LTC1693-2CS8#TRPBF [Linear]

LTC1693 - High Speed Single/Dual N-Channel MOSFET Drivers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1693-2CS8#TRPBF
型号: LTC1693-2CS8#TRPBF
厂家: Linear    Linear
描述:

LTC1693 - High Speed Single/Dual N-Channel MOSFET Drivers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总20页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1693  
High Speed Single/Dual  
N-Channel MOSFET Drivers  
U
FEATURES  
DESCRIPTIO  
The LTC®1693 family drives power N-channel MOSFETs  
at high speed. The 1.5A peak output current reduces  
switching losses in MOSFETs with high gate capacitance.  
Dual MOSFET Drivers in SO-8 Package  
or Single MOSFET Driver in MSOP Package  
1GElectrical Isolation Between the Dual Drivers  
Permits High/Low Side Gate Drive  
The LTC1693-1 contains two noninverting drivers while  
the LTC1693-2 contains one noninverting and one invert-  
ing driver. These dual drivers are electrically isolated and  
independent. The LTC1693-3 is a single driver with an  
output polarity select pin.  
1.5A Peak Output Current  
16ns Rise/Fall Times at VCC = 12V, CL = 1nF  
Wide VCC Range: 4.5V to 13.2V  
CMOS Compatible Inputs with Hysteresis,  
Input Thresholds are Independent of VCC  
All MOSFET drivers offer VCC independent CMOS input  
thresholds with 1.2V of typical hysteresis. They can level-  
shifttheinputlogicsignalupordowntotherail-to-railVCC  
drive for the external MOSFET.  
Driver Input Can Be Driven Above VCC  
Undervoltage Lockout  
Thermal Shutdown  
U
APPLICATIO S  
TheLTC1693containsanundervoltagelockoutcircuitand  
a thermal shutdown circuit that disable the external  
N-channel MOSFET gate drive when activated.  
Power Supplies  
High/Low Side Drivers  
Motor/Relay Control  
Line Drivers  
Charge Pumps  
TheLTC1693-1andLTC1693-2comeinan8-leadSOpack-  
age. The LTC1693-3 comes in an 8-lead MSOP package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Two Transistor Forward Converter  
V
IN  
48VDC  
C1  
330µF  
63V  
C2  
1.5µF  
63V  
+
±10%  
R1  
0.068Ω  
D1  
RETURN  
MURS120  
L1  
1.5µH  
Q1  
T1  
13:2  
MTD20NO6HD  
V
12V  
OUT  
1.5V/15A  
C5  
C3  
4700pF  
25V  
R2  
5.1Ω  
D2  
MURS120  
C4  
LTC1693CS8-2  
1µF  
1
2
3
4
8
7
6
5
0.1µF  
IN1  
GND1 OUT1  
IN2  
GND2 OUT2  
C7  
V
CC1  
R3  
17  
IN  
249Ω  
D3  
C6  
C11  
0.1µF  
12V  
+
1%  
MURS120  
470µF  
20  
V
CC2  
BOOST  
6.3V  
Q2  
Si4420  
×2  
R4  
C9  
19  
×8  
Q4  
Si4420  
1.24k  
1%  
LT1339  
TG  
1800pF  
5%  
1
2
C8  
1µF  
SYNC  
5V  
Q3  
BAT54  
1µF  
NPO  
18  
11  
12  
16  
14  
13  
9
MTD20NO6HD  
TS  
+
REF  
R5  
2.49k  
1%  
R6 100Ω  
4
RETURN  
SL/ADJ  
SENSE  
R7 100Ω  
D4  
3
C
T
SENSE  
MBRO530T1  
LTC1693CS8-2  
1
2
3
4
8
5
IN1  
GND1 OUT1  
IN2  
GND2 OUT2  
V
CC1  
I
BG  
PHASE  
AVG  
R8  
301k  
1%  
7
6
5
6
SS  
7
V
CC2  
V
C
RUN/SHDN  
10  
V
V
FB  
C10  
REF  
SGND PGND  
15  
C12  
100pF  
R9  
12k  
0.1µF  
R10  
10k  
1%  
C13  
1µF  
C1: SANYO 63MV330GX  
C2: WIMA SMD4036/1.5/63/20/TR  
C6: KEMET T510X477M006AS (×8)  
L1: GOWANDA 50-318  
8
C14  
3300pF  
C15  
0.1µF  
T1: GOWANDA 50-319  
1693 TA01  
1
LTC1693  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (VCC) .............................................. 14V  
