  
n
Tiny: Two 10-Bit DACs in an 8-Lead MSOP—  
Half the Size of an SO-8  
Wide 2.7V to 5.5V Supply Range  
n
n
Double Buffered for Simultaneous DAC Updates  
n
Rail-to-Rail Voltage Outputs Drive 1000pF  
n
Reference Range Includes Supply for Ratiometric  
Linear Technology’s proprietary, inherently monotonic  
architecture provides excellent linearity and an exception-  
ally small external form factor. The double-buffered input  
logic provides simultaneous update capability and can be  
usedtowritetotheDACswithoutinterruptingsleepmode.  
0V to V Output  
CC  
n
Reference Input Impedance Is Code-Independent  
(7.1MΩ Typ)—Eliminates External Buffers  
3-Wire Serial Interface with Schmitt Trigger Inputs  
Differential Nonlinearity: 0.75LSB Max  
n
n
With its tiny operating current and exceptionally small  
size, the LTC1662 is ideal for use in the most power-  
constrained products. For most designs, there is no  
perceptible impact on the power budget; the LTC1662  
draws many times less current than even a trimpot,  
while providing buffered, low impedance (0.5Ω typical,  
applications  
n
Mobile Communications  
n
Portable Battery-Powered Instruments  
n
Remote or Inaccessible Adjustments  
V
= 5V) rail-to-rail outputs.  
n
CC  
Digitally Controlled Amplifiers and Attenuators  
Factory or Field Calibration  
n
The LTC1662 is pin and software compatible with the  
LTC1661 dual, 60µA 10-bit DAC. It is available in 8-pin  
MSOP and PDIP packages and is specified over the in-  
dustrial temperature range.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Block Diagram  
V
GND  
7
V
V
OUT A  
CC  
OUT B  
5
Total Supply-Plus-Reference  
Operating Current  
8
6
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.5V  
4.5V  
10-BIT  
DAC A  
10-BIT  
DAC B  
3.6V  
V
= 2.7V  
CC  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
V
= V  
CC  
REF  
CODE = 1023  
SHIFT REGISTER  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
1662 TA01b  
1662 BD  
1
2
3
4
CS/LD  
SCK  
SDI  
REF  
1662fa  
1
LTC1662  
aBsolute maximum ratings  
(Note 1)  
V
to GND ............................................... –0.3V to 7.5V  
Operating Temperature Range  
CC  
Logic Inputs to GND ................................. –0.3V to 7.5V  
, V , REF to GND......... –0.3V to (V + 0.3V)  
LTC1662C ............................................... 0°C to 70°C  
LTC1662I ............................................ –40°C to 85°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V
OUT A OUT B  
CC  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ..................–65°C to 150°C  
pin conFiguration  
TOP VIEW  
TOP VIEW  
CS/LD  
SCK  
SDI  
1
2
3
4
V
OUT A  
8
7
6
5
CS/LD  
SCK  
SDI  
1
2
3
4
8 V  
OUT A  
GND  
7 GND  
6 V  
5 V  
CC  
V
CC  
REF  
OUT B  
REF  
V
OUT B  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
T
= 125°C, θ = 150°C/W  
JA  
JMAX  
T
JMAX  
= 125°C, θ = 100°C/W  
JA  
orDer inFormation  
LEAD FREE FINISH  
LTC1662CMS8#PBF  
LTC1662IMS8#PBF  
LTC1662CN8#PBF  
LTC1662IN8#PBF  
LEAD BASED FINISH  
LTC1662CMS8  
TAPE AND REEL  
PART MARKING  
LTKB  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic DIP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1662CMS8#TRPBF  
LTC1662IMS8#TRPBF  
LTC1662CN8#TRPBF  
LTC1662IN8#TRPBF  
TAPE AND REEL  
LTKC  
–40°C to 85°C  
0°C to 70°C  
LTC1662CN8  
LTC1662IN8  
PART MARKING  
LTKB  
8-Lead Plastic DIP  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic DIP  
LTC1662CMS8#TR  
LTC1662IMS8#TR  
LTC1662CN8#TR  
LTC1662IMS8  
LTKC  
–40°C to 85°C  
0°C to 70°C  
LTC1662CN8  
LTC1662CN8  
LTC1662IN8  
LTC1662IN8  
LTC1662IN8#TR  
8-Lead Plastic DIP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1662fa  
2
LTC1662  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range (TA = TMIN to TMAX), otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF ≤ VCC, VOUT unloaded  
unless otherwise noted.  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
Resolution  
10  
10  
Bits  
Bits  
Monotonicity  
(Note 2)  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity  
0.12  
0.8  
5
0.75  
4
LSB  
Integral Nonlinearity  
Offset Error  
LSB  
V
OS  
V
OS  
V
V
V
= 5V, V = 4.096V, Measured at Code 20  
25  
mV  
CC  
REF  
TC  
V
Temperature Coefficient  
15  
µV/°C  
LSB  
OS  
l
GE  
Gain Error  
= 5V, V = 4.096V  
1
8
CC  
REF  
GE TC  
PSR  
Gain Error Temperature Coefficient  
Power Supply Rejection  
12  
µV/°C  
LSB/V  
= 2.5V  
0.18  
REF  
Reference Input  
Input Voltage Range  
l
l
0
V
V
CC  
Input Resistance  
Active Mode  
Sleep Mode  
3.9  
7.1  
2.5  
MΩ  
GΩ  
Input Capacitance  
10  
pF  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
CC  
V
V
V
V
= 3V (Note 3)  
= 5V (Note 3)  
= 3V (Note 3)  
= 5V (Note 3)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
µA  
µA  
µA  
µA  
CC  
CC  
CC  
CC  
l
l
Sleep Mode Operating Current  
Supply Plus Reference Current, V = V = 5V (Note 3)  
0.05  
0.10  
0.18  
µA  
µA  
CC  
REF  
l
DC Performance  
Short-Circuit Current Low  
Short-Circuit Current High  
AC Performance  
l
l
V
V
= 0V, V = V = 5V, Code = 1023 (Note 7)  
5
3
12  
10  
70  
80  
mA  
mA  
OUT  
CC  
REF  
= V = V = 5V, Code = 0 (Note 7)  
OUT  
CC  
REF  
Voltage Output Slew Rate  
Voltage Output Settling Time  
Capacitive Load Driving  
Rising (Notes 4, 5)  
Falling (Notes 4, 5)  
20  
7
V/ms  
V/ms  
Rising 0.1V to 0.9V  
0.5LSB (Notes 4, 5)  
0.5LSB (Notes 4, 5)  
0.40  
0.75  
ms  
ms  
FS  
FS  
FS  
Falling 0.9V to 0.1V  
FS  
1000  
pF  
Digital I/O  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
l
l
V
IL  
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
CC  
CC  
l
I
Digital Input Leakage  
V
= GND to V  
CC  
0.05  
1.5  
1.0  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance  
IN  
1662fa  
3
LTC1662  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
16.7  
10  
UNITS  
V
= 4.5V to 5.5V  
CC  
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SDI Setup  
Relative to SCK Positive Edge  
Relative to SCK Positive Edge  
(Note 6)  
55  
0
ns  
ns  
1
SDI Hold  
2
SCK High Time  
30  
30  
100  
30  
20  
0
ns  
3
SCK Low Time  
(Note 6)  
ns  
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
5
(Note 6)  
ns  
6
(Note 6)  
ns  
7
(Note 6)  
ns  
9
(Note 6)  
20  
ns  
11  
Square Wave (Note 6)  
MHz  
V
= 2.7V to 5.5V  
CC  
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SDI Setup  
Relative to SCK Positive Edge (Note 6)  
75  
0
ns  
ns  
1
SDI Hold  
Relative to SCK Positive Edge (Note 6)  
2
SCK High Time  
(Note 6)  
50  
50  
150  
50  
30  
0
ns  
3
SCK Low Time  
(Note 6)  
ns  
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
5
(Note 6)  
ns  
6
(Note 6)  
ns  
7
(Note 6)  
ns  
9
(Note 6)  
30  
ns  
11  
Square Wave (Note 6)  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Digital inputs at 0V or V .  
CC  
Note 4: Load is 10kΩ in parallel with 100pF.  
Note 5: V = V = 5V. DAC switched between 0.1V and 0.9V ;  
FS  
CC  
REF  
FS  
i.e., codes k = 102 and k = 922.  
Note 6: Guaranteed by design, not subject to test.  
Note 7: One DAC output loaded.  
Note 2: Nonlinearity and monotonicity are defined and tested at V = 5V,  
CC  
V
REF  
= 4.096V, from code 20 to code 1023. See Figure 2.  
1662fa  
4
LTC1662  
typical perFormance characteristics  
Total Supply-Plus-Reference  
Operating Current  
Supply Current  
vs Clock Frequency  
Supply Current vs Temperature  
1000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
CS/LD = LOGIC LOW  
CODE = 1023  
CODE = 0  
5.5V  
4.5V  
5.5V  
4.5V  
V
CC  
= 5V  
3.6V  
V
CC  
= 2.7V  
V
= 3V  
CC  
3.6V  
V
CC  
= 2.7V  
V
= V  
CC  
REF  
CODE = 1023  
1
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
10 100 1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1662 G03  
1662 G01  
1662 G02  
Supply Current  
vs Logic Input Voltage  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.75  
0.60  
4
3
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
CC  
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
0.40  
0.20  
0
2
1
0
–1  
–2  
–3  
–4  
–0.20  
–0.40  
–0.60  
–0.75  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
0
1.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
CODE  
CODE  
LOGIC INPUT VOLTAGE (V)  
1662 G05  
1662 G06  
1662 G04  
Integral Nonlinearity (INL)  
vs Reference Voltage  
Differential Nonlinearity (DNL)  
vs Reference Voltage  
Offset Voltage vs Temperature  
4
0.75  
0.50  
0.25  
0
0
–1  
–2  
–3  
–4  
–5  
V
V
= 5V  
REF  
V
CC  
= 5.5V  
V
CC  
= 5.5V  
CC  
= 4.096V  
3
2
1
MAX POS DNL  
MAX NEG DNL  
MAX POS INL  
MAX NEG INL  
0
–1  
–2  
–3  
–4  
–0.25  
–0.50  
–0.75  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
–55 –35 –15  
5
25 45 65 85 105  
V
REF  
(V)  
V
REF  
(V)  
TEMPERATURE (°C)  
1662 G07  
1662 G08  
1662 G09  
1662fa  
5
LTC1662  
typical perFormance characteristics  
Load Regulation vs Output  
Current at 5V  
Load Regulation vs Output  
Current at 3V  
Gain Error vs Temperature  
1.0  
0.8  
0
–1  
–2  
–3  
–4  
–5  
1.0  
0.8  
V
V
= V = 5V  
CC  
V
V
= 5V  
REF  
V
V
= V = 3V  
CC  
REF  
OUT  
CC  
REF  
OUT  
= 2.5V  
= 4.096V  
= 1.5V  
CODE = 512  
= 25°C  
CODE = 512  
= 25°C  
0.6  
0.6  
T
T
A
A
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SOURCE  
SINK  
SOURCE  
SINK  
–5 –4 –3 –2 –1  
I
0
(mA)  
1
2
3
4
5
–55 –35 –15  
5
25 45 65 85 105  
–1 –0.8–0.6–0.40.2  
I
0
0.2 0.4 0.6 0.8  
1
TEMPERATURE (°C)  
(mA)  
OUT  
OUT  
1662 G11  
1662 G10  
1662 G12  
Output Amplifier Current Sourcing  
Capability (Mid-Scale)  
Output Amplifier Current Sinking  
Capability (Mid-Scale)  
Max/Min Output Voltage vs Source/  
Sink Output Current (VCC = 5V)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
V
REF  
= V  
CC  
REF  
CODE = 512  
= 25°C  
4.5 CODE = 512  
= 25°C  
CODE = 1023  
T
T
A
A
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
= 5.5V  
= 5V  
= 4.5V  
V
V
V
= 5.5V  
= 5V  
= 4.5V  
CC  
CC  
CC  
CC  
CC  
CC  
V
A
= V  
CC  
REF  
T
= 25°C  
V
V
V
= 3.6V  
= 3V  
= 2.7V  
V
V
V
= 3.6V  
= 3V  
= 2.7V  
CC  
CC  
CC  
CC  
CC  
CC  
CODE = 0  
1
10  
100  
1m  
10m  
100m  
1µ  
10µ  
100µ  
1m  
10m  
100m  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
OUTPUT SOURCE CURRENT (A)  
OUTPUT SINK CURRENT (A)  
OUTPUT SOURCE/SINK CURRENT (mA)  
1662 G13  
1662 G14  
1662 G15  
Max/Min Output Voltage vs Source/  
Sink Output Current (VCC = 3V)  
Output Minimum Series  
Large-Signal Step Response  
Resistance vs Load Capacitance  
5
4
3
2
1
0
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
180  
160  
140  
120  
100  
80  
CODE = 1023  
V
A
= V  
CC  
REF  
T
= 25°C  
60  
40  
CODE = 0  
V
= V = 5V  
CC  
REF  
20  
10% TO 90% STEP  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
100p 1000p 0.01µ 0.1µ  
1µ  
10µ 100µ  
OUTPUT SOURCE/SINK CURRENT (mA)  
TIME (0.5ms/DIV)  
CAPACITANCE (F)  
1662 G16  
1662 G17  
1662 G18  
1662fa  
6
LTC1662  
pin Functions  
CS/LD (Pin 1): Serial Interface Chip Select/Load Input.  
When CS/LD is low, SCK is enabled for shifting data on  
SDI into the register. When CS/LD is pulled high, SCK is  
disabledandtheoperation(s)specifiedinthecontrolcode,  
A3-A0, is (are) performed. CMOS and TTL compatible.  
REF (Pin 4): Reference Voltage Input. 0V ≤ V ≤ V .  
REF CC  
V
,V  
(Pin8,Pin5):DACAnalogVoltageOutputs.  
OUTA OUTB  
The output range is  
1023  
1024  
0 VOUTA,VOUTB VREF  
SCK (Pin 2): Serial Interface Clock Input. CMOS and TTL  
compatible.  
V
(Pin 6): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
CC  
CC  
SDI (Pin 3): Serial Interface Data Input. Input word data  
on the SDI pin is shifted into the 16-bit register on the  
rising edge of SCK. CMOS and TTL compatible.  
GND (Pin 7): System Ground.  
DeFinitions  
Differential Nonlinearity (DNL): The difference between  
the measured change and the ideal 1LSB change for any  
twoadjacentcodes.TheDNLerrorbetweenanytwocodes  
is calculated as follows:  
Least Significant Bit (LSB): The ideal voltage difference  
between two successive codes.  
LSB = V /1024  
REF  
Resolution (n): Defines the number of DAC output states  
DNL = (∆V  
– LSB)/LSB  
n
OUT  
(2 ) that divide the full-scale range. Resolution does not  
where ∆V  
is the measured voltage difference between  
imply linearity.  
OUT  
two adjacent codes.  
Voltage Offset Error (V ): Nominally, the voltage at the  
OS  
Full-Scale Error (FSE): The deviation of the actual full-  
scale voltage from ideal. FSE includes the effects of offset  
and gain errors (see Figure 2).  
output when the DAC is loaded with all zeros. A single  
supply DAC can have a true negative offset, but the output  
cannot go below zero (see Figure 2).  
Gain Error (GE): The deviation from the slope of the ideal  
For this reason, single supply DAC offset is measured at  
the lowest code that guarantees the output will be greater  
than zero.  
DAC transfer function, expressed in LSBs at full-scale.  
Integral Nonlinearity (INL): The deviation from a straight  
line passing through the endpoints of the DAC transfer  
curve (endpoint INL). Because the output cannot go  
below zero, the linearity is measured between full-scale  
and the lowest code which guarantees the output will be  
greater than zero. The INL error at a given input code is  
calculated as follows:  
INL = [V  
– V – (V – V )(code/1023)]/LSB  
OS FS OS  
OUT  
where V  
is the output voltage of the DAC measured at  
OUT  
the given input code.  
1662fa  
7
LTC1662  
timing Diagram  
t
1
t
6
t
2
t
t
4
3
SCK  
t
9
t
11  
SDI  
A3  
A2  
A1  
X1  
X0  
t
5
t
7
CS/LD  
1662 TD  
operation  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
SDI  
CONTROL CODE  
INPUT CODE  
INPUT WORD W  
DON’T CARE  
0
(INSTRUCTION  
(SCK ENABLED)  
CS/LD  
1662 F01  
EXECUTED)  
Figure 1. Register Loading Sequence  
1662fa  
8
LTC1662  
operation  
Table 1. DAC Control Functions  
CONTROL  
INPUT REGISTER  
DAC REGISTER  
STATUS  
POWER-DOWN STATUS  
(SLEEP/WAKE)  
A3 A2 A1 A0  
STATUS  
COMMENTS  
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
No Change  
Load DAC A  
Load DAC B  
No Change  
Load DAC A  
No Update  
No Change  
No Change  
No Change  
Wake  
No Operation. Power-Down Status Unchanged  
(Part Stays In Wake or Sleep Mode)  
No Update  
Load Input Register A with Data. DAC Outputs Unchanged.  
Power-Down Status Unchanged  
No Update  
Load Input Register B with Data. DAC Outputs Unchanged.  
Power-Down Status Unchanged  
Update Outputs  
Update Outputs  
Load Both DAC Regs with Existing Contents of Input Regs.  
Outputs Update. Part Wakes Up  
Wake  
Load Input Reg A. Load DAC Regs with New Contents of  
Input Reg A and Existing Contents of Reg B. Outputs Update.  
Part Wakes Up  
1
0
1
0
Load DAC B  
Update Outputs  
Wake  
Load Input Reg B. Load DAC Regs with Existing Contents of  
Input Reg A and New Contents of Reg B. Outputs Update.  
Part Wakes Up  
1
1
1
1
1
1
0
1
1
1
0
1
No Change  
No Change  
No Update  
No Update  
Wake  
Sleep  
Wake  
Part Wakes Up. Input and DAC Regs Unchanged.  
DAC Outputs Reflect Existing Contents of DAC Regs  
Part Goes to Sleep. Input and DAC Regs Unchanged.  
DAC Outputs Set to High Impedance State  
Load DACs A, B  
with Same  
10-Bit Code  
Update Outputs  
Load Both Input Regs. Load Both DAC Regs with New  
Contents of Input Regs. Outputs Update. Part Wakes Up  
Note: All control codes other than those shown are undefined and not subject to test.  
Transfer Function  
V
(Pin 6) is in transition. If it is not possible to sequence  
CC  
the supplies, clamp the voltage at REF by connecting a  
SchottkydiodebetweenPin4(anode)andPin6(cathode).  
The transfer function for the LTC1662 is:  
k
VOUT(IDEAL)  
=
V
REF  
Serial Interface  
1024  
See Table 2. The 16-bit input word consists of the 4-bit  
controlcode,the10-bitinputcodeandtwodon’t-carebits.  
where k is the decimal equivalent of the binary DAC input  
code D9-D0 and V is the voltage at REF (Pin 4).  
REF  
Table 2. LTC1662 Input Word  
Power-On Reset  
Input Word  
The LTC1662 actively clears the outputs to zero-scale  
when power is first applied, making system initialization  
consistent and repeatable.  
A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X1 X0  
Control Code  
Input Code  
Don’t  
Care  
Power Supply Sequencing  
Aftertheinputwordisloadedintotheregister(seeFigure1),  
it is internally converted from serial to parallel format. The  
parallel 10-bit-wide input code data path is then buffered  
by two latch registers.  
The voltage at REF (Pin 4) should be kept within the range  
–0.3V ≤ V  
≤ V + 0.3V (see the Absolute Maximum  
REF  
CC  
Ratings). Particular care should be taken during power  
supplyturn-onandturn-offsequences,whenthevoltageat  
1662fa  
9
LTC1662  
operation  
The first of these, the input register, is used for loading  
new input codes. The second buffer, the DAC register, is  
used for updating the DAC outputs. Each DAC has its own  
10-bit input register and 10-bit DAC register.  
and 0010 ); then, a single command (1000 ) can be used  
b b  
both to wake the part and to update the output values.  
Alternatively, one DAC may be loaded with a new input  
code during sleep; then with just one command, the other  
DAC is loaded, the part is awakened and both outputs are  
updated.  
Byselectingtheappropriate4-bitcontrolcode(seeTable1)  
itispossibletoperformsingleoperations, suchasloading  
one DAC or changing power-down status (sleep/wake).  
In addition, some control codes perform two or more  
operations at the same time. For example, one such code  
loads DAC A, updates both outputs and Wakes the part  
up. The DACs can be loaded separately or together, but  
the outputs are always updated together.  
For example, control code 0001 is used to load DAC A  
b
duringsleep.Thencontrolcode0101 loadsDACB,wakes  
b
the part and simultaneously updates both DAC outputs.  
Voltage Outputs  
Each of the rail-to-rail output amplifiers contained in  
the LTC1662 can typically source or sink at least 1mA  
Register Loading Sequence  
(V = 5V). The outputs swing to within a few millivolts  
CC  
See Figure 1. With CS/LD held low, data on the SDI input  
is shifted into the 16-bit shift register on the positive edge  
of SCK. The 4-bit control code, A3-A0, is loaded first, then  
the 10-bit input code, D9-D0, ordered MSB to LSB in each  
case.Twodon’t-carebits,X1andX0,areloadedlast.When  
the full 16-bit input word has been shifted in, CS/LD is  
pulled high, causing the system to respond according to  
Table 1. The clock is disabled internally when CS/LD is  
high. Note: SCK must be low when CS/LD is pulled low.  
of either supply when unloaded and have an equivalent  
output resistance of 130Ω (typical) when driving a load to  
therails.Theoutputamplifiersarestabledrivingcapacitive  
loads of up to 1000pF.  
A small resistor placed in series with the output can be  
used to achieve stability for any load capacitance. Please  
see the Output Minimum Resistance vs Load Capacitance  
curve in the Typical Performance Characteristics section.  
Rail-to-Rail Output Considerations  
Sleep Mode  
In any rail-to-rail DAC, the output swing is limited to volt-  
ages within the supply range.  
DAC control code 1110 is reserved for the special sleep  
b
instruction (see Table 1). In this mode, static power  
consumption is greatly reduced. The reference input and  
analog outputs are set in a high impedance state and all  
DAC settings are retained in memory so that when sleep  
mode is exited, the outputs of DACs not updated by the  
Wake command are restored to their last active state.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 2b.  
Similarly, limiting can occur near full-scale when the REF  
pin is tied to V . If V = V and the DAC full-scale error  
CC  
REF  
CC  
(FSE = V + GE) is positive, the output for the highest  
OS  
Sleep mode is initiated by performing a load sequence  
codes limits at V as shown in Figure 2c. No full-scale  
CC  
using control code 1110 (the DAC input code D9-D0 is  
b
limiting can occur if V is less than V – FSE.  
REF  
CC  
ignored).  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
To save instruction cycles, the DACs may be prepared  
with new input codes during sleep (control codes 0001  
b
1662fa  
10  
LTC1662  
operation  
POSITIVE  
FSE  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
INPUT CODE  
(2c)  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
0
512  
1023  
INPUT CODE  
(2a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
1662 F02  
(2b)  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero-Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full-Scale When VREF = VCC  
1662fa  
11  
LTC1662  
typical applications  
Micropower Trim Circuit with Coarse/Fine Adjustment. Total Supply Current Is 9.5µA  
3.3V  
0.1µF  
R2  
1.1M  
R1  
11k  
3.3V  
6
0.1µF  
2
3.3V  
8
1
2.5V  
0.1µF  
LTC1258-2.5  
4
REF  
V
CC  
4
2
3
+
R1  
COARSE  
11k  
1
LT1495  
4
V
OUT  
8
DAC A  
V
OUT A  
0.1µF  
1
3
2
CS/LD  
SDI  
LTC1662  
U1  
R2  
FINE  
1.1M  
CODE A R1 CODEB  
SCK  
VOUT = VREF  
+
1024  
R2 1024  
5
DAC B  
V
OUT B  
CODE A  
1024  
1
CODEB  
100 1024  
= 2.5V  
+
1662 TA02  
7
GND  
Using the LTC1258 and the LTC1662 in a Portable Application  
Powered by a Single Li-Ion Battery. Total Supply Current Is 8.2µA  
Li-Ion BATTERY INPUT  
V
≥ 4.3V  
IN  
0.1µF  
0.1µF  
6
2
V
CC  
1
4
3
2
1
8
0V TO 4.096V  
(4mV/BIT)  
LTC1258-4.1  
4
REF  
SDI  
SCK  
V
OUT A  
4.096V  
LTC1662  
5
0V TO 4.096V  
(4mV/BIT)  
CS/LD  
V
OUT B  
GND  
7
1662 TA03  
1662fa  
12  
LTC1662  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6 5  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
5.23  
(.206)  
MIN  
1
2
3
4
3.20 – 3.45  
(.126 – .136)  
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
SEATING  
PLANE  
TYP  
0.22 – 0.38  
0.1016 ± 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1662fa  
13  
LTC1662  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1662fa  
14  
LTC1662  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/12 Removed Typical values in the Timing Characteristics section.  
Corrected Related Parts listing for the LTC1659.  
4
16  
1662fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC1662  
typical application  
Ultralow Power DAC Optimizes Mixer Performance  
3.3V  
0.1µF  
3.3V  
6
0.1µF  
2
I
I
P
LO  
1
2.5V  
LTC1258-2.5  
V
4
REF  
CC  
4
3.9k  
3.9k  
0.1%  
0.1%  
560k  
3.9k, 0.1%  
8
DAC A  
V
OUT A  
3.9k  
0.1%  
1
CS/LD  
I
I
P
I + Q  
MIXER  
3
LO  
RF  
LTC1662  
DAC B  
SDI  
Q
Q
P
2
SCK  
3.9k  
0.1%  
560k  
3.9k, 0.1%  
5
V
OUT B  
3.9k  
0.1%  
3.9k  
0.1%  
1662 TA04  
7
GND  
Q
Q
Q
P
relateD parts  
PART NUMBER  
LTC1661  
DESCRIPTION  
COMMENTS  
Dual 10-Bit V  
DAC in 8-Lead MSOP Package  
V
V
V
V
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, Internal Reference, 60µA  
OUT  
CC  
CC  
CC  
CC  
LTC1663  
Single 10-Bit V  
DAC with 2-Wire Interface in SOT-23 Package  
OUT  
LTC1664  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
OUT  
LTC1665/LTC1660  
Octal 8-/10-Bit V  
DAC in 16-Pin Narrow SSOP  
OUT  
LTC1446/LTC1446L Dual 12-Bit V  
DACs in SO-8 Package with Internal Reference  
DAC in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
OUT  
CC  
LTC1448  
Dual 12-Bit V  
V
= 2.7V to 5.5V, External Reference Can Be Tied to V  
CC  
OUT  
OUT  
CC  
LTC1454/LTC1454L Dual 12-Bit V  
DACs in SO-16 Package with Added Functionality LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
= 0V to 2.5V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
CC  
LTC1458/LTC1458L Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
OUT  
CC  
LTC1659  
Single Rail-to-Rail 12-Bit V  
DAC in 8-Lead MSOP Package  
V
= 2.7V to 5.5V, Low Power Multiplying V DAC. Output  
OUT  
OUT  
CC  
Swings from GND to REF. REF Input Can Be Tied to V  
CC  
1662fa  
LT 0112 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1662I

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IMS8

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IMS8#PBF

暂无描述
Linear

LTC1662IMS8#TR

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1662IMS8#TRPBF

暂无描述
Linear

LTC1662IN8

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IN8#PBF

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: PDIP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1662IN8#TR

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Digital to Analog Converter
Linear

LTC1662IN8#TRPBF

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Digital to Analog Converter
Linear

LTC1662_1

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1663

10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface
Linear

LTC1663-1CS5

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear