LTC1662IN8 [Linear]

Ultralow Power, Dual 10-Bit DAC in MSOP; 超低功耗,双通道10位DAC ,采用MSOP
LTC1662IN8
型号: LTC1662IN8
厂家: Linear    Linear
描述:

Ultralow Power, Dual 10-Bit DAC in MSOP
超低功耗,双通道10位DAC ,采用MSOP

转换器 光电二极管
文件: 总12页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LTC1662  
Ultralow Power, Dual  
10-Bit DAC in MSOP  
March 2000  
U
DESCRIPTIO  
FEATURES  
The LTC®1662 is an ultralow power, fully buffered volt-  
ageoutput,dual10-bitdigital-to-analogconverter(DAC).  
Each DAC draws just 1.7µA (typ) total supply-plus-  
reference operating current, yet is capable of supplying  
DC output currents in excess of 1mA and reliably driving  
capacitive loads of up to 1000pF. A programmable Sleep  
mode further reduces total operating current to a negli-  
gible 0.05µA.  
Ultralow Power: 1.5µA (Typ) ICC per DAC Plus  
0.05µA Sleep Mode for Extended Battery Life  
Tiny: Two 10-Bit DACs in an 8-Lead MSOP—  
Half the Size of an SO-8  
Wide 2.7V to 5.5V Supply Range  
Double Buffered for Simultaneous DAC Updates  
Rail-to-Rail Voltage Outputs Drive 1000pF  
Reference Range Includes Supply for Ratiometric  
0V-to-VCC Output  
Linear Technology’s proprietary, inherently monotonic  
voltage interpolation architecture provides excellent lin-  
earity while allowing for an exceptionally small external  
form factor. The double-buffered input logic provides  
simultaneousupdatecapabilityandcanbeusedtowriteto  
either DAC without interrupting Sleep mode.  
Reference Input Impedance Is Code-Independent  
(7.1MTyp)—Eliminates External Buffers  
3-Wire Serial Interface with  
Schmitt Trigger Inputs  
Differential Nonlinearity: ±0.75LSB Max  
U
With its ultralow operating current and exceptionally  
small size, the LTC1662 is ideal for use in battery-  
powered products.  
APPLICATIO S  
Mobile Communications  
The LTC1662 is pin- and software-compatible with the  
LTC1661 micropower dual 10-bit DAC. It is available in  
8-pin MSOP and PDIP packages and is specified over the  
Portable Battery-Powered Instruments  
Remote Industrial Devices  
Digitally Controlled Amplifiers and Attenuators  
industrial temperature range.  
Automatic Calibration for Manufacturing  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
V
GND  
V
V
OUT A  
CC  
OUT B  
5
Total Supply-Plus-Reference  
Operating Current  
8
7
6
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
V
A
= V  
CC  
REF  
T
= 25°C  
10-BIT  
DAC A  
10-BIT  
DAC B  
CODE = 1023  
CODE = 512  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CODE = 0  
SHIFT REGISTER  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
CC  
1662 G01  
1
2
3
4
CS/LD  
SCK  
D
REF  
IN  
1662 BD  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LTC1662  
W W W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
VCC to GND .............................................. 0.3V to 7.5V  
Logic Inputs to GND ................................ 0.3V to 7.5V  
VOUT A, VOUT B, REF to GND ......... 0.3V to (VCC + 0.3V)  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Operating Temperature Range  
LTC1662C ............................................. 0°C to 70°C  
LTC1662I........................................... 40°C to 85°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
CS/LD  
SCK  
1
2
3
4
V
OUT A  
8
7
6
5
CS/LD  
SCK  
1
2
3
4
8 V  
OUT A  
GND  
LTC1662CMS8  
LTC1662IMS8  
LTC1662CN8  
LTC1662IN8  
7 GND  
6 V  
5 V  
D
IN  
D
IN  
V
CC  
CC  
REF  
OUT B  
REF  
V
OUT B  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 125°C, θJA = 150°C/W  
LTKB  
LTKC  
TJMAX = 125°C, θJA = 100°C/W  
Consult factory for Military grade parts.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range (TA = TMIN to TMAX), otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT Unloaded  
unless otherwise noted.  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
10  
10  
Bits  
Bits  
Monotonicity  
(Note 2)  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity  
±0.12  
±0.8  
±5  
±0.75  
±4  
LSB  
Integral Nonlinearity  
Offset Error  
LSB  
V
V
V
= 5V, V = 4.096V, Measured at Code 20  
±25  
mV  
OS  
OS  
CC  
REF  
TC  
V
Temperature Coefficient  
±15  
±1  
µV/°C  
LSB  
OS  
GE  
Gain Error  
V
= 5V, V = 4.096V  
±8  
CC  
REF  
GE TC  
Gain Error Temperature  
Coefficient  
±12  
µV/°C  
PSR  
Power Supply Rejection  
V
= 2.5V  
0.18  
LSB/V  
REF  
Reference Input  
Input Voltage Range  
0
V
CC  
V
Input Resistance  
Active Mode  
Sleep Mode  
3.9  
7.1  
2.5  
MΩ  
GΩ  
Input Capacitance  
10  
pF  
2
LTC1662  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range (TA = TMIN to TMAX), otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT Unloaded  
unless otherwise noted.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
V
V
V
= 3V (Note 3)  
= 5V (Note 3)  
= 3V (Note 3)  
= 5V (Note 3)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
µA  
µA  
µA  
µA  
CC  
CC  
CC  
CC  
CC  
Sleep Mode Operating Current Supply Plus Reference Current, V = V  
= 5V, (Note 3)  
REF  
0.05  
0.10  
0.18  
µA  
µA  
CC  
DC Performance  
Short-Circuit Current Low  
Short-Circuit Current High  
AC Performance  
Voltage Output Slew Rate  
V
V
= 0V, V = V = 5V, Code = 1023 (Note 7)  
5
3
12  
10  
70  
80  
mA  
mA  
OUT  
OUT  
CC  
REF  
= V = V  
= 5V, Code = 0 (Note 7)  
REF  
CC  
Rising (Notes 4, 5)  
Falling (Notes 4, 5)  
20  
7
V/ms  
V/ms  
Voltage Output Settling Time 0.1V to 0.9V ±0.5LSB (Notes 4, 5)  
0.40  
0.75  
ms  
ms  
FS  
FS  
0.9V to 0.1V ±0.5LSB (Notes 4, 5)  
FS  
FS  
Capacitive Load Driving  
1000  
pF  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
I
Digital Input Leakage  
V
= GND to V  
CC  
±0.05  
±1.0  
µA  
LK  
IN  
C
Digital Input Capacitance  
(Note 6)  
1.5  
pF  
IN W U  
The denotes the specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 4.5V to 5.5V  
CC  
t
t
t
t
t
t
t
t
t
D
D
Valid to SCK Setup  
Valid to SCK Hold  
55  
0
15  
10  
14  
14  
27  
2
ns  
ns  
1
IN  
IN  
2
SCK High Time  
(Note 6)  
30  
30  
100  
30  
20  
0
ns  
3
SCK Low Time  
(Note 6)  
ns  
4
CS/LD Pulse Width  
(Note 6)  
ns  
5
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
6
(Note 6)  
21  
–5  
0
ns  
7
(Note 6)  
ns  
9
(Note 6)  
20  
ns  
11  
Square Wave (Note 6)  
16.7  
MHz  
V
= 2.7V to 5.5V  
CC  
t
t
t
t
D
Valid to SCK Setup  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
75  
0
20  
10  
15  
ns  
ns  
ns  
ns  
1
IN  
IN  
D
Valid to SCK Hold  
2
3
4
SCK High Time  
SCK Low Time  
50  
50  
15  
3
LTC1662  
W U  
The denotes the specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
150  
50  
TYP  
30  
3
MAX  
UNITS  
ns  
t
t
t
t
t
CS/LD Pulse Width  
5
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
6
(Note 6)  
30  
14  
–5  
0
ns  
7
(Note 6)  
0
ns  
9
(Note 6)  
30  
ns  
11  
Square Wave (Note 6)  
10  
MHz  
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Load is 10kin parallel with 100pF.  
Note 5: V = V = 5V. DAC switched between 0.1V and 0.9V ; i.e.,  
CC  
REF  
FS  
FS  
Note 2: Nonlinearity and monotonicity are defined and tested at V = 5V,  
codes k = 102 and k = 922.  
CC  
V
= 4.096V, from code 20 to code 1023. See Figure 2.  
REF  
Note 6: Guaranteed by design, not subject to test.  
Note 7: One DAC output loaded.  
Note 3: Digital inputs at 0V or V  
.
CC  
W U  
W
TI I G DIAGRA  
t
1
t
t
t
t
4
6
2
3
SCK  
t
t
11  
9
D
IN  
A1  
X1  
A3  
A2  
X0  
t
t
7
5
CS/LD  
1662 TD  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.75  
0.60  
4
3
0.40  
0.20  
2
1
0
0
–0.20  
–0.40  
–0.60  
0.80  
–1  
–2  
–3  
–4  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
1662 G03  
1662 G02  
4
LTC1662  
U
OPERATIO  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
D
IN  
CONTROL CODE  
INPUT CODE  
INPUT WORD W  
DON’T CARE  
0
(INSTRUCTION  
(SCK ENABLED)  
CS/LD  
1662 F01  
EXECUTED)  
Figure 1. Register Loading Sequence  
Table 1. DAC Control Functions  
CONTROL  
INPUT REGISTER  
DAC REGISTER  
STATUS  
POWER-DOWN STATUS  
(SLEEP/WAKE)  
A3 A2 A1 A0  
STATUS  
COMMENTS  
0
0
0
0
0
0
0
0
1
0
1
0
No Change  
No Update  
No Update  
No Update  
No Change  
No Change  
No Change  
No Operation. Power-Down Status Unchanged  
(Part Stays In Wake or Sleep Mode)  
Load DAC A  
Load DAC B  
Load Input Register A with Data. DAC Outputs  
Unchanged. Power-Down Status Unchanged  
Load Input Register B with Data. DAC Outputs  
Unchanged. Power-Down Status Unchanged  
0
0
0
0
0
1
0
1
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
No Change  
Load DAC A  
Update Outputs  
Wake  
Wake  
Load Both DAC Regs with Existing Contents of Input  
Regs. Outputs Update. Part Wakes Up  
1
1
0
0
0
1
1
0
Update Outputs  
Update Outputs  
Load Input Reg A. Load DAC Regs with New Contents  
of Input Reg A and Existing Contents of Reg B. Outputs  
Update. Part Wakes Up  
Load DAC B  
Wake  
Load Input Reg B. Load DAC Regs with Existing Contents  
of Input Reg A and New Contents of Reg B. Outputs  
Update. Part Wakes Up  
1
1
1
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
No Change  
No Change  
No Update  
Wake  
Sleep  
Wake  
Part Wakes Up. Input and DAC Regs Unchanged. DAC  
Outputs Reflect Existing Contents of DAC Regs  
1
1
1
1
1
1
0
1
No Update  
Part Goes to Sleep. Input and DAC Regs Unchanged. DAC  
Outputs Set to High Impedance State  
Load DACs A, B  
with Same  
Update Outputs  
Load Both Input Regs. Load Both DAC Regs with New  
Contents of Input Regs. Outputs Update. Part Wakes Up  
10-Bit Code  
5
LTC1662  
U
U
U
PI FU CTIO S  
CS/LD (Pin 1): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow, SCKisenabledforshiftingdataonDIN  
into the register. When CS/LD is pulled high, SCK is  
disabled and the operation(s) specified in the Control  
code, A3-A0, is (are) performed. CMOS and TTL compat-  
ible.  
REF (Pin 4): Reference Voltage Input. 0V VREF VCC.  
V
OUT A, VOUT B (Pins 8,5): DAC Analog Voltage Outputs.  
The output range is  
1023  
1024  
0 VOUTA,VOUTB VREF  
SCK (Pin 2): Serial Interface Clock Input. CMOS and TTL  
VCC (Pin 6): Supply Voltage Input. 2.7V VCC 5.5V.  
GND (Pin 7): System Ground.  
compatible.  
DIN (Pin 3): Serial Interface Data Input. Input word data on  
the DIN pin is shifted into the 16-bit register on the rising  
edge of SCK. CMOS and TTL compatible.  
U
U
DEFI ITIO S  
Differential Nonlinearity (DNL): The difference between  
the measured change and the ideal 1LSB change for any  
twoadjacentcodes.TheDNLerrorbetweenanytwocodes  
is calculated as follows:  
INL = [VOUT – VOS – (VFS – VOS)(code/1023)]/LSB  
where VOUT is the output voltage of the DAC measured at  
the given input code.  
Least Significant Bit (LSB): The ideal voltage difference  
between two successive codes.  
DNL = (VOUT – LSB)/LSB  
where VOUT is the measured voltage difference between  
two adjacent codes.  
LSB = VREF/1024  
Resolution (n): Defines the number of DAC output states  
(2n) that divide the full-scale range. Resolution does not  
imply linearity.  
Full-Scale Error (FSE): The deviation of the actual full-  
scale voltage from ideal. FSE includes the effects of offset  
and gain errors (see Applications Information).  
Voltage Offset Error (VOS): Nominally, the voltage at the  
output when the DAC is loaded with all zeros. A single  
supply DAC can have a true negative offset, but the output  
cannot go below zero (see Applications Information).  
Gain Error (GE): The deviation from the slope of the ideal  
DAC transfer function, expressed in LSBs at full scale.  
Integral Nonlinearity (INL): The deviation from a straight  
line passing through the endpoints of the DAC transfer  
curve(EndpointINL).Becausetheoutputcannotgobelow  
zero, the linearity is measured between full scale and the  
lowest code which guarantees the output will be greater  
than zero. The INL error at a given input code is calculated  
as follows:  
For this reason, single supply DAC offset is measured at  
the lowest code that guarantees the output will be greater  
than zero.  
6
LTC1662  
U
OPERATIO  
Transfer Function  
In addition, some Control codes perform two or more  
operations at the same time. For example, one such code  
loads DAC A, updates both outputs and Wakes the part up.  
The DACs can be loaded separately or together, but the  
outputs are always updated together.  
The transfer function for the LTC1662 is:  
k
VOUT(IDEAL)  
=
VREF  
1024  
Register Loading Sequence  
where k is the decimal equivalent of the binary DAC input  
code D9-D0 and VREF is the voltage at REF (Pin 6).  
See Figure 1. With CS/LD held low, data on the DIN input  
isshiftedintothe16-bitShiftRegisteronthepositiveedge  
of SCK. The 4-bit Control code, A3-A0, is loaded first, then  
the10-bitInputcode,D9-D0,orderedMSB-to-LSBineach  
case. Two don’t-care bits, X1 and X0, are loaded last.  
When the full 16-bit Input word has been shifted in, CS/LD  
ispulledhigh, causingthesystemtorespondaccordingto  
Table 2. The clock is disabled internally when CS/LD is  
high. Note: SCK must be low when CS/LD is pulled low.  
Power-On Reset  
The LTC1662 positively clears the outputs to zero scale  
when power is first applied, making system initialization  
consistent and repeatable.  
Power Supply Sequencing  
The voltage at REF (Pin 4) should be kept within the range  
–0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken during power  
supply turn-on and turn-off sequences, when the voltage  
at VCC (Pin 6) is in transition.  
Sleep Mode  
DAC control code 1110b is reserved for the special Sleep  
instruction (see Table 2). In this mode, the digital circuits  
remainactivewhiletheanalogsectionsaredisabled;static  
power consumption is greatly reduced. The reference  
input and analog outputs are set in a high impedance state  
and all DAC settings are retained in memory so that when  
Sleep mode is exited, the outputs of DACs not updated by  
the Wake command are restored to their last active state.  
Serial Interface  
See Table 1. The 16-bit Input word consists of the 4-bit  
Controlcode,the10-bitInputcodeandtwodon’t-carebits.  
Table 1. LTC1662 Input Word  
Input Word  
Sleep mode is initiated by performing a load sequence  
using control code 1110b (the DAC input code D9-D0 is  
ignored).  
A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X1 X0  
Control Code  
Input Code  
Don’t  
Care  
Tosaveinstructioncycles, theDACsmaybepreparedwith  
new input codes during Sleep (control codes 0001b and  
0010b); then, a single command (1000b) can be used both  
to wake the part and to update the output values.  
AftertheInputwordisloadedintotheregister(seeFigure 1),  
it is internally converted from serial to parallel format. The  
parallel 10-bit-wide Input code data path is then buffered  
by two latch registers.  
Alternatively, one DAC may be loaded with a new input  
code during Sleep; then with just one command, the other  
DAC is loaded, the part is awakened and both outputs are  
updated.  
Thefirstofthese,theInputRegister,isusedforloadingnew  
input codes. The second buffer, the DAC Register, is used  
forupdatingtheDACoutputs. EachDAChasitsown10-bit  
Input Register and 10-bit DAC Register.  
For example, control code 0001b is used to load DAC A  
during Sleep. Then Control code 0101b loads DAC B,  
wakes the part and simultaneously updates both DAC  
outputs.  
Byselectingtheappropriate4-bitControlcode(seeTable 2)  
itispossibletoperformsingleoperations, suchasloading  
one DAC or changing Power-Down status (Sleep/Wake).  
7
LTC1662  
U
OPERATIO  
Voltage Outputs  
Rail-to-Rail Output Considerations  
Each of the rail-to-rail output amplifiers contained in the  
LTC1662 can typically source or sink up to 1mA  
(VCC = 5V). The outputs swing to within a few millivolts  
of either supply when unloaded and have an equivalent  
output resistance of 85(typical) when driving a load to  
the rails. The output amplifiers are stable driving capaci-  
tive loads up to 1000pF.  
In any rail-to-rail DAC, the output swing is limited to  
voltages within the supply range.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 2b.  
Similarly, limiting can occur near full scale when the REF  
pin is tied to VCC. If VREF = VCC and the DAC full-scale error  
(FSE = VOS + GE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 2c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
POSITIVE  
FSE  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
0
512  
1023  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1662 F02  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC  
8
LTC1662  
U
TYPICAL APPLICATIO  
Using the LTC1258 and the LTC1662 In a Portable Application  
Powered by a Single Li-Ion Battery. Total Supply Current Is 8.2µA  
Li-ION BATTERY INPUT  
V
4.3V  
IN  
0.1µF  
0.1µF  
6
2
V
CC  
1
4
3
2
1
8
0V TO 4.096V  
(4mV/BIT)  
LTC1258-4.1  
4
REF  
V
OUT A  
4.096V  
D
IN  
LTC1662  
SCK  
5
0V TO 4.096V  
(4mV/BIT)  
CS/LD  
V
OUT B  
GND  
7
1662 F03  
9
LTC1662  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
1
0.040 ± 0.006  
2
3
4
0.034 ± 0.004  
(0.86 ± 0.102)  
(1.02 ± 0.15)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1098  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
10  
LTC1662  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
11  
LTC1662  
U
TYPICAL APPLICATIO  
Micropower Trim Circuit with Coarse/Fine Adjustment. Total Supply Current Is 9.5µA  
3.3V  
0.1µF  
R2  
1.1M  
R1  
11k  
3.3V  
6
0.1µF  
2
3.3V  
8
1
2.5V  
0.1µF  
LTC1258-2.5  
4
4
REF  
V
CC  
2
3
+
R1  
COARSE  
11k  
1
LT1495  
4
V
OUT  
8
DAC A  
V
OUT A  
0.1µF  
1
3
2
CS/LD  
LTC1662  
U1  
D
IN  
CODE A R1 CODE B  
R2  
FINE  
1.1M  
V
= V  
+
SCK  
OUT  
REF  
(
)
)
1024  
R2  
1024  
5
DAC B  
V
OUT B  
CODE A  
1024  
1
CODE B  
= 2.5V  
+
(
100 1024  
7
GND  
1662 F04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1661  
Dual 10-Bit V  
DAC in 8-Lead MSOP Package  
V
V
V
V
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, Internal Reference, 60µA  
OUT  
CC  
CC  
CC  
CC  
LTC1663  
Single 10-Bit V  
DAC with 2-Wire Interface in SOT-23 Package  
OUT  
LTC1664  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
OUT  
LTC1665/LTC1660  
LTC1446/LTC1446L  
Octal 8/10-Bit V  
DAC in 16-Pin Narrow SSOP  
OUT  
Dual 12-Bit V  
DACs in SO-8 Package with Internal Reference  
DAC in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
= 0V to 2.5V  
CC  
OUT  
LTC1448  
Dual 12-Bit V  
Dual 12-Bit V  
V
= 2.7V to 5.5V, External Reference Can Be Tied to V  
OUT  
CC CC  
LTC1454/LTC1454L  
DACs in SO-16 Package with Added Functionality LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1458/LTC1458L  
LTC1659  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Single Rail-to-Rail 12-Bit V DAC in 8-Lead MSOP Package  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
Low Power Multiplying V  
DAC. Output Swings from  
OUT  
OUT  
V
: 2.7V to 5.5V  
CC  
GND to REF. REF Input Can Be Tied to V  
CC  
1662i LT/TP 0300 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 2000  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1662IN8#PBF

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: PDIP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1662IN8#TR

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Digital to Analog Converter
Linear

LTC1662IN8#TRPBF

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Digital to Analog Converter
Linear

LTC1662_1

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1663

10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface
Linear

LTC1663-1CS5

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-1CS5#PBF

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-1CS5#TR

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-1CS5#TRM

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-1CS5#TRMPBF

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-1CS5#TRPBF

LTC1663 - 10-Bit Rail-to-Rail Micropower DAC with 2-Wire Interface; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C
Linear

LTC1663-2CS5

10-Bit Rail-to-Rail Micropower DAC with
Linear System