Inputs (IN, PHASE) ................................... 0.3V to 14V  
Driver Output ................................. 0.3V to VCC + 0.3V  
GND1 to GND2 (Note 5) ..................................... ±100V  
Junction Temperature.......................................... 150°C  
W W U W  
(Note 1)  
Operating Ambient Temperature Range  
C-Grade ................................................... 0°C to 70°C  
I-Grade ................................................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
IN1  
GND1  
IN2  
1
2
3
4
8
7
6
5
V
IN1  
GND1  
IN2  
1
2
3
4
8
7
6
5
V
CC1  
CC1  
IN 1  
NC 2  
PHASE 3  
GND 4  
8 V  
CC  
OUT1  
OUT1  
7 OUT  
6 NC  
5 NC  
V
V
CC2  
CC2  
GND2  
OUT2  
GND2  
OUT2  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 200°C/ W  
TJMAX = 150°C, θJA = 135°C/ W  
TJMAX = 150°C, θJA = 135°C/ W  
S8 PART  
MARKING  
S8 PART  
MARKING  
MS8 PART  
MARKING  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LTC1693-1CS8  
LTC1693-1IS8  
LTC1693-2CS8  
LTC1693-2IS8  
16931  
16931I  
16932  
16932I  
LTC1693-3CMS8  
LTEB  
Consult factory for Industrial and Military grade parts.  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Quiescent Current  
4.5  
13.2  
V
CC  
I
LTC1693-1, LTC1693-2, IN1 = IN2 = 0V (Note 2)  
LTC1693-3, PHASE = 12V, IN = 0V  
400  
200  
720  
360  
1100  
550  
µA  
µA  
CC  
I
Switching Supply Current  
LTC1693-1, LTC1693-2, C  
= 4.7nF, f = 100kHz  
14.4  
7.2  
20  
10  
mA  
mA  
CC(SW)  
OUT  
IN  
LTC1693-3, C  
= 4.7nF, f = 100kHz  
OUT  
IN  
Input  
V
V
High Input Threshold  
2.2  
1.1  
2.6  
1.4  
3.1  
1.7  
±10  
6.5  
45  
V
V
IH  
IL  
Low Input Threshold  
I
Input Pin Bias Current  
±0.01  
5.5  
µA  
V
IN  
V
PHASE Pin High Input Threshold  
PHASE Pin Pull-Up Current  
(Note 3)  
PHASE = 0V (Note 3)  
4.5  
10  
PH  
I
20  
µA  
PH  
Output  
V
V
High Output Voltage  
I
I
= –10mA  
= 10mA  
11.92  
11.97  
30  
V
mV  
OH  
OL  
OUT  
OUT  
Low Output Voltage  
75  
R
R
Output Pull-Down Resistance  
Output Pull-Up Resistance  
Output Low Peak Current  
Output High Peak Current  
2.85  
3.00  
1.70  
1.40  
ONL  
ONH  
PKL  
I
I
A
A
PKH  
2
LTC1693  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 12V, unless otherwise noted.  
SYMBOL PARAMETER  
Switching Timing (Note 4)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
t
t
t
Output Rise Time  
C
C
= 1nF  
= 4.7nF  
17.5  
48.0  
35  
85  
ns  
ns  
RISE  
FALL  
PLH  
PHL  
OUT  
OUT  
Output Fall Time  
C
OUT  
C
OUT  
= 1nF  
= 4.7nF  
16.5  
42.0  
35  
75  
ns  
ns  
Output Low-High Propagation Delay  
Output High-Low Propagation Delay  
C
OUT  
C
OUT  
= 1nF  
= 4.7nF  
38.0  
40.0  
70  
75  
ns  
ns  
C
OUT  
C
OUT  
= 1nF  
= 4.7nF  
32  
35  
70  
75  
ns  
ns  
Driver Isolation  
GND1-GND2 Isolation Resistance  
R
ISO  
LTC1693-1, LTC1693-2 GND1-to-GND2 Voltage = 75V  
0.075  
1
GΩ  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: All AC timing specificatons are guaranteed by design and are not  
production tested.  
Note 2: Supply current is the total current for both drivers.  
Note 3: Only the LTC1693-3 has a PHASE pin.  
Note 5: Only applies to the LTC1693-1 and LTC1693-2.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
IN Threshold Voltage  
vs Temperature  
IN Threshold Hysteresis  
vs Temperature  
IN Threshold Voltage vs VCC  
2.75  
2.50  
3.00  
1.4  
1.3  
1.2  
1.1  
V
CC  
= 12V  
T
= 25°C  
V
= 12V  
CC  
A
2.75  
2.50  
V
IH  
V
IH  
2.25  
2.00  
1.75  
1.50  
1.25  
2.25  
2.00  
1.75  
1.50  
1.25  
V
-V  
IH IL  
1.0  
0.9  
0.8  
V
IL  
V
IL  
1.00  
1.00  
9
11  
12  
5
6
7
8
10  
–25  
0
50  
75 100 125  
50  
25  
50 25  
0
25  
50  
75 100 125  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
1693 G01  
1693 G02  
1693 G03  
3
LTC1693  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
PHASE Threshold Voltage vs VCC  
Rise/Fall Time vs VCC  
Rise/Fall Time vs Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
6
5
4
3
24  
22  
T
= 25°C  
OUT  
= 100kHz  
T
= 25°C  
V
C
f
= 12V  
= 1nF  
A
A
CC  
OUT  
C
f
= 1nF  
t
RISE  
= 100kHz  
IN  
IN  
V
PH(H)  
20  
18  
16  
14  
12  
t
FALL  
t
RISE  
V
PH(L)  
t
FALL  
2
1
0
10  
9
11  
12  
–50  
–25  
0
25  
50  
75 100 125  
5
6
7
8
10  
9
11  
12  
5
6
7
8
10  
TEMPERATURE (°C)  
V
(V)  
V
(V)  
CC  
CC  
1693 G06  
1693 G04  
1693 G05  
Rise/Fall Time vs COUT  
Propagation Delay vs VCC  
Propagation Delay vs Temperature  
120  
50  
45  
40  
35  
55  
T
= 25°C  
CC  
= 100kHz  
T
= 25°C  
V
C
f
= 12V  
= 1nF  
OUT  
IN  
A
A
OUT  
CC  
V
f
= 12V  
C
f
= 1nF  
50  
45  
40  
35  
30  
25  
20  
15  
100  
80  
60  
40  
20  
0
= 100kHz  
= 100kHz  
IN  
IN  
t
PLH  
t
PHL  
t
PLH  
t
PHL  
30  
25  
20  
t
RISE  
t
FALL  
10  
1
10  
100  
(pF)  
1000  
10000  
50  
TEMPERATURE (°C)  
100 125  
50 25  
0
25  
75  
5
6
7
8
9
10  
11  
12  
C
OUT  
V
CC  
(V)  
1693 G07  
1693 G09  
1693 G08  
Output Saturation Voltage  
vs Temperature  
Quiescent Current  
Propagation Delay vs COUT  
vs VCC (Single Driver)  
50  
350  
300  
250  
200  
150  
100  
200  
150  
100  
50  
T
= 25°C  
CC  
= 100kHz  
V
CC  
= 12V  
T
= 25°C  
IN  
A
A
V
= 12V  
V
= 0V  
f
IN  
V
OH  
(50mA) wrt V  
CC  
40  
30  
20  
V
OL  
(50mA)  
t
PLH  
t
PHL  
V
OH  
(10mA) wrt V  
CC  
V
OL  
(10mA)  
0
1
10  
100  
(pF)  
1000  
10000  
55 35 –15  
5
25 45 65 85 105 125  
5
6
7
8
9
10  
11  
12  
C
TEMPERATURE (°C)  
V
CC  
(V)  
OUT  
1693 G10  
1693 G11  
1693 G12  
4
LTC1693  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Supply Current  
vs COUT (Single Driver)  
VOL vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
250  
T
= 25°C  
CC  
V
T
= 12V  
A
CC  
A
V
= 12V  
= 25°C  
200  
150  
V
OL  
200kHz  
100kHz  
25kHz  
100  
50  
0
750kHz  
500kHz  
1
10  
100  
(pF)  
1000  
10000  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
C
OUT  
1693 G13  
1693 G14  
VOH vs Output Current  
Thermal Derating Curves  
1400  
1200  
1000  
800  
600  
400  
200  
0
350  
300  
T
= 25°C  
CC  
A
T = 125°C  
J
V
= 12V  
250  
LTC1693-1/LTC1693-2  
V
OH  
200  
150  
100  
50  
LTC1693-3  
0
0
30  
50 60 70 80 90 100  
55 35 –15  
5
25 45 65 85 105 125  
10 20  
40  
OUTPUT CURRENT (mA)  
AMBIENT TEMPERATURE (°C)  
1693 G15  
1693 G16  
5
LTC1693  
U
U
U
PIN FUNCTIONS  
SO-8 Package (LTC1693-1, LTC1693-2)  
MSOP Package (LTC1693-3)  
IN1, IN2 (Pins 1, 3): Driver Inputs. The inputs have VCC  
IN (Pin 1): Driver Input. The input has VCC independent  
independent thresholds with 1.2V typical hysteresis to thresholds with hysteresis to improve noise immunity.  
improve noise immunity.  
NC (Pins 2, 5, 6): No Connect.  
GND1, GND2 (Pins 2, 4): Driver Grounds. Connect to a  
low impedance ground. The VCC bypass capacitor should  
PHASE (Pin 3): Output Polarity Select. Connect this pin to  
V
CC or leave it floating for noninverting operation. Ground  
connect directly to this pin. The source of the external  
MOSFET should also connect directly to the ground pin.  
This minimizes the AC current path and improves signal  
integrity. The ground pins should not be tied together if  
isolation is required between the two drivers of the  
LTC1693-1 and the LTC1693-2.  
this pin for inverting operation. The typical PHASE pin  
input current when pulled low is 20µA.  
GND (Pin 4): Driver Ground. Connect to a low impedance  
ground. The VCC bypass capacitor should connect directly  
to this pin. The source of the external MOSFET should also  
connect directly to the ground pin. This minimizes the AC  
current path and improves signal integrity.  
OUT 1, OUT2 (Pins 5, 7): Driver Outputs. The LTC1693-  
1’s outputs are in phase with their respective inputs (IN1,  
IN2). The LTC1693-2’s topside driver output (OUT1) is in  
phase with its input (IN1) and the bottom side driver’s  
output(OUT2)isoppositeinphasewithrespecttoitsinput  
pin (IN2).  
OUT (Pin 7): Driver Output.  
VCC (Pin 8): Power Supply Input.  
VCC1, VCC2 (Pins 6, 8): Power Supply Inputs.  
W
BLOCK DIAGRA SM  
8
8
7
8
7
V
V
V
CC  
CC1  
CC1  
1
2
1
2
1
4
7
IN1  
IN1  
IN  
OUT1  
OUT1  
OUT  
GND1  
GND1  
GND  
6
5
6
5
V
CC2  
V
CC2  
3
4
3
4
3
2
6
5
IN2  
IN2  
PHASE  
NC  
NC  
NC  
OUT2  
OUT2  
GND2  
GND2  
LTC1693-1  
DUAL NONINVERTING DRIVER  
LTC1693-2  
LTC1693-3  
SINGLE DRIVER WITH  
POLARITY SELECT 1693 BD  
TOPSIDE NONINVERTING DRIVER  
AND BOTTOM SIDE INVERTING DRIVER  
6
LTC1693  
TEST CIRCUITS  
1/2 LTC1693-1 OR 1/2 LTC1693-2  
87V  
V
CC1  
8
7
4.7µF  
0.1µF  
IN1  
OUT1  
12V  
1
2
P-P  
4.7nF  
75V  
GND1  
A
1/2 LTC1693-1 OR 1/2 LTC1693-2  
12V  
V
CC2  
6
5
+
IN2  
OUT2  
75V  
3
4
4.7µF  
0.1µF  
4.7nF  
GND2  
1693 TC03  
1693 TC02  
75V High Side Switching Test  
LTC1693-1, LTC1693-2 Ground Isolation Test  
V
CC  
= 12V  
4.7µF  
0.1µF  
IN  
OUT  
1nF OR 4.7nF  
5V  
t
< 10ns  
RISE/FALL  
1693 TC01  
AC Parameter Measurements  
W U  
W
TI I G DIAGRA  
INPUT RISE/FALL TIME <10ns  
V
IH  
INPUT  
V
IL  
NONINVERTING  
OUTPUT  
90%  
10%  
t
t
f
r
t
t
PHL  
PLH  
90%  
10%  
INVERTING  
OUTPUT  
t
f
t
r
t
t
PHL  
PLH  
1693 TD  
7
LTC1693  
U
W U U  
APPLICATIONS INFORMATION  
+
V
V
Overview  
CC  
TheLTC1693singleanddualdriversallow3V-or5V-based  
digital circuits to drive power MOSFETs at high speeds. A  
power MOSFET’s gate-charge loss increases with switch-  
ingfrequencyandtransitiontime. TheLTC1693iscapable  
of driving a 1nF load with a 16ns rise and fall time using a  
L
EQ  
(LOAD INDUCTOR  
OR STRAY LEAD  
INDUCTANCE)  
V
DRAIN  
LTC1693  
C
C
GD  
GS  
P1  
OUT  
POWER  
MOSFET  
V
CC of 12V. This eliminates the need for higher voltage  
supplies, such as 18V, to reduce the gate charge losses.  
N1  
The LTC1693’s 360µA quiescent current is an order of  
magnitude lower than most other drivers/buffers. This  
improves system efficiency in both standby and switching  
operation. Since a power MOSFET generally accounts for  
the majority of power loss in a converter, addition of the  
LT1693toahighpowerconverterdesigngreatlyimproves  
efficiency, using very little board space.  
GND  
1693 F01  
Figure 1. Capacitance Seen by OUT During Switching  
The LTC1693’s output peak currents are 1.4A (P1) and  
1.7A (N1) respectively. The N-channel MOSFET (N1) has  
higher current drive capability so it can discharge the  
power MOSFET’s gate capacitance during high-to-low  
signal transitions. When the power MOSFET’s gate is  
pulled low by the LTC1693, its drain voltage is pulled high  
byitsload(e.g., aresistororinductor). Theslewrateofthe  
drain voltage causes current to flow back to the MOSFETs  
gate through its gate-to-drain capacitance. If the MOSFET  
driver does not have sufficient sink current capability (low  
output impedance), the current through the power  
MOSFET’s Miller capacitance (CGD) can momentarily pull  
the gate high, turning the MOSFET back on.  
The LTC1693-1 and LTC1693-2 are dual drivers that are  
electrically isolated. Each driver has independent opera-  
tion from the other. Drivers may be used in different parts  
ofasystem,suchasacircuitrequiringafloatingdriverand  
the second driver being powered with respect to ground.  
Input Stage  
The LTC1693 employs 3V CMOS compatible input thresh-  
oldsthatallowalowvoltagedigitalsignaltodrivestandard  
power MOSFETs. The LTC1693 incorporates a 4V internal  
regulatortobiastheinputbuffer. Thisallowsthe3VCMOS  
compatible input thresholds (VIH = 2.6V, VIL = 1.4V) to be  
independent of variations in VCC. The 1.2V hysteresis  
between VIH and VIL eliminates false triggering due to  
groundnoiseduringswitchingtransitions.TheLTC1693’s  
input buffer has a high input impedance and draws less  
than 10µA during standby.  
Rise/Fall Time  
Since the power MOSFET generally accounts for the ma-  
jority of power lost in a converter, it’s important to quickly  
turniteitherfullyonorofftherebyminimizingthetran-  
sition time in its linear region. The LTC1693 has rise and  
falltimesontheorderof16ns,deliveringabout1.4Ato1.7A  
of peak current to a 1nF load with a VCC of only 12V.  
Output Stage  
The LTC1693’s rise and fall times are determined by the  
peak current capabilities of P1 and N1. The predriver,  
shown in Figure 1 driving P1 and N1, uses an adaptive  
method to minimize cross-conduction currents. This is  
done with a 6ns nonoverlapping transition time. N1 is fully  
turned off before P1 is turned-on and vice-versa using this  
6ns buffer time. This minimizes any cross-conduction  
currents while N1 and P1 are switching on and off yet is  
short enough to not prolong their rise and fall times.  
The LTC1693’s output stage is essentially a CMOS in-  
verter, as shown by the P- and N-channel MOSFETs in  
Figure 1 (P1 and N1). The CMOS inverter swings rail-to-  
rail, giving maximum voltage drive to the load. This large  
voltage swing is important in driving external power  
MOSFETs, whose RDS(ON) is inversely proportional to its  
gate overdrive voltage (VGS – VT).  
8
LTC1693  
U
W U U  
APPLICATIONS INFORMATION  
Driver Electrical Isolation  
driver is powered with respect to ground. Similarly Figure  
3 shows a simplified circuit of a LTC1693-1 which is driv-  
ing MOSFETs with different ground potentials. Because  
there is 1Gof isolation between these drivers in a single  
package, ground current on the secondary side will not  
recirculate to the primary side of the circuit.  
TheLTC1693-1andLTC1693-2incorporatetwoindividual  
driversinasinglepackagethatcanbeseparatelyconnected  
to GND and VCC connections. Figure 2 shows a circuit with  
an LTC1693-2, its top driver left floating while the bottom  
Power Dissipation  
V
IN  
LTC1693-2  
V
CC1  
To ensure proper operation and long term reliability, the  
LTC1693mustnotoperatebeyonditsmaximumtempera-  
ture rating. Package junction temperature can be calcu-  
lated by:  
IN1  
OUT1  
N1  
GND1  
TJ = TA + PD(θJA)  
where:  
V
CC2  
TJ = Junction Temperature  
+
V
TA = Ambient Temperature  
PD = Power Dissipation  
IN2  
OUT2  
N2  
θJA = Junction-to-Ambient Thermal Resistance  
GND2  
Power dissipation consists of standby and switching  
power losses:  
1693 F02  
Figure 2. Simplified LTC1693-2 Floating Driver Application  
PD = PSTDBY + PAC  
where:  
OTHER  
PRIMARY-SIDE  
CIRCUITS  
OTHER  
SECONDARY-SIDE  
CIRCUITS  
PSTDBY = Standby Power Losses  
PAC = AC Switching Losses  
TheLTC1693consumesverylittlecurrentduringstandby.  
This DC power loss per driver at VCC = 12V is only  
(360µA)(12V) = 4.32mW.  
LTC1693-1  
V
CC1  
+
V
V
IN1  
OUT1  
AC switching losses are made up of the output capacitive  
load losses and the transition state losses. The capactive  
load losses are primarily due to the large AC currents  
needed to charge and discharge the load capacitance  
during switching. Load losses for the CMOS driver driving  
a pure capacitive load COUT will be:  
GND1  
V
CC2  
+
IN2  
OUT2  
Load Capacitive Power (COUT) = (COUT)(f)(VCC)2  
GND2  
The power MOSFET’s gate capacitance seen by the driver  
output varies with its VGS voltage level during switching.  
A power MOSFET’s capacitive load power dissipation can  
be calculated by its gate charge factor, QG. The QG value  
1693 F03  
Figure 3. Simplified LTC1693-1 Application  
with Different Ground Potentials  
9
LTC1693  
U
W U U  
APPLICATIONS INFORMATION  
V
CC  
corresponding to MOSFET’s VGS value (VCC in this case)  
can be readily obtained from the manafacturer’s QGS vs  
VGS curves:  
LTC1693  
Load Capacitive Power (MOS) = (VCC)(QG)(f)  
INPUT SIGNAL  
GOING BEL0W  
GND PIN  
IN  
R1  
D1  
Transition state power losses are due to both AC currents  
required to charge and discharge the drivers’ internal  
nodal capacitances and cross-conduction currents in the  
internal gates.  
POTENTIAL  
PARASITIC  
SUBSTRATE  
DIODE  
1693 F04  
UVLO and Thermal Shutdown  
GND  
The LTC1693’s UVLO detector disables the input buffer  
and pulls the output pin to ground if VCC < 4V. The output  
remains off from VCC = 1V to VCC = 4V. This ensures that  
during start-up or improper supply voltage values, the  
LTC1693 will keep the output power MOSFET off.  
Figure 4  
Bypassing and Grounding  
LTC1693requiresproperVCCbypassingandgroundingdue  
to its high speed switching (ns) and large AC currents (A).  
CarelesscomponentplacementandPCBtraceroutingmay  
cause excessive ringing and under/overshoot.  
The LTC1693 also has a thermal detector that similarly  
disables the input buffer and grounds the output pin if  
junction temperature exceeds 145°C. The thermal shut-  
down circuit has 20°C of hysteresis. This thermal limit  
helps to shut down the system should a fault condition  
occur.  
To obtain the optimum performance from the LTC1693:  
A. Mountthebypasscapacitorsascloseaspossibletothe  
VCC and GND pins. The leads should be shortened as  
much as possible to reduce lead inductance. It is  
recommended to have a 0.1µF ceramic in parallel with  
a low ESR 4.7µF bypass capacitor.  
Input Voltage Range  
LTC1693’s input pin is a high impedance node and essen-  
tially draws neligible input current. This simplifies the  
input drive circuitry required for the input.  
Forhighvoltageswitchinginaninductiveenvironment,  
ensure that the bypass capacitors’ VMAX ratings are  
high enough to prevent breakdown. This is especially  
important for floating driver applications.  
The LTC1693 typically has 1.2V of hysteresis between its  
lowandhighinputthresholds. Thisincreasesthedriver’s  
robustnessagainstanygroundbouncenoises. However,  
care should still be taken to keep this pin from any noise  
pickup, especially in high frequency switching  
applications.  
B. Use a low inductance, low impedance ground plane to  
reduce any ground drop and stray capacitance. Re-  
member that the LTC1693 switches 1.5A peak currents  
and any significant ground drop will degrade signal  
integrity.  
In applications where the input signal swings below the  
GND pin potential, the input pin voltage must be clamped  
to prevent the LTC1693’s parastic substrate diode from  
turning on. This can be accomplished by connecting a  
seriescurrentlimitingresistorR1andashuntingSchottky  
diode D1 to the input pin (Figure 4). R1 ranges from 100Ω  
to 470while D1 can be a BAT54 or 1N5818/9.  
C. Planthegroundroutingcarefully.Knowwherethelarge  
load switching current is coming from and going to.  
Maintain separate ground return paths for the input pin  
and output pin. Terminate these two ground traces only  
at the GND pin of the driver (STAR network).  
D. Keepthecoppertracebetweenthedriveroutputpinand  
the load short and wide.  
10  
LTC1693  
U
TYPICAL APPLICATIONS  
11  
LTC1693  
TYPICAL APPLICATIONS  
U
Negative-to-Positive Synchronous Boost Converter  
D2  
MBRO530  
V
L2**  
1µH  
S
V
3.3V  
6A  
OUT  
D1  
+
+
C14  
10µF  
16V  
C13  
R19  
1k  
MBRS130  
C3  
C2  
R5  
0.1µF  
+
+
6
330µF  
6.3V  
× 2  
330µF  
6.3V  
×5  
Q2  
Si4420  
×2  
2.2Ω  
5
3
C12  
4700pF  
R1  
0.015Ω  
1W  
D4  
MBRO530  
C17  
100pF  
U2B  
LTC1693-2  
L1*  
4.8µH  
4
R2  
0.015Ω  
1W  
D3  
MBRO530  
D5  
MBRO530  
C11  
R16  
3.6k  
C1  
4700pF  
+
330µF  
6.3V  
×5  
Q6  
2N3904  
8
2
Q1  
Si4420  
×2  
R3  
100Ω  
R4  
2.2Ω  
7
1
C16  
10µF  
16V  
R14  
51Ω  
R15  
1.2k  
U2A  
LTC1693-2  
C15  
0.1µF  
V
IN  
–5V  
C4  
1000pF  
9
8
R6  
R17  
SENSE SENSE  
10Ω  
6.81k  
2
1
3.3V  
PWR V  
IN  
TDRV  
BDRV  
LBI  
3
4
5
6
16  
13  
11  
14  
R18  
6.81k  
R8  
30.1k  
R10  
100k  
R11  
PINV  
BINH  
100k  
+
C6  
10µF  
16V  
U1  
LTC1266  
V
S
Q4  
2N3906  
Q5  
2N3906  
V
C
SHDN  
LBO  
IN  
Q3  
2N7002  
T
I
SGND PGND  
12 15  
V
C5  
0.1µF  
C7  
390pF  
TH  
FB  
*PANASONIC ETQPAF4R8HA  
**COILCRAFT DO3316P-102  
7
10  
C9  
0.015µF  
C8  
1500pF  
C10  
220pF  
R9  
13k  
R12  
4.75k  
R13  
R7  
1k  
1.30k  
1693 TA03  
12  
LTC1693  
U
TYPICAL APPLICATIONS  
13  
LTC1693  
U
TYPICAL APPLICATIONS  
R T O P  
C O M P  
R M I D  
G N D - S  
G N D - F  
V
+
E F F I C I E N C Y  
C
V
S S  
P G N D  
S G N D  
R E F  
V
M U R S 1 2 0  
S E N S E  
S E N S E  
A V G  
I
+
S L / A D J  
C T  
T S  
T G  
R E F  
5 V  
S Y N C  
B O O S T  
V
14  
LTC1693  
U
TYPICAL APPLICATIONS  
5V to 12V Boost Converter  
R2  
13k  
1%  
R1  
D1  
BAT85  
7.5k  
1%  
V
CC  
= 5V  
+
C2  
0.1µF  
C3  
4.7µF  
L1*  
22µH  
D2  
1N5819  
V
OUT  
8
12V  
50mA  
1
7
Q1  
BS170  
LTC1693-3  
4
+
C
L
3
C1  
680pF  
47µF  
1693 TA06a  
INDUCTOR PEAK CURRENT 600mA  
R2, C1 SET THE OSCILLATION FREQUENCY AT 200kHz  
R1 SETS THE DUTY CYCLE AT 45%  
EFFICIENCY 80% AT 50mA LOAD  
*SUMIDA CDRH125-220  
Efficiency  
Output Voltage  
18  
16  
14  
12  
10  
8
100  
90  
V
= 5V  
V
= 5V  
CC  
CC  
50mA LOAD  
50mA LOAD  
80  
70  
60  
50  
6
35  
45  
50  
55  
60  
65  
40  
10  
12  
13  
14  
15  
16  
11  
DUTY CYCLE (%)  
OUTPUT VOLTAGE (V)  
1693 TA06b  
1693 TA06c  
15  
LTC1693  
TYPICAL APPLICATIONS  
U
Charge Pump Doubler  
R1  
11k  
1%  
V
CC  
= 5V  
V
CC  
= 5V  
C2  
1µF  
D1  
1N5817  
C3  
1µF  
D2  
1N5817  
8
1
7
LTC1693-3  
4
V
OUT  
+
3
C1  
680pF  
C
L
47µF  
1693 TA07a  
R1, C1 SET THE OSCILLATION FREQUENCY AT 150kHz  
AND THE DUTY CYCLE AT 35%  
Efficiency  
Output Voltage  
100  
80  
12  
10  
V
= 5V  
V
= 5V  
CC  
CC  
8
6
60  
40  
20  
0
4
2
0
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
1693 TA07c  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
1693 TA07b  
16  
LTC1693  
U
TYPICAL APPLICATIONS  
Charge Pump Inverter  
R1  
11k  
1%  
V
CC  
= 5V  
C2  
1µF  
C3  
1µF  
D2  
1N5817  
8
1
7
LTC1693-3  
4
V
OUT  
C
+
L
3
C1  
680pF  
47µF  
D1  
1N5817  
1693 TA08a  
R1, C1 SET THE OSCILLATION FREQUENCY AT 150kHz  
AND THE DUTY CYCLE AT 35%  
Efficiency  
Output Voltage  
0
100  
80  
V
= 5V  
V
= 5V  
CC  
CC  
–1  
–2  
–3  
60  
40  
20  
0
–4  
–5  
–6  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
1693 TA08c  
1693 TA08b  
17  
LTC1693  
U
TYPICAL APPLICATIONS  
Charge Pump Tripler  
R1  
11k  
1%  
V
= 5V  
CC  
V
CC  
= 5V  
C2  
1µF  
D1  
1N5817  
C3  
1µF  
D2  
1N5817  
D3  
1N5817  
D4  
1N5817  
8
1
7
LTC1693-3  
4
V
OUT  
+
+
3
C4  
3.3µF  
C
L
47µF  
C5  
1µF  
C1  
680pF  
1693 TA09a  
R1, C1 SET THE OSCILLATION FREQUENCY AT 150kHz  
AND THE DUTY CYCLE AT 35%  
Efficiency  
Output Voltage  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
V
= 5V  
CC  
CC  
6
4
2
0
0
10 20 30 40 50  
100  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
60 70 80 90  
OUTPUT CURRENT (mA)  
1693 TA09b  
1693 TA09c  
18  
LTC1693  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
MSOP (MS8) 1197  
0.0256  
(0.65)  
TYP  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
19  
LTC1693  
U
TYPICAL APPLICATION  
C7  
2.2nF  
100V  
Isolated Push-Pull DC/DC Converter  
R3  
1
2
10  
T1A  
24T  
#32  
V
CC  
= 5V  
+
1
2
9
8
9
8
C6  
330µF  
6.3V  
T1B  
24T  
#32  
T1E  
24T  
#28  
D1  
MBR340  
L1  
1µH  
R1  
6.2k  
V
= 5V  
CC  
V
12V  
1A  
OUT  
C3  
0.1µF  
C4  
1µF  
+
C9  
V
= 5V  
CC  
3
4
T1C  
24T  
#32  
T1F  
24T  
#28  
8
LTC1693-2  
2
270µF  
25V  
×3  
D2  
MBR340  
C2  
0.1µF  
1
3
7
Q1  
R2  
Si4410  
10Ω  
10 14 13  
3
4
14  
T1D  
24T  
#32  
C5  
PRESET CLR  
13  
12  
11  
12  
9
8
2.2nF  
100V  
×2  
74HC14  
7
Q
R4  
10Ω  
74HC74  
C8  
2.2nF  
100V  
C1  
390pF  
D
Q
6
LTC1693-2  
4
GND  
7
5
Q2  
Si4410  
T1: PHILIPS CPHS-EFD20-1S-10P  
FIRST WIND T1A AND T1C BIFILAR,  
THEN WIND T1E AND T1F BIFILAR,  
THEN WIND T1B AND T1D BIFILAR  
1693 F05a  
Efficiency  
Output Voltage  
100  
14  
12  
V
CC  
= 5V  
V
CC  
= 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
8
6
4
2
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
0.3  
0.5 0.6 0.7 0.8 0.9 1.0  
0.1 0.2  
0.4  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
1693 F05c  
1693 F05b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Internal Charge Pump, 4.5V to 48V Supply Range, t = 80µs, t = 28µs  
LTC1154  
High Side Micropower MOSFET Drivers  
ON  
OFF  
LTC1155  
Dual Micropower High/Low Side Drivers with  
Internal Charge Pump  
4.5V to 18V Supply Range  
4.5V to 18V Supply Range  
3.3V or 5V Supply Range  
LTC1156  
Dual Micropower High/Low Side Drivers with  
Internal Charge Pump  
LTC1157  
LT®1160/LT1162  
LT1161  
3.3V Dual Micropower High/Low Side Driver  
Half/Full Bridge N-Channel Power MOSFET Driver  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
High Power Synchronous DC/DC Controller  
Dual Driver with Topside Floating Driver, 10V to 15V Supply Range  
8V to 48V Supply Range, t = 200µs, t = 28µs  
ON  
OFF  
LTC1163  
LT1339  
1.8V to 6V Supply Range, t = 95µs, t = 45µs  
ON OFF  
Current Mode Operation Up to 60V, Dual N-Channel Synchronous Drive  
LTC1435  
High Efficiency, Low Noise Current Mode  
Step-Down DC/DC Controller  
3.5V to 36V Operation with Ultrahigh Efficiency, Dual N-Channel MOSFET  
Synchronous Drive  
1693fa LT/TP 1000 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY