LTC1686CS8#PBF [Linear]

LTC1686 - 52Mbps Precision Delay RS485 Fail-Safe Transceivers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1686CS8#PBF
型号: LTC1686CS8#PBF
厂家: Linear    Linear
描述:

LTC1686 - 52Mbps Precision Delay RS485 Fail-Safe Transceivers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总12页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1686/LTC1687  
52Mbps Precision Delay  
RS485 Fail-Safe Transceivers  
U
DESCRIPTION  
FEATURES  
The LTC®1686/LTC1687 are high speed, precision delay,  
full-duplex RS485 transceivers that can operate at data  
rates as high as 52Mbps. The devices also meet the  
requirements of RS422.  
Precision Propagation Delay Over Temperature:  
Receiver/Driver: 18.5ns  
High Data Rate: 52Mbps  
Low tPLH/tPHL Skew:  
±3.5ns  
Receiver/Driver: 500ps Typ  
A unique architecture provides very stable propagation  
delays and low skew over a wide common mode and  
ambient temperature range.  
–7V to 12V RS485 Input Common Mode Range  
Guaranteed Fail-Safe Operation Over the Entire  
Common Mode Range  
High Input Resistance: 22k, Even When Unpowered  
Short-Circuit Protected  
Thermal Shutdown Protected  
Driver Maintains High Impedance in Three-State or  
with Power Off  
Single 5V Supply  
Pin Compatible with LTC490/LTC491  
45dB CMRR at 26MHz  
The driver and receiver feature three-state outputs, with  
disabled driver outputs maintaining high impedance over  
the entire common mode range. A short-circuit feature  
detects shorted outputs and substantially reduces driver  
output current. A similar feature also protects the receiver  
output from short circuits. Thermal shutdown circuitry  
protects from excessive power dissipation.  
The receiver has a fail-safe feature that guarantees a high  
output state when the inputs are shorted or are left floating.  
The LTC1686/LTC1687 RS485 transceivers guarantee  
receiver fail-safe operation over the entire common mode  
range (7V to 12V). Receiver input resistance remains  
22k when the device is unpowered or disabled.  
U
APPLICATIONS  
High Speed RS485/RS422 Full Duplex Transceivers  
Level Translator  
Backplane Transceiver  
The LTC1686/LTC1687 operate from a single 5V supply  
and draw only 7mA of supply current.  
STS-1/OC-1 Data Transceiver  
Signal Repeaters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
10Mbps Data Pulse  
400 Feet Category 5 UTP  
LTC1686  
LTC1686  
DRIVER INPUT  
2V/DIV  
5
3
100Ω  
100Ω  
100Ω  
D
DRIVER  
RECEIVER  
R
D
6
RECEIVER  
INPUT  
1V/DIV  
5V/DIV  
8
7
2
100Ω  
R
DRIVER  
RECEIVER  
RECEIVER  
OUTPUT  
400 FT OF CATEGORY 5 UTP  
100ns/DIV  
1686/87 TA02  
LTC1686/87 • TA01  
1
LTC1686/LTC1687  
W W W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
Driver Short-Circuit Duration  
(VOUT: 7V to 10V) ..................................... Indefinite  
Receiver Short-Circuit Duration  
(VOUT: 0V to VDD) ........................................ Indefinite  
Operating Temperature Range  
LTC1686C/LTC1687C ............................. 0°C to 70°C  
LTC1686I/LTC1687I .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Supply Voltage (VDD).............................................. 10V  
Control Input Currents .................... 100mA to 100mA  
Control Input Voltages .................. 0.5V to VDD + 0.5V  
Driver Input Voltages .................... 0.5V to VDD + 0.5V  
Driver Output Voltages ................................. +12V/7V  
Receiver Input Voltages ................................ +12V/7V  
Receiver Output Voltages ............. 0.5V to VDD + 0.5V  
Receiver Input Differential ...................................... 10V  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NC  
R
1
2
3
4
5
6
7
14  
V
DD  
TOP VIEW  
NUMBER  
NUMBER  
R
13 NC  
V
1
2
3
4
8
7
6
5
A
B
Z
Y
DD  
R
12  
11  
10  
9
RE  
A
B
LTC1686CS8  
LTC1686IS8  
R
LTC1687CS  
LTC1687IS  
DE  
D
D
D
Z
GND  
D
Y
GND  
GND  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8
NC  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 90°C/ W  
TJMAX = 125°C, θJA = 150°C/ W  
1686  
1686I  
Consult factory for Industrial and Military grade parts.  
DC ELECTRICAL CHARACTERISTICS VDD = 5V ± 5% unless otherwise noted (Notes 2, 3).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Differential Driver Output (Unloaded)  
Differential Driver Output (With Load)  
I
= 0  
V
V
OD1  
OD2  
OUT  
DD  
R = 50(RS422)  
R = 27(RS485), Figure 1  
2.0  
1.5  
V
V
V
DD  
V  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary  
Output States  
R = 27or 50, Figure 1  
0.2  
V
OD  
V
Driver Common Mode Output Voltage  
R = 27or 50, V = 5V, Figure 1  
2
3
V
V
OC  
DD  
V  
Change in Magnitude of Driver Common  
Mode Output Voltage for Complementary  
Output States  
R = 27or 50, Figure 1  
0.2  
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
D, DE, RE  
D, DE, RE  
D, DE, RE  
2
V
V
IH  
IL  
0.8  
1
I
I
–1  
µA  
IN1  
IN2  
Input Current (A, B)  
V , V = 12V, V = 0V or 5.25V  
500  
µA  
µA  
A
B
DD  
V , V = 7V, V = 0V or 5.25V  
500  
0.3  
A
B
DD  
V
Differential Input Threshold Voltage  
for Receiver  
7V V 12V  
0.3  
V
TH  
CM  
V  
Receiver Input Hysteresis  
V
= 0V  
25  
mV  
V
TH  
CM  
V
Receiver Output High Voltage  
I
= 4mA, V = 300mV  
3.5  
4.8  
OH  
OUT  
ID  
2
LTC1686/LTC1687  
VDD = 5V ±5% unless otherwise noted (Notes 2, 3).  
DC ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNITS  
V
V
Receiver Output Low Voltage  
I
= 4mA, V = 300mV  
OL  
OUT  
ID  
I
Three-State (High Impedance) Output  
Current at Receiver  
0.4V V  
2.4V  
–1  
µA  
OZR  
OUT  
I
Three-State (High Impedance) Output  
Current at Driver  
V
= 7V to 12V  
OUT  
200  
200  
µA  
OZD  
C
Receiver and Driver Output Load Capacitance (Note 4)  
500  
12  
20  
20  
20  
pF  
mA  
mA  
mA  
mA  
kΩ  
pF  
LOAD  
I
I
I
I
Supply Current  
No Load, Pins D, DE, RE = 0V or V  
7
DD  
DD  
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
Receiver Short-Circuit Current  
Input Resistance  
= HIGH  
= LOW  
V
V
V
= 7V or 10V (Note 5)  
= 7V or 10V (Note 5)  
OSD1  
OSD2  
OSR  
OUT  
OUT  
OUT  
OUT  
OUT  
= 0V or V (Note 5)  
DD  
R
7V V 12V  
22  
IN  
IN  
CM  
C
Input Capacitance  
A, B, D, DE, RE Inputs (Note 4)  
3
3.3  
2
Open-Circuit Input Voltage  
V
= 5V (Note 4), Figure 5  
3.2  
3.4  
V
DD  
Fail-Safe  
Time  
Time to Detect Fail-Safe Condition  
µs  
CMRR  
Receiver Input Common Mode  
Rejection Ratio  
V
= 2.5V, f = 26MHz  
45  
dB  
CM  
U
SWITCHING CHARACTERISTICS VDD = 5V, unless otherwise noted (Notes 2, 3).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
, t  
Driver Input-to-Output Propagation Delay  
Driver Output A-to-Output B Skew  
Driver Rise/Fall Time  
R
= 54, Figures 3, 5  
LTC1686C/LTC1687C  
LTC1686I/LTC1687I  
15  
13  
18.5  
18.5  
22  
25  
ns  
ns  
PLH PHL  
DIFF  
C
L1  
= C = 100pF  
L2  
t
R
DIFF  
= 54, C = C = 100pF,  
500  
ps  
SKEW  
L1  
L2  
Figures 3, 5  
R = 54, C = C = 100pF,  
DIFF  
t , t  
3.5  
ns  
r
f
L1  
L2  
Figures 3, 5  
t
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Low  
Driver Disable from High  
C = 100pF, S2 Closed, Figures 4, 6  
25  
25  
25  
25  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
ZH  
ZL  
LZ  
HZ  
L
C = 100pF, S1 Closed, Figures 4, 6  
L
C = 15pF, S1 Closed, Figures 4, 6  
L
C = 15pF, S2 Closed, Figures 4, 6  
L
, t  
Receiver Input-to-Output Propagation Delay C = 15pF, Figures 3, 7  
LTC1686C/LTC1687C  
LTC1686I/LTC1687I  
15  
13  
18.5  
18.5  
22  
25  
ns  
ns  
PLH PHL  
L
t
t
t
t
t
Receiver Skew  
t
– t  
C = 15pF, Figures 3, 7  
500  
25  
ps  
ns  
ns  
ns  
ns  
ns  
SQD  
ZL  
PLH  
PHL  
L
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
C = 15pF, S1 Closed, Figures 2, 8  
L
50  
50  
C = 15pF, S2 Closed, Figures 2, 8  
L
25  
ZH  
LZ  
C = 15pF, S1 Closed, Figures 2, 8  
L
25  
50  
C = 15pF, S2 Closed, Figures 2, 8  
L
25  
50  
HZ  
Maximum Receiver Input  
Rise/Fall Times  
(Note 4)  
2000  
t
Package-to-Package Skew  
C = 15pF, Same Temperature (Note 4)  
L
1.5  
ns  
PKG-PKG  
3
LTC1686/LTC1687  
U
SWITCHING CHARACTERISTICS VDD = 5V, unless otherwise noted (Notes 2, 3).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Pulse Width  
V
DD  
V
DD  
V
DD  
= 5V ±5% (Note 4)  
= 5V ±5% (Note 4)  
= 5V ±5% (Note 4)  
LTC1686C/LTC1687C  
LTC1686I/LTC1687I  
17  
20  
19.2  
25  
ns  
ns  
Maximum Data Rate  
LTC1686C/LTC1687C  
LTC1686I/LTC1687I  
52  
40  
60  
50  
Mbps  
Mbps  
Maximum Input Frequency  
LTC1686C/LTC1687C  
LTC1686I/LTC1687I  
26  
20  
30  
25  
MHz  
MHz  
The  
denotes specifications which apply over the full operating  
Note 3: All typicals are given for V = 5V, T = 25°C.  
DD A  
Note 4: Guaranteed by design, but not tested.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into the device pins are positive; all currents out of the  
device pins are negative.  
Note 5: Short-circuit current does not represent output drive capability.  
When the output detects a short-circuit condition, output drive current is  
significantly reduced (from hundreds of mA to 20mA max) until the short  
is removed.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver Input CMRR  
Supply Current vs Data Rate  
Supply Current vs Temperature  
46.5  
46.0  
45.5  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
70  
60  
58  
57  
56  
55  
BOTH DRIVER AND RECEIVER  
ENABLED AND LOADED  
A
T
= 25°C  
50  
40  
30  
20  
10  
0
54  
53  
52  
51  
50  
BOTH DRIVER AND RECEIVER  
ENABLED AND LOADED  
25Mbps DATA RATE  
T
A
= 25°C  
42.0  
10  
20  
DATA RATE (Mbps)  
50  
0
25  
TEMPERATURE (°C)  
75  
1
30  
40  
25  
100  
50  
10  
1k  
100k  
FREQUENCY (Hz)  
1M  
1686/87 G02  
1686/87 G03  
1686/87 G01  
Receiver Propagation Delay  
vs Load Capacitance  
Receiver Propagation Delay  
vs Common Mode  
Receiver Propagation Delay  
vs Input Overdrive  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
25  
20  
T
= 25°C  
T = 25°C  
A
T
= 25°C  
A
A
15  
10  
5
0
0
0
5
25  
35  
55  
105  
205  
0.3 0.5 0.7  
1.0 1.25 1.5 2.0 2.5  
15  
–7 –4 –2  
0
2
4
6
8
10 12  
LOAD CAPACITANCE (pF)  
RECEIVER INPUT OVERDRIVE (V)  
RECEIVER COMMON MODE (V)  
1686/87 G04  
1686/87 G06  
1686/87 G05  
4
LTC1686/LTC1687  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver Propagation Delay  
vs Temperature  
Receiver Maximum Data Rate  
vs Input Overdrive  
Driver Propagation Delay  
vs Temperature  
25  
20  
15  
10  
5
70  
60  
25  
T
= 25°C  
A
20  
15  
10  
50  
40  
30  
20  
10  
5
0
0
0
50  
75 100 125  
0.3 0.4  
0.5 0.6  
0.7  
1.0  
1.5  
2.5  
–50 –25  
0
25  
20  
20  
40  
60  
80  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER INPUT DIFFERENTIAL (V)  
1686/87 G09  
1686/87 G10  
1686/87 G07  
Driver Propagation Delay  
vs Driver Input Voltage  
Driver Propagation Delay  
vs Capacitive Load  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
25  
20  
15  
10  
5
V
= 5V  
T
= 25°C  
DD  
A
INPUT THRESHOLD = 1.5V  
T
= 25°C  
A
t
HL  
t
LH  
0
5
25  
50  
75  
100  
150  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
15  
LOAD CAPACITANCE (pF)  
DRIVER INPUT VOLTAGE (V)  
1686/87 G11  
1686/87 G08  
U
U
U
PIN FUNCTIONS  
LTC1686  
B (Pin 7): Inverting Receiver Input.  
VDD (Pin 1): Positive Supply, 5V to ±5%. Bypass with  
0.1µF ceramic capacitor.  
A (Pin 8): Noninverting Receiver Input.  
LTC1687  
NC (Pins 1, 8, 13): No Connection.  
R (Pin 2): Receiver Output. If A B by 300mV, then R will  
be high. If A B by 300mV, then R will be low.  
R (Pin 2): Receiver Output. If A B by 300mV, then R will  
be high. If A B by 300mV, then R will be low.  
D (Pin 3): Driver Input. Controls the states of the Y and Z  
outputs. Do not float.  
RE(Pin3):ReceiverEnable. RE=lowenablesthereceiver.  
RE = high forces receiver output into high impedance  
state. Do not float.  
GND (Pin 4): Ground.  
Y (Pin 5): Noninverting Driver Output.  
Z (Pin 6): Inverting Driver Output.  
5
LTC1686/LTC1687  
U
U
U
PIN FUNCTIONS  
DE (Pin 4): Driver Enable. DE = high enables the driver.  
DE = low will force the driver output into a high impedance  
state. Do not float.  
Z (Pin 10): Inverting Driver Output.  
B (Pin 11): Inverting Receiver Input.  
A (Pin 12): Noninverting Receiver Input.  
D (Pin 5): Driver Input. Controls the states of the Y and Z  
outputs when DE = high. Do not float.  
VDD (Pin 14): Positive Supply, 5V to ±5%. Bypass with  
0.1µF ceramic capacitor.  
GND (Pins 6, 7): Ground.  
Y (Pin 9): Noninverting Driver Output.  
U
U
FU CTIO TABLES  
(LTC1687)  
Receiving  
Transmitting  
INPUTS  
OUTPUT  
R
INPUTS  
DE  
LINE  
CONDITION  
OUTPUTS  
RE  
0
DE  
X
A – B  
RE  
X
D
1
0
X
X
Z
0
Y
1
300mV  
1
0
1
1
1
1
0
1
No Fault  
No Fault  
X
0
X
300mV  
Inputs Open  
X
1
0
0
X
X
Hi- Z  
Hi- Z  
0
X
Inputs Shorted Together  
A = B = 7V to 12V  
X
Fault  
±10mA Current  
Source  
1
X
X
Hi- Z  
TEST CIRCUITS  
Y
S1  
S2  
TEST POINT  
1k  
R
R
RECEIVER  
OUTPUT  
V
DD  
V
OD  
C
L
15pF  
1k  
V
OC  
1686/87 F02  
Z
1686/87 • F01  
Figure 2. Driver DC Test Load  
Figure 1. Driver DC Test Load  
3V  
DE  
A
C
Y
Z
L1  
S1  
R
D
R
DIFF  
V
DD  
B
500Ω  
C
OUTPUT  
UNDER TEST  
L2  
RE  
S2  
15pF  
C
L
1686/87 F04  
1686/87 F03  
Figure 3. Driver/Receiver Timing Test Circuit  
Figure 4. Driver Timing Test Load #2  
6
LTC1686/LTC1687  
U W  
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz, t 3ns, t 3ns  
D
1.5V  
1.5V  
r
f
0V  
Z
1/2 V  
O
t
t
PHL  
PLH  
V
O
Y
t
t
SKEW  
1/2 V  
SKEW  
O
90%  
10%  
V
O
90%  
V
DIFF  
= V(Y) – V(Z)  
0V  
–V  
10%  
O
1686/87 F05  
t
t
f
r
Figure 5. Driver Propagation Delays  
3V  
f = 1MHz, t 3ns, t 3ns  
1.5V  
1.5V  
DE  
r
f
0V  
5V  
t
t
LZ  
ZL  
Y, Z  
Y, Z  
2.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
V
OL  
OH  
0V  
V
2.5V  
t
1686/87 F06  
t
HZ  
ZH  
Figure 6. Driver Enable and Disable Times  
V
OH  
2.5V  
2.5V  
R
OUTPUT  
V
OL  
f = 1MHz, t 3ns, t 3ns  
t
t
PLH  
r
f
PHL  
V
A – B  
–V  
OD2  
OD2  
0V  
INPUT  
1686/87 F07  
Figure 7. Receiver Propagation Delays  
3V  
0V  
5V  
1.5V  
f = 1MHz, t 3ns, t 3ns  
1.5V  
RE  
R
r
f
t
t
LZ  
ZL  
2.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
0.5V  
R
2.5V  
0V  
t
1686/87 F08  
t
HZ  
ZH  
Figure 8. Receiver Enable and Disable Times  
7
LTC1686/LTC1687  
U U  
EQUIVALE T I PUT NETWORKS  
22k  
22k  
22k  
A
A
B
3.3V  
22k  
B
3.3V  
RE = 0 OR 1, V = 5V  
DD  
V
= 0V  
DD  
1686/87 F09  
Figure 9. Input Thevenin Equivalent  
U
W U U  
APPLICATIONS INFORMATION  
THEORY OF OPERATION  
high frequency performance, it is necessary to slow down  
the transient response of the fail-safe feature. When a line  
fault is detected, the output will go HIGH typically in 2µs.  
NotethattheLTC1686/LTC1687guaranteereceiverfail-  
safe performance over the entire (7V to 12V) common  
mode range!  
Unlike typical CMOS transceivers whose propagation  
delay can vary by as much as 500% from package to  
package and show significant temperature drift, the  
LTC1686/LTC1687 employ a novel architecture that pro-  
duces a tightly controlled and temperature compensated  
propagation delay. The differential timing skew is also  
minimized between rising and falling output edges of the  
receiver output and the complementary driver outputs.  
When the inputs are accidentally shorted (by cutting  
through a cable, for example), the short circuit fail-safe  
feature will guarantee a high output logic level. Note also  
thatifthelinedriverisremovedandthegroundterminated  
resistors are left in place, the receiver will see this as a  
“short” and output a logic HIGH. Both of these fail-safe  
features will keep the receiver from outputting false data  
pulses under line fault conditions.  
The precision timing features of the LTC1686/LTC1687  
reduce overall system timing constraints by providing a  
narrow ±3.5ns window during which valid data appears at  
the receiver/driver output. The driver and receiver will  
havepropagationdelaysthattypicallymatchtowithin1ns.  
Thermal shutdown and short-circuit protection prevent  
latchup damage to the LTC1686/LTC1687 during fault  
conditions.  
In clocked data systems, the low skew minimizes duty  
cycledistortionoftheclocksignal.TheLTC1686/LTC1687  
canbeusedatdataratesof52Mbpswithlessthan5%duty  
cycledistortion(dependingoncablelength).Whenaclock  
signalisusedtoretimeparalleldata,themaximumrecom-  
mended data transmission rate is 26Mbps to avoid timing  
errors due to clock distortion.  
OUTPUT SHORT-CIRCUIT PROTECTION  
The LTC1686/LTC1687 employ voltage sensing short-  
circuit protection at the output terminals of both the driver  
and receiver. For a given input polarity, this circuitry  
determines what the correct output level should be. If the  
output level is different from the expected, it shuts off the  
big output devices. For example, if the driver input is >2V,  
it expects the “A” output to be >3.25V and the “B” output  
to be <1.75V. If the “A” output is subsequently shorted to  
a voltage below VDD/2, this circuitry shuts off the big  
output devices and turns on a smaller device in its place  
FAIL-SAFE FEATURES  
The LTC1686/LTC1687 have a fail-safe feature that guar-  
antees the receiver output to be in a logic HIGH state when  
the inputs are either shorted or left open (note that when  
inputs are left open, large external leakage currents might  
override the fail-safe circuitry). In order to maintain good  
8
LTC1686/LTC1687  
U
W U U  
APPLICATIONS INFORMATION  
should be pulsed low for at least 200ns after the short has  
been removed. Since the LTC1686 driver is always  
enabled, the LTC1686 should only be used with single  
resistor termination, as shown in Figure 10.  
(theconverseappliesfortheBoutput). Theoutputsthen  
appearas±10mAcurrentsources.Notethatundernormal  
operation, the output drivers can sink/source >50mA. A  
time-out period of about 50ns is used in order to maintain  
normal high frequency operation, even under heavy ca-  
pacitive loads.  
HIGH SPEED TWISTED-PAIR TRANSMISSION  
If the cable is shorted at a large distance from the device  
outputs, it is possible for the short to go unnoticed at the  
driver outputs due to parasitic cable resistance. Addition-  
ally, when the cable is shorted, it no longer appears as a  
simple transmission line impedance, and the parasitic L’s  
and C’s might give rise to ringing and even oscillation. All  
these conditions disappear once the device comes out of  
short-circuit mode.  
Data rates up to 52Mbps can be transmitted over 100 feet  
of category 5 twisted pair. Figure 10 shows the LTC1687  
receiving differential data from another LTC1687 trans-  
ceiver. Figure 11a shows a 26MHz (52Mbps) square wave  
propagated over 100 feet of category 5 UTP. Figure 11b  
shows a more stringent case of propagating a 20ns pulse  
over 100 feet of category 5 UTP. Figure 12 shows a 2MHz  
(4Mbps) square wave propagated over 1000 feet of  
category 5unshieldedtwistedpair.NotethattheLTC1686/  
LTC1687 can still perform reliably at this distance and  
speed. Very inexpensive unshielded telephone grade  
twisted pair is shown in Figure 13. Despite the noticeable  
loss at the receiver input, the LTC1686/LTC1687 can still  
transfer at 30Mbps over 100 feet of telephone grade UTP.  
Notethatunderalltheseconditions,theLTC1686/LTC1687  
can pass through a single data pulse equal to the inverse  
of the data rate (e.g., 20ns for 50Mbps data rate).  
For cables with the typical RS485 termination (no DC bias  
on the cable, such as Figure 10), the LTC1686/LTC1687  
willautomaticallycomeoutofshort-circuitmodeoncethe  
physical short has been removed.  
Cable Termination  
The recommended cable termination for the LTC1686/  
LTC1687 is a single resistor across the two wires at each  
end of the twisted-pair line (see Figure 10). The LTC1687  
can also be used with cable terminations with a DC bias  
(such as Fast-20 and Fast-40 differential SCSI termina-  
tors). When using a biased termination with the LTC1687,  
however, the DE pin must be held low for at least 200ns  
after the part has been powered up. This ensures proper  
start-up into the DC load of the biased termination. Fur-  
thermore, whentheLTC1687outputisshorted, theDEpin  
TRANSMISSION OVER LONG DISTANCES  
1Mbps Over 4000 Feet Category 5 UTP  
The LTC1685/LTC1686/LTC1687 family of high speed  
transceivers is capable of 1Mbps transmission over 4000  
feet of category 5 UTP. High quality cable provides lower  
DE  
4
DE  
9
5
2
100Ω  
100Ω  
100Ω  
D
R
DRIVER  
RECEIVER  
R
D
10  
LTC1687  
LTC1687  
DRIVER  
12  
11  
100Ω  
RECEIVER  
CATEGORY 5 UTP  
3
RE  
RE  
LTC1686/87 • F10  
Figure 10  
9
LTC1686/LTC1687  
U
W U U  
APPLICATIONS INFORMATION  
DRIVER INPUT  
2V/DIV  
DRIVER  
INPUT  
2V/DIV  
DIFFERENTIAL  
RECEIVER  
INPUT  
2V/DIV  
2V/DIV  
2V/DIV  
RECEIVER  
OUTPUT  
RECEIVER  
OUTPUT  
10ns/DIV  
20ns/DIV  
1686/87 F13  
1686/87 F11a  
Figure 13. 100 Feet of Telephone Grade UTP: 30Mbps  
Figure 11a. 100 Feet of Category 5 UTP: 50Mbps  
DRIVER  
INPUT  
DRIVER  
2V/DIV  
2V/DIV  
CABLE DELAY  
INPUT  
CABLE DELAY  
RECEIVER  
INPUT  
RECEIVER  
INPUT  
2V/DIV  
1V/DIV  
RECEIVER  
5V/DIV  
RECEIVER  
OUTPUT  
5V/DIV  
OUTPUT  
20ns/DIV  
1µs/DIV  
1685 F11b  
1685 F14a  
Figure 14a. 4000 Feet of Category 5 UTP 1µs Pulse  
Figure 11b. 100 Feet of Category 5 UTP: 20ns Pulse  
DRIVER  
INPUT  
2V/DIV  
2V/DIV  
DRIVER  
INPUT  
2V/DIV  
5V/DIV  
RECEIVER  
OUTPUT  
RECEIVER  
OUTPUT  
1µs/DIV  
100ns/DIV  
1685 F14b  
1686/87 F12  
Figure 12. 1000 Feet of Category 5 UTP: 4Mbps  
Figure 14b. 4000 Feet of Category 5 UTP 1Mbps Square Wave  
DC and AC attenuation over long distances. Figure 14a  
showsa1µspulsepropagateddown4000feetofcategory  
5 UTP. Notice the significant attenuation at the receiver  
input and the clean pulse at the receiver output. The DC  
attenuation is due to the parasitic resistance of the cable.  
Figure 14b shows a 1Mbps square wave over the same  
4000 feet of cable.  
1.6Mbps Over 8000 Feet (1.5 Miles)  
Category 5 UTP Using Repeaters  
TheLTC1686/LTC1687canbeusedasrepeaterstoextend  
theeffectivelengthofahighspeedtwisted-pairline.Figure  
15a shows a three repeater configuration using 2000 feet  
segments of category 5 UTP. Figure 15b shows the  
10  
LTC1686/LTC1687  
U
W U U  
APPLICATIONS INFORMATION  
LTC1687  
LTC1687  
2000 FT  
2000 FT  
2000 FT  
LTC1687  
R4  
REPEATER  
2000 FT  
LTC1687  
R2  
REPEATER  
LTC1687  
R3  
REPEATER  
D1  
R
D
D
D
R5  
1686/87 F15a  
Figure 15a. 1.6Mbps, 8000 Feet (1.5 Miles) Using Three Repeaters  
DRIVER 1  
INPUT  
DRIVER 1  
INPUT  
2V/DIV  
2V/DIV  
RECEIVER 2  
INPUT  
RECEIVER 3  
INPUT  
RECEIVER 4  
INPUT  
1V/DIV  
1V/DIV  
RECEIVER 5  
OUTPUT  
5V/DIV  
2V/DIV  
1V/DIV  
DRIVER 1  
INPUT  
RECEIVER 5  
OUTPUT  
5V/DIV  
RECEIVER 5  
OUTPUT  
5V/DIV  
2µs/DIV  
2µs/DIV  
1686/87 F15b  
1686/87 F16  
Figure 15b. 1.6Mbps Pulse and Square Wave Signals  
Over 8000 Feet Category 5 UTP Using Three Repeaters  
Figure 16. Intermediate Signals of a 1µs Pulse  
propagation of a 600ns pulse through the network of  
Figure 15A. The bottom two traces show a 1.6Mbps  
square wave. Notice that the duty cycle does not notice-  
ably degrade. For the case of the single pulse, however,  
there is a slight degradation of the pulse width.  
goes above or below the rails. It is advisable to terminate  
the PC traces when approaching maximum speeds. Since  
the LTC1686/LTC1687 are not intended to drive parallel  
terminated cables with characteristic impedances much  
less than that of twisted pair, both ends of the PC trace  
must be series terminated with the characteristic imped-  
ance of the trace. For best results, the signal should be  
routed differentially. The true and complement outputs of  
the LTC1686/LTC1687 should be routed on adjacent lay-  
ers of the PC board. The two traces should be routed very  
symmetrically, minimizing and equalizing parasitics to  
nearby signal and power/ground layers. For single-ended  
transmission, route the series terminated single-ended  
trace over an adjacent ground plane. Then set the (by-  
passed) negative input of the receiver to roughly 2.5V.  
Note that single-ended operation might not reach maxi-  
mum speeds.  
By slowing down the data rate slightly to 1Mbps, one can  
obtain minimal pulse width degradation as the signal  
traverses through the repeater network. Figure 16 shows  
that the output pulse (bottom trace) is nearly the same  
width to the input pulse (top trace). The middle three  
tracesofFigure16showthesignalattheendofeachofthe  
first three 2000 feet sections of category 5 UTP. Notice  
how the LTC1687 repeaters are able to regenerate the  
signal with little loss. This implies that we can cascade  
more repeater networks and potentially achieve 1Mbps  
operation at total distances of over 10,000 feet!A higher  
dataratecanbeachievediftherepeatersarespacedcloser  
together.  
LAYOUT CONSIDERATIONS  
HIGH SPEED BACKPLANE TRANSMISSION  
A ground plane is recommended when using high fre-  
quency devices like the LTC1686/LTC1687. A 0.1µF ce-  
ramic bypass capacitor less than 0.25 inch away from the  
VDD pin is also recommended.  
The LTC1686/LTC1687 can also be used in backplane  
point-to-point transceiver applications, where the user  
wants to assure operation even when the common mode  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC1686/LTC1687  
U
W U U  
APPLICATIONS INFORMATION  
Long traces bounded by a VDD and/or GND planes can add  
substantial parasitic capacitance. Parasitic capacitances  
on the receiver/driver outputs can also unduly slow down  
both the propagation delay and the rise/fall times.  
The receiver inputs are high bandwidth and high imped-  
ance. If they are left floating, any capacitive coupling from  
any other signal can cause a glitch at the receiver output.  
Thus, if the receiver is not being used, it is advisable to  
always ground at least one of the two receiver input pins.  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S14 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC490  
Low Power RS485 Full-Duplex Transceiver  
Low Power RS485 Full-Duplex Transceiver  
High Speed Quad RS485 Receiver  
High Speed Quad RS485 Receiver  
High Speed Quad Differential Receiver  
High Speed RS485 Transceiver  
I
I
= 300µA (Typ), SO-8 Package  
CC  
CC  
LTC491  
= 300µA (Typ), 14-Lead SO Package  
LTC1518  
LTC1519  
LTC1520  
LTC1685  
52Mbps, Pin Compatible with LTC488  
52Mbps, Pin Compatible with LTC489  
52Mbps, ±100mV Threshold, Rail-to-Rail Common Mode  
52Mbps, Pin Compatible with LTC485  
16867fs, sn16867 LT/TP 1197 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1997  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY