LTC1741 [Linear]

14-Bit, 80Msps Low Power 3V ADC; 14位,80Msps低功率3V ADC
LTC1741
型号: LTC1741
厂家: Linear    Linear
描述:

14-Bit, 80Msps Low Power 3V ADC
14位,80Msps低功率3V ADC

文件: 总20页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2249  
14-Bit, 80Msps  
Low Power 3V ADC  
U
FEATURES  
DESCRIPTIO  
The LTC®2249 is a 14-bit 80Msps, low power 3V A/D  
converter designed for digitizing high frequency, wide  
dynamic range signals. The LTC2249 is perfect for de-  
manding imaging and communications applications with  
AC performance that includes 73dB SNR and 90dB SFDR  
for signals well beyond the Nyquist frequency.  
Sample Rate: 80Msps  
Single 3V Supply (2.7V to 3.4V)  
Low Power: 222mW  
73dB SNR at 70MHz Input  
90dB SFDR at 70MHz Input  
No Missing Codes  
Flexible Input: 1VP-P to 2VP-P Range  
DCspecsinclude±1LSBINL(typ), ±0.5LSBDNL(typ)and  
no missing codes over temperature. The transition noise  
575MHz Full Power Bandwidth S/H  
Clock Duty Cycle Stabilizer  
is a low 1.2LSBRMS  
.
Shutdown and Nap Modes  
A single 3V supply allows low power operation. A separate  
output supply allows the outputs to drive 0.5V to 3.3V  
logic.  
Pin Compatible Family  
80Msps: LTC2229 (12-Bit), LTC2249 (14-Bit)  
65Msps: LTC2228 (12-Bit), LTC2248 (14-Bit)  
40Msps: LTC2227 (12-Bit), LTC2247 (14-Bit)  
25Msps: LTC2226 (12-Bit), LTC2246 (14-Bit)  
10Msps: LTC2225 (12-Bit), LTC2245 (14-Bit)  
32-Pin (5mm × 5mm) QFN Package  
U
Asingle-endedCLKinputcontrolsconverteroperation.An  
optional clock duty cycle stabilizer allows high perfor-  
mance at full speed for a wide range of clock duty cycles.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Wireless and Wired Broadband Communication  
Imaging Systems  
Ultrasound  
Spectral Analysis  
Portable Instrumentation  
U
TYPICAL APPLICATIO  
SNR vs Input Frequency,  
–1dB, 2V Range  
75  
74  
73  
REFH  
FLEXIBLE  
REFERENCE  
REFL  
OV  
DD  
72  
71  
70  
69  
68  
67  
66  
65  
D13  
+
14-BIT  
PIPELINED  
ADC CORE  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
0
50  
100  
150  
200  
INPUT FREQUENCY (MHz)  
2229 TA01  
2249 G09  
CLK  
2249f  
1
LTC2249  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
OVDD = VDD (Notes 1, 2)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Supply Voltage (VDD)................................................. 4V  
Digital Output Ground Voltage (OGND) .......0.3V to 1V  
Analog Input Voltage (Note 3) ..... –0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... –0.3V to (VDD + 0.3V)  
Digital Output Voltage................0.3V to (OVDD + 0.3V)  
Power Dissipation............................................ 1500mW  
Operating Temperature Range  
LTC2249C ............................................... 0°C to 70°C  
LTC2249I.............................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
32 31 30 29 28 27 26 25  
LTC2249CUH  
LTC2249IUH  
+
AIN  
AIN  
1
2
3
4
5
6
7
8
24 D10  
23 D9  
REFH  
REFH  
REFL  
REFL  
D8  
OV  
22  
21  
DD  
33  
20 OGND  
D7  
19  
QFN PART*  
MARKING  
V
18 D6  
17 D5  
DD  
GND  
9
10 11 12 13 14 15 16  
UH PACKAGE  
2249  
32-LEAD (5mm × 5mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 34°C/W  
EXPOSED PAD IS GND (PIN 33)  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
U
CO VERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
14  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 5)  
Differential Analog Input  
(Note 6)  
–4  
±1  
±0.5  
±2  
4
1
LSB  
–1  
LSB  
–12  
–2.5  
12  
2.5  
mV  
Gain Error  
External Reference  
±0.5  
±10  
%FS  
µV/°C  
Offset Drift  
Full-Scale Drift  
Internal Reference  
External Reference  
±30  
±15  
ppm/°C  
ppm/°C  
Transition Noise  
SENSE = 1V  
1
LSB  
RMS  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
1V to 2V  
1.5  
MAX  
UNITS  
V
+
V
V
Analog Input Range (A –A  
)
2.7V < V < 3.4V (Note 7)  
IN  
IN  
IN  
DD  
Analog Input Common Mode  
Differential Input (Note 7)  
1
1.9  
1
V
IN,CM  
+
I
I
I
t
t
Analog Input Leakage Current  
SENSE Input Leakage  
MODE Pin Leakage  
0V < A , A < V  
DD  
–1  
–3  
–3  
µA  
µA  
µA  
ns  
IN  
IN  
IN  
0V < SENSE < 1V  
3
SENSE  
MODE  
AP  
3
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
0
0.2  
80  
ps  
RMS  
JITTER  
CMRR  
dB  
2249f  
2
LTC2249  
U W  
DY A IC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
73  
MAX  
UNITS  
dB  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
40MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
70.8  
73  
dB  
73  
dB  
72.6  
90  
dB  
SFDR  
SFDR  
S/(N+D)  
Spurious Free Dynamic Range  
2nd or 3rd Harmonic  
dB  
40MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
75  
81  
90  
dB  
90  
dB  
85  
dB  
Spurious Free Dynamic Range  
4th Harmonic or Higher  
95  
dB  
40MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
95  
dB  
95  
dB  
90  
dB  
Signal-to-Noise Plus Distortion Ratio  
72.9  
72.8  
72.8  
72.1  
90  
dB  
40MHz Input  
70MHz Input  
140MHz Input  
70.2  
dB  
dB  
dB  
I
Intermodulation Distortion  
Full Power Bandwidth  
f
= 28.2MHz, f = 26.8MHz  
dB  
MD  
IN1  
IN2  
Figure 8 Test Circuit  
575  
MHz  
U U  
U
I TER AL REFERE CE CHARACTERISTICS  
(Note 4)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
1.475 1.500 1.525  
CM  
CM  
CM  
CM  
OUT  
±30  
3
ppm/°C  
mV/V  
2.7V < V < 3.4V  
DD  
–1mA < I  
< 1mA  
4
OUT  
2249f  
3
LTC2249  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER CONDITIONS  
LOGIC INPUTS (CLK, OE, SHDN)  
MIN  
2
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 3V  
V
V
IH  
IL  
DD  
DD  
IN  
= 3V  
0.8  
10  
I
= 0V to V  
–10  
µA  
pF  
IN  
DD  
C
Input Capacitance  
(Note 7)  
3
IN  
LOGIC OUTPUTS  
OV = 3V  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
OE = High (Note 7)  
3
pF  
mA  
mA  
OZ  
I
I
V
V
= 0V  
= 3V  
50  
50  
SOURCE  
SINK  
OUT  
OUT  
V
High Level Output Voltage  
I = –10µA  
I = –200µA  
O
2.995  
2.99  
V
V
OH  
O
2.7  
V
Low Level Output Voltage  
I = 10µA  
0.005  
0.09  
V
V
OL  
O
I = 1.6mA  
O
0.4  
OV = 2.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
2.49  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
OV = 1.8V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
1.79  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 8)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
2.7  
TYP  
3
MAX  
3.4  
UNITS  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Supply Current  
DD  
OV  
(Note 9)  
0.5  
3
3.6  
V
DD  
IV  
74  
222  
2
86  
mA  
mW  
mW  
mW  
DD  
P
P
P
Power Dissipation  
Shutdown Power  
Nap Mode Power  
258  
DISS  
SHDN  
NAP  
SHDN = H, OE = H, No CLK  
SHDN = H, OE = L, No CLK  
15  
2249f  
4
LTC2249  
W U  
TI I G CHARACTERISTICS The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
t
Sampling Frequency  
CLK Low Time  
(Note 9)  
1
80  
MHz  
s
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On (Note 7)  
5.9  
5
6.25  
6.25  
500  
500  
ns  
ns  
L
t
CLK High Time  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On (Note 7)  
5.9  
5
6.25  
6.25  
500  
500  
ns  
ns  
H
t
t
Sample-and-Hold Aperture Delay  
CLK to DATA Delay  
0
ns  
ns  
AP  
D
C = 5pF (Note 7)  
1.4  
2.7  
4.3  
3.3  
6
5.4  
10  
L
Data Access Time After OE  
BUS Relinquish Time  
C = 5pF (Note 7)  
L
ns  
(Note 7)  
8.5  
ns  
Pipeline  
Latency  
Cycles  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with GND and OGND  
Note 5: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 6: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and  
11 1111 1111 1111.  
DD  
of greater than 100mA below GND or above V without latchup.  
Note 7: Guaranteed by design, not subject to test.  
DD  
Note 4: V = 3V, f  
drive, unless otherwise noted.  
= 80MHz, input range = 2V with differential  
Note 8: V = 3V, f  
differential drive.  
= 80MHz, input range = 1V with  
SAMPLE P-P  
DD  
SAMPLE  
P-P  
DD  
Note 9: Recommended operating conditions.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
8192 Point FFT, fIN = 5MHz,  
–1dB, 2V Range  
Typical INL, 2V Range  
Typical DNL, 2V Range  
0
–10  
1.0  
0.8  
2.0  
1.5  
–20  
0.6  
–30  
1.0  
0.4  
–40  
0.5  
0.2  
–50  
0
–60  
0
–70  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
8192  
0
5
10  
0
4096  
12288  
16384  
15 20  
25 30 35  
FREQUENCY (MHz)  
40  
8192  
0
4096  
12288  
16384  
CODE  
CODE  
2249 G01  
2249 G03  
2249 G02  
2249f  
5
LTC2249  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
8192 Point FFT, fIN = 30MHz,  
–1dB, 2V Range  
8192 Point FFT, fIN = 70MHz,  
–1dB, 2V Range  
8192 Point FFT, fIN = 140MHz,  
–1dB, 2V Range  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
2249 G04  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
2249 G05  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
2249 G06  
8192 Point 2-Tone FFT,  
fIN = 28.2MHz and 26.8MHz,  
–1dB, 2V Range  
SNR vs Input Frequency,  
–1dB, 2V Range  
Grounded Input Histogram  
50000  
45000  
40000  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
0
–10  
43161  
35969  
–20  
–30  
–40  
–50  
25292  
–60  
–70  
–80  
12558  
–90  
6150  
1987  
–100  
–110  
–120  
5194  
552  
178  
26  
0
8201  
8203  
8205  
CODE  
8207  
8209  
0
50  
100  
150  
200  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
2249 G07  
INPUT FREQUENCY (MHz)  
2249 G08  
2249 G09  
SNR and SFDR vs Sample Rate,  
2V Range, fIN = 5MHz, –1dB  
SNR and SFDR  
SFDR vs Input Frequency,  
–1dB, 2V Range  
vs Clock Duty Cycle  
100  
95  
90  
85  
80  
75  
70  
100  
95  
SFDR: DCS ON  
90  
80  
SFDR  
SNR  
90  
SFDR: DCS OFF  
85  
80  
75  
70  
65  
70  
60  
50  
SNR: DCS ON  
SNR: DCS OFF  
40 45 50 55  
CLOCK DUTY CYCLE (%)  
70  
30 35  
60 65  
50  
100  
200  
10 20 30  
60 70  
0
150  
0
40 50  
80  
90 100  
110  
INPUT FREQUENCY (MHz)  
SAMPLE RATE (Msps)  
2249 G12  
2249 G10  
2249 G11  
2249f  
6
LTC2249  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SNR vs Input Level,  
SFDR vs Input Level,  
f
IN = 70MHz, 2V Range  
f
IN = 70MHz, 2V Range  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
dBFS  
dBFS  
dBc  
40  
30  
dBc  
100dBc SFDR  
REFERENCE LINE  
20  
10  
0
–40 –30  
–10  
–70 –60 –50  
0
–20  
–40  
–60  
INPUT LEVEL (dBFS)  
–80  
–20  
0
INPUT LEVEL (dBFS)  
2249 G13  
2249 G14  
IOVDD vs Sample Rate, 5MHz Sine  
Wave Input, –1dB, OVDD = 1.8V  
IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
7
6
5
85  
80  
75  
2V RANGE  
1V RANGE  
70  
65  
60  
55  
4
3
2
1
50  
0
0
30  
50 60 70 80 90 100  
0
30  
50 60 70 80 90 100  
10 20  
40  
10 20  
40  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
2249 G15  
2249 G16  
U
U
U
PI FU CTIO S  
AIN+ (Pin 1): Positive Differential Analog Input.  
an additional 2.2µF ceramic chip capacitor and to ground  
with a 1µF ceramic chip capacitor.  
AIN- (Pin 2): Negative Differential Analog Input.  
VDD (Pins 7, 32): 3V Supply. Bypass to GND with 0.1µF  
ceramic chip capacitors.  
REFH(Pins3,4):ADCHighReference.Shorttogetherand  
bypass to pins 5, 6 with a 0.1µF ceramic chip capacitor as  
close to the pin as possible. Also bypass to pins 5, 6 with  
an additional 2.2µF ceramic chip capacitor and to ground  
with a 1µF ceramic chip capacitor.  
GND (Pin 8): ADC Power Ground.  
CLK (Pin 9): Clock Input. The input sample starts on the  
positive edge.  
REFL (Pins 5, 6): ADC Low Reference. Short together and  
bypass to pins 3, 4 with a 0.1µF ceramic chip capacitor as  
close to the pin as possible. Also bypass to pins 3, 4 with  
SHDN (Pin 10): Shutdown Mode Selection Pin. Connect-  
ing SHDN to GND and OE to GND results in normal  
2249f  
7
LTC2249  
U
U
U
PI FU CTIO S  
operation with the outputs enabled. Connecting SHDN to  
GND and OE to VDD results in normal operation with the  
outputs at high impedance. Connecting SHDN to VDD and  
OE to GND results in nap mode with the outputs at high  
impedance. Connecting SHDN to VDD and OE to VDD  
results in sleep mode with the outputs at high impedance.  
straight binary output format and turns the clock duty  
cycle stabilizer off. 1/3 VDD selects straight binary output  
formatandturnstheclockdutycyclestabilizeron. 2/3VDD  
selects 2’s complement output format and turns the clock  
duty cycle stabilizer on. VDD selects 2’s complement  
output format and turns the clock duty cycle stabilizer off.  
OE (Pin 11): Output Enable Pin. Refer to SHDN pin  
SENSE(Pin30):ReferenceProgrammingPin.Connecting  
SENSE to VCM selects the internal reference and a ±0.5V  
input range. VDD selects the internal reference and a ±1V  
input range. An external reference greater than 0.5V and  
less than 1V applied to SENSE selects an input range of  
±VSENSE. ±1V is the largest valid input range.  
function.  
D0 – D13 (Pins 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24,  
25, 26, 27): Digital Outputs. D13 is the MSB.  
OGND (Pin 20): Output Driver Ground.  
OVDD (Pin 21): Positive Supply for the Output Drivers.  
Bypass to ground with 0.1µF ceramic chip capacitor.  
VCM (Pin 31): 1.5V Output and Input Common Mode Bias.  
Bypass to ground with 2.2µF ceramic chip capacitor.  
OF (Pin 28): Over/Under Flow Output. High when an over  
or under flow has occurred.  
GND (Exposed Pad) (Pin 33): ADC Power Ground. The  
exposed pad on the bottom of the package needs to be  
soldered to ground.  
MODE (Pin 29): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to GND selects  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
+
A
IN  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
SIXTH PIPELINED  
ADC STAGE  
A
IN  
V
CM  
1.5V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
2.2µF  
RANGE  
SELECT  
REFH  
REFL  
INTERNAL CLOCK SIGNALS  
OV  
DD  
REF  
BUF  
SENSE  
OF  
D13  
D0  
CLOCK/DUTY  
DIFF  
REF  
AMP  
CONTROL  
LOGIC  
OUTPUT  
DRIVERS  
CYCLE  
CONTROL  
2249 F01  
REFH  
REFL  
0.1µF  
2.2µF  
OGND  
SHDN  
CLK  
MODE  
OE  
1µF  
1µF  
Figure 1. Functional Block Diagram  
2249f  
8
LTC2249  
W U  
W
TI I G DIAGRA  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
N + 5  
t
H
N + 1  
t
L
CLK  
t
D
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D13, OF  
2249 TD01  
W U U  
U
APPLICATIO S I FOR ATIO  
DYNAMIC PERFORMANCE  
Intermodulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band limited  
to frequencies above DC to below half the sampling  
frequency.  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,  
etc. The 3rd order intermodulation products are 2fa + fb,  
2fb + fa, 2fa – fb and 2fb – fa. The intermodulation  
distortion is defined as the ratio of the RMS value of either  
input tone to the RMS value of the largest 3rd order  
intermodulation product.  
Signal-to-Noise Ratio  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC.  
Total Harmonic Distortion  
Spurious Free Dynamic Range (SFDR)  
Total harmonic distortion is the ratio of the RMS sum of all  
harmonicsoftheinputsignaltothefundamentalitself.The  
out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency. THD is  
expressed as:  
Spurious free dynamic range is the peak harmonic or  
spurious noise that is the largest spectral component  
excluding the input signal and DC. This value is expressed  
in decibels relative to the RMS value of a full scale input  
signal.  
THD = 20Log (V22 + V32 + V42 + . . . Vn2)/V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
secondthroughnthharmonics. TheTHDcalculatedinthis  
data sheet uses all the harmonics up to the fifth.  
Input Bandwidth  
The input bandwidth is that input frequency at which the  
amplitude of the reconstructed fundamental is reduced by  
3dB for a full scale input signal.  
2249f  
9
LTC2249  
W U U  
U
APPLICATIO S I FOR ATIO  
Aperture Delay Time  
the second stage produces its residue which is acquired  
by the third stage. An identical process is repeated for the  
third, fourth and fifth stages, resulting in a fifth stage  
residue that is sent to the sixth stage ADC for final  
evaluation.  
ThetimefromwhenCLKreachesmid-supply totheinstant  
that the input signal is held by the sample and hold circuit.  
Aperture Delay Jitter  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally synchronized such  
thattheresultscanbeproperlycombinedinthecorrection  
logic before being sent to the output buffer.  
Thevariationintheaperturedelaytimefromconversionto  
conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
SNRJITTER = –20log (2π) • fIN • tJITTER  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Sample/Hold Operation  
CONVERTER OPERATION  
As shown in Figure 1, the LTC2249 is a CMOS pipelined  
multistep converter. The converter has six pipelined ADC  
stages; a sampled analog input will result in a digitized  
valuesixcycleslater(seetheTimingDiagramsection).For  
optimal AC performance the analog inputs should be  
driven differentially. For cost sensitive applications, the  
analog inputs can be driven single-ended with slightly  
worseharmonicdistortion.TheCLKinputissingle-ended.  
The LTC2249 has two phases of operation, determined by  
the state of the CLK input pin.  
Figure 2 shows an equivalent circuit for the LTC2249  
CMOSdifferentialsample-and-hold.Theanaloginputsare  
connected to the sampling capacitors (CSAMPLE) through  
NMOStransistors. Thecapacitorsshownattachedtoeach  
input (CPARASITIC) are the summation of all other capaci-  
tance associated with each input.  
LTC2249  
V
DD  
C
C
SAMPLE  
4pF  
15  
15Ω  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage residue amplifier.  
In operation, the ADC quantizes the input to the stage and  
the quantized value is subtracted from the input by the  
DAC to produce a residue. The residue is amplified and  
outputbytheresidueamplifier.Successivestagesoperate  
out of phase so that when the odd stages are outputting  
their residue, the even stages are acquiring that residue  
and vice versa.  
A
+
IN  
IN  
C
PARASITIC  
1pF  
V
DD  
SAMPLE  
4pF  
A
C
PARASITIC  
1pF  
V
DD  
CLK  
2249 F02  
WhenCLKislow, theanaloginputissampleddifferentially  
directly onto the input sample-and-hold capacitors, inside  
the “Input S/H” shown in the block diagram. At the instant  
that CLK transitions from low to high, the sampled input is  
held. While CLK is high, the held input voltage is buffered  
by the S/H amplifier which drives the first pipelined ADC  
stage. The first stage acquires the output of the S/H during  
this high phase of CLK. When CLK goes back low, the first  
stage produces its residue which is acquired by the  
second stage. At the same time, the input S/H goes back  
to acquiring the analog input. When CLK goes back high,  
Figure 2. Equivalent Input Circuit  
During the sample phase when CLK is low, the transistors  
connect the analog inputs to the sampling capacitors and  
they charge to and track the differential input voltage.  
When CLK transitions from low to high, the sampled input  
voltageisheldonthesamplingcapacitors.Duringthehold  
phase when CLK is high, the sampling capacitors are  
disconnectedfromtheinputandtheheldvoltageispassed  
to the ADC core for processing. As CLK transitions from  
2249f  
10  
LTC2249  
U
W U U  
APPLICATIO S I FOR ATIO  
high to low, the inputs are reconnected to the sampling  
capacitors to acquire a new sample. Since the sampling  
capacitors still hold the previous sample, a charging glitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. If the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. If the input change is large, such as  
the change seen with input frequencies near Nyquist, then  
a larger charging glitch will be seen.  
For the best performance, it is recommended to have a  
source impedance of 100or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
Input Drive Circuits  
Figure 3 shows the LTC2249 being driven by an RF  
transformer with a center tapped secondary. The second-  
ary center tap is DC biased with VCM, setting the ADC input  
signal at its optimum DC level. Terminating on the trans-  
former secondary is desirable, as this provides a common  
modepathforchargingglitchescausedbythesampleand  
hold. Figure 3 shows a 1:1 turns ratio transformer. Other  
turns ratios can be used if the source impedance seen by  
the ADC does not exceed 100for each ADC input. A  
disadvantage of using a transformer is the loss of low  
frequency response. Most small RF transformers have  
poor performance at frequencies below 1MHz.  
Single-Ended Input  
For cost sensitive applications, the analog inputs can be  
driven single-ended. With a single-ended input the har-  
monic distortion and INL will degrade, but the SNR and  
+
DNLwillremainunchanged.Forasingle-endedinput,AIN  
should be driven with the input signal and AINshould be  
connected to 1.5V or VCM  
.
Common Mode Bias  
For optimal performance the analog inputs should be  
driven differentially. Each input should swing ±0.5V for  
the 2V range or ±0.25V for the 1V range, around a  
common mode voltage of 1.5V. The VCM output pin (Pin  
31) may be used to provide the common mode bias level.  
VCM can be tied directly to the center tap of a transformer  
tosettheDCinputlevelorasareferenceleveltoanopamp  
differentialdrivercircuit. TheVCM pinmustbebypassedto  
ground close to the ADC with a 2.2µF or greater capacitor.  
Figure 4 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. Theadvantageofthismethodisthatitprovideslow  
frequencyinputresponse;however,thelimitedgainband-  
width of most op amps will limit the SFDR at high input  
frequencies.  
V
CM  
2.2µF  
0.1µF T1  
+
25  
A
IN  
1:1  
ANALOG  
INPUT  
LTC2249  
Input Drive Impedance  
0.1µF  
25Ω  
25Ω  
12pF  
As with all high performance, high speed ADCs, the  
dynamic performance of the LTC2249 can be influenced  
by the input drive circuitry, particularly the second and  
third harmonics. Source impedance and reactance can  
influence SFDR. At the falling edge of CLK, the sample-  
and-holdcircuitwillconnectthe4pFsamplingcapacitorto  
the input pin and start the sampling period. The sampling  
period ends when CLK rises, holding the sampled input on  
the sampling capacitor. Ideally the input circuitry should  
be fast enough to fully charge the sampling capacitor  
during the sampling period 1/(2FENCODE); however, this is  
not always possible and the incomplete settling may  
degradetheSFDR. The sampling glitchhasbeendesigned  
to be as linear as possible to minimize the effects of  
incomplete settling.  
A
IN  
25Ω  
T1 = MA/COM ETC1-1T  
2249 F03  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer  
V
CM  
2.2µF  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
+
25  
25Ω  
A
IN  
LTC2249  
ANALOG  
INPUT  
+
+
CM  
12pF  
A
IN  
2249 F04  
Figure 4. Differential Drive with an Amplifier  
2249f  
11  
LTC2249  
W U U  
U
APPLICATIO S I FOR ATIO  
V
Figure 5 shows a single-ended input circuit. The imped-  
ance seen by the analog inputs should be matched. This  
circuit is not recommended if low distortion is required.  
CM  
2.2µF  
0.1µF  
0.1µF  
+
6.8nH  
0.1µF  
A
IN  
IN  
ANALOG  
INPUT  
LTC2249  
25  
25Ω  
V
CM  
T1  
2.2µF  
6.8nH  
10k 10k  
25  
A
0.1µF  
+
IN  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS, INDUCTORS  
ARE 0402 PACKAGE SIZE  
A
ANALOG  
INPUT  
2249 F08  
LTC2249  
12pF  
Figure 8. Recommended Front End Circuit for  
Input Frequencies Above 300MHz  
IN  
25Ω  
A
2249 F05  
0.1µF  
Reference Operation  
Figure 5. Single-Ended Drive  
Figure9showstheLTC2249referencecircuitryconsisting  
of a 1.5V bandgap reference, a difference amplifier and  
switching and control circuit. The internal voltage refer-  
ence can be configured for two pin selectable input ranges  
of2V(±1Vdifferential)or1V(±0.5Vdifferential).Tyingthe  
SENSE pin to VDD selects the 2V range; tying the SENSE  
pin to VCM selects the 1V range.  
The25resistorsand12pFcapacitorontheanaloginputs  
serve two purposes: isolating the drive circuitry from the  
sample-and-hold charging glitches and limiting the  
wideband noise at the converter input.  
For input frequencies above 70MHz, the input circuits of  
Figure 6, 7 and 8 are recommended. The balun trans-  
former gives better high frequency response than a flux  
coupled center tapped transformer. The coupling capaci-  
tors allow the analog inputs to be DC biased at 1.5V. In  
Figure 8, the series inductors are impedance matching  
elements that maximize the ADC bandwidth.  
The 1.5V bandgap reference serves two functions: its  
output provides a DC bias point for setting the common  
mode voltage of any external input circuitry; additionally,  
the reference is used with a difference amplifier to gener-  
ate the differential reference levels needed by the internal  
ADC circuitry. An external bypass capacitor is required for  
the 1.5V reference output, VCM. This provides a high  
frequency low impedance path to ground for internal and  
external circuitry.  
V
CM  
2.2µF  
0.1µF  
0.1µF  
+
12Ω  
A
IN  
ANALOG  
INPUT  
LTC2249  
0.1µF  
25Ω  
25Ω  
T1  
8pF  
A
The difference amplifier generates the high and low refer-  
ence for the ADC. High speed switching circuits are  
connected to these outputs and they must be externally  
bypassed. Each output has two pins. The multiple output  
pins are needed to reduce package inductance. Bypass  
capacitors must be connected as shown in Figure 9.  
12Ω  
IN  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
2249 F06  
Figure 6. Recommended Front End Circuit for  
Input Frequencies Between 70MHz and 170MHz  
Other voltage ranges in-between the pin selectable ranges  
can be programmed with two external resistors as shown  
inFigure10.Anexternalreferencecanbeusedbyapplying  
its output directly or through a resistor divider to SENSE.  
It is not recommended to drive the SENSE pin with a logic  
device. The SENSE pin should be tied to the appropriate  
levelasclosetotheconverteraspossible. IftheSENSEpin  
is driven externally, it should be bypassed to ground as  
close to the device as possible with a 1µF ceramic capacitor.  
V
CM  
2.2µF  
0.1µF  
0.1µF  
+
A
IN  
IN  
ANALOG  
INPUT  
LTC2249  
0.1µF  
25Ω  
25Ω  
T1  
A
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
2249 F07  
Figure 7. Recommended Front End Circuit for  
Input Frequencies Between 170MHz and 300MHz  
2249f  
12  
LTC2249  
W U U  
APPLICATIO S I FOR ATIO  
U
CLEAN  
SUPPLY  
LTC2249  
4.7µF  
4  
V
CM  
1.5V BANDGAP  
REFERENCE  
1.5V  
FERRITE  
BEAD  
2.2µF  
1V  
0.5V  
0.1µF  
RANGE  
DETECT  
AND  
1k  
0.1µF  
SINUSOIDAL  
CLOCK  
CLK  
LTC2249  
INPUT  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
501k  
NC7SVU04  
SENSE  
REFH  
TIE TO V FOR 1V RANGE;  
CM  
RANGE = 2 • V  
FOR  
< 1V  
SENSE  
SENSE  
BUFFER  
0.5V < V  
2249 F11  
INTERNAL ADC  
HIGH REFERENCE  
1µF  
Figure 11. Sinusoidal Single-Ended CLK Drive  
The noise performance of the LTC2249 can depend on the  
clock signal quality as much as on the analog input. Any  
noise present on the clock signal will result in additional  
aperture jitter that will be RMS summed with the inherent  
ADC aperture jitter.  
2.2µF  
1µF  
0.1µF  
DIFF AMP  
REFL  
INTERNAL ADC  
LOW REFERENCE  
In applications where jitter is critical, such as when digitiz-  
ing high input frequencies, use as large an amplitude as  
possible. Also, if the ADC is clocked with a sinusoidal  
signal, filter the CLK signal to reduce wideband noise and  
distortion products generated by the source.  
2249 F09  
Figure 9. Equivalent Reference Circuit  
1.5V  
V
CM  
2.2µF  
Maximum and Minimum Conversion Rates  
12k  
LTC2249  
0.75V  
12k  
SENSE  
ThemaximumconversionratefortheLTC2249is80Msps.  
For the ADC to operate properly, the CLK signal should  
have a 50% (±5%) duty cycle. Each half cycle must have  
at least 5.9ns for the ADC internal circuitry to have enough  
settling time for proper operation.  
1µF  
2249 F10  
Figure 10. 1.5V Range ADC  
An optional clock duty cycle stabilizer circuit can be used  
if the input clock has a non 50% duty cycle. This circuit  
uses the rising edge of the CLK pin to sample the analog  
input. The falling edge of CLK is ignored and the internal  
fallingedgeisgeneratedbyaphase-lockedloop. Theinput  
clock duty cycle can vary from 40% to 60% and the clock  
duty cycle stabilizer will maintain a constant 50% internal  
duty cycle. If the clock is turned off for a long period of  
time, the duty cycle stabilizer circuit will require a hundred  
clockcyclesforthePLLtolockontotheinputclock.Touse  
the clock duty cycle stabilizer, the MODE pin should be  
connected to 1/3VDD or 2/3VDD using external resistors.  
Input Range  
The input range can be set based on the application. The  
2Vinputrangewillprovidethebestsignal-to-noiseperfor-  
mance while maintaining excellent SFDR. The 1V input  
range will have better SFDR performance, but the SNR will  
degrade by 5.7dB. See the Typical Performance Charac-  
teristics section.  
Driving the Clock Input  
The CLK input can be driven directly with a CMOS or TTL  
levelsignal. Asinusoidalclockcanalsobeusedalongwith  
a low-jitter squaring circuit before the CLK pin (see  
Figure 11).  
2249f  
13  
LTC2249  
W U U  
U
APPLICATIO S I FOR ATIO  
The lower limit of the LTC2249 sample rate is determined  
by droop of the sample-and-hold circuits. The pipelined  
architectureofthisADCreliesonstoringanalogsignalson  
small valued capacitors. Junction leakage will discharge  
the capacitors. The specified minimum operating fre-  
quency for the LTC2249 is 1Msps.  
Data Format  
Using the MODE pin, the LTC2249 parallel digital output  
can be selected for offset binary or 2’s complement  
format. Connecting MODE to GND or 1/3VDD selects  
straight binary output format. Connecting MODE to  
2/3VDD or VDD selects 2’s complement output format.  
An external resistor divider can be used to set the 1/3VDD  
or 2/3VDD logic values. Table 1 shows the logic states for  
the MODE pin.  
DIGITAL OUTPUTS  
Digital Output Buffers  
Table 1. MODE Pin Function  
Clock Duty  
MODE Pin  
Figure 12 shows an equivalent circuit for a single output  
buffer. Each buffer is powered by OVDD and OGND, iso-  
lated from the ADC power and ground. The additional  
N-channel transistor in the output driver allows operation  
down to low voltages. The internal resistor in series with  
the output makes the output appear as 50to external  
circuitry and may eliminate the need for external damping  
resistors.  
Output Format  
Straight Binary  
Straight Binary  
2’s Complement  
2’s Complement  
Cycle Stablizer  
0
Off  
On  
On  
Off  
1/3V  
2/3V  
DD  
DD  
V
DD  
Overflow Bit  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digital outputs of the LTC2249 should drive a minimal  
capacitive load to avoid possible interaction between the  
digital outputs and sensitive input circuitry. The output  
should be buffered with a device such as an ALVCH16373  
CMOS latch. For full speed operation the capacitive load  
should be kept under 10pF.  
When OF outputs a logic high the converter is either  
overranged or underranged.  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OVDD, should be tied  
to the same power supply as for the logic being driven. For  
exampleiftheconverterisdrivingaDSPpoweredbya1.8V  
supply,thenOVDD shouldbetiedtothatsame1.8Vsupply.  
Lower OVDD voltages will also help reduce interference  
from the digital outputs.  
OVDD can be powered with any voltage from 500mV up to  
theVDD ofthepart.OGNDcanbepoweredwithanyvoltage  
from GND up to 1V and must be less than OVDD. The logic  
outputs will swing between OGND and OVDD.  
LTC2249  
OV  
DD  
0.5V  
TO V  
DD  
V
DD  
V
DD  
0.1µF  
OV  
DD  
Output Enable  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
43  
TYPICAL  
DATA  
OUTPUT  
Theoutputsmaybedisabledwiththeoutputenablepin,OE.  
OEhighdisablesalldataoutputsincludingOF.Thedataac-  
cess and bus relinquish times are too slow to allow the  
outputs to be enabled and disabled during full speed op-  
eration.TheoutputHi-Zstateisintendedforuseduringlong  
periods of inactivity.  
OE  
OGND  
2249 F12  
Figure 12. Digital Output Buffer  
2249f  
14  
LTC2249  
W U U  
APPLICATIO S I FOR ATIO  
U
Sleep and Nap Modes  
High quality ceramic bypass capacitors should be used at  
theVDD, OVDD, VCM, REFH, andREFLpins. Bypasscapaci-  
tors must be located as close to the pins as possible. Of  
particular importance is the 0.1µF capacitor between  
REFH and REFL. This capacitor should be placed as close  
to the device as possible (1.5mm or less). A size 0402  
ceramic capacitor is recommended. The large 2.2µF ca-  
pacitor between REFH and REFL can be somewhat further  
away. The traces connecting the pins and bypass capaci-  
tors must be kept short and should be made as wide as  
possible.  
The converter may be placed in shutdown or nap modes  
to conserve power. Connecting SHDN to GND results in  
normaloperation. Connecting SHDN to VDD andOE to VDD  
results in sleep mode, which powers down all circuitry  
includingthereferenceandtypicallydissipates1mW.When  
exiting sleep mode it will take milliseconds for the output  
datatobecomevalidbecausethereferencecapacitorshave  
torechargeandstabilize. ConnectingSHDNtoVDD andOE  
to GND results in nap mode, which typically dissipates  
15mW. In nap mode, the on-chip reference circuit is kept  
on,sothatrecoveryfromnapmodeisfasterthanthatfrom  
sleepmode,typicallytaking100clockcycles.Inbothsleep  
and nap modes, all digital outputs are disabled and enter  
the Hi-Z state.  
The LTC2249 differential inputs should run parallel and  
close to each other. The input traces should be as short as  
possible to minimize capacitance and to minimize noise  
pickup.  
Grounding and Bypassing  
Heat Transfer  
The LTC2249 requires a printed circuit board with a clean,  
unbroken ground plane. A multilayer board with an inter-  
nal ground plane is recommended. Layout for the printed  
circuit board should ensure that digital and analog signal  
linesareseparatedasmuchaspossible. Inparticular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC.  
Most of the heat generated by the LTC2249 is transferred  
from the die through the bottom-side exposed pad and  
package leads onto the printed circuit board. For good  
electrical and thermal performance, the exposed pad  
should be soldered to a large grounded pad on the PC  
board. It is critical that all ground pins are connected to a  
ground plane of sufficient area.  
2249f  
15  
LTC2249  
W U U  
U
APPLICATIO S I FOR ATIO  
2249f  
16  
LTC2249  
W U U  
APPLICATIO S I FOR ATIO  
U
Topside  
Silkscreen Top  
Inner Layer 2 GND  
2249f  
17  
LTC2249  
W U U  
U
APPLICATIO S I FOR ATIO  
Bottomside  
Inner Layer 3 Power  
Silkscreen Bottom  
2249f  
18  
LTC2249  
U
PACKAGE DESCRIPTIO  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
BOTTOM VIEW—EXPOSED PAD  
0.23 TYP  
(4 SIDES)  
R = 0.115  
TYP  
0.75 ± 0.05  
5.00 ± 0.10  
(4 SIDES)  
31 32  
0.00 – 0.05  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 ± 0.10  
(4-SIDES)  
(UH) QFN 0603  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
NOTE:  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2249f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2249  
RELATED PARTS  
PART NUMBER  
LTC1741  
LTC1742  
LTC1743  
LTC1744  
LTC1745  
LTC1746  
LTC1747  
LTC1748  
LTC1749  
LTC1750  
LTC2220  
LTC2221  
LTC2222  
LTC2223  
LTC2224  
LTC2225  
LTC2226  
LTC2227  
LTC2228  
LTC2229  
LTC2230  
LTC2231  
LTC2232  
LTC2233  
LTC2234  
LTC2236  
LTC2237  
LTC2238  
LTC2239  
LTC2245  
LTC2246  
LTC2247  
LTC2248  
LT5512  
DESCRIPTION  
COMMENTS  
12-Bit, 65Msps ADC  
14-Bit, 65Msps ADC  
12-Bit, 50Msps ADC  
14-Bit, 50Msps ADC  
12-Bit, 25Msps ADC  
14-Bit, 25Msps ADC  
12-Bit, 80Msps ADC  
14-Bit, 80Msps ADC  
12-Bit, 80Msps Wideband ADC  
14-Bit, 80Msps Wideband ADC  
12-Bit, 170Msps ADC  
12-Bit, 135Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 80Msps ADC  
12-Bit, 135Msps ADC  
12-Bit, 10Msps ADC  
12-Bit, 25Msps ADC  
12-Bit, 40Msps ADC  
12-Bit, 65Msps ADC  
12-Bit, 80Msps ADC  
10-Bit, 170Msps ADC  
10-Bit, 135Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 80Msps ADC  
10-Bit, 135Msps ADC  
10-Bit, 25Msps ADC  
10-Bit, 40Msps ADC  
10-Bit, 65Msps ADC  
10-Bit, 80Msps ADC  
14-Bit, 10Msps ADC  
14-Bit, 25Msps ADC  
14-Bit, 40Msps ADC  
14-Bit, 65Msps ADC  
DC-3GHz High Signal Level Downconverting Mixer  
72dB SNR, 87dB SFDR, 48-Pin TSSOP Package  
76.5dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
72.5dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
77dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
72.2dB SNR, 380mW SFDR, 48-Pin TSSOP Package  
77.5dB SNR, 390mW SFDR, 48-Pin TSSOP Package  
72dB SNR, 87dB SFDR, 48-Pin TSSOP Package  
76.3dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
Up to 500MHz IF Undersampling, 87dB SFDR  
Up to 500MHz IF Undersampling, 90dB SFDR  
890mW, 67.7dB SNR, 9mm x 9mm QFN Package  
630mW, 67.8dB SNR, 9mm x 9mm QFN Package  
475mW, 68.4dB SNR, 7mm x 7mm QFN Package  
366mW, 68.5dB SNR, 7mm x 7mm QFN Package  
630mW, 67.6dB SNR, 7mm x 7mm QFN Package  
60mW, 71.3dB SNR, 5mm x 5mm QFN Package  
75mW, 71.4dB SNR, 5mm x 5mm QFN Package  
120mW, 71.4dB SNR, 5mm x 5mm QFN Package  
205mW, 71.3dB SNR, 5mm x 5mm QFN Package  
211mW, 70.6dB SNR, 5mm x 5mm QFN Package  
890mW, 61.2dB SNR, 9mm x 9mm QFN Package  
630mW, 61.2dB SNR, 9mm x 9mm QFN Package  
475mW, 61.3dB SNR, 7mm x 7mm QFN Package  
366mW, 61.3dB SNR, 7mm x 7mm QFN Package  
630mW, 61.2dB SNR, 7mm x 7mm QFN Package  
75mW, 61.8dB SNR, 5mm × 5mm QFN Package  
120mW, 61.8dB SNR, 5mm × 5mm QFN Package  
205mW, 61.8dB SNR, 5mm × 5mm QFN Package  
211mW, 61.6dB SNR, 5mm × 5mm QFN Package  
60mW, 74.4dB SNR, 5mm × 5mm QFN Package  
75mW, 74.5dB SNR, 5mm × 5mm QFN Package  
120mW, 74.4dB SNR, 5mm × 5mm QFN Package  
205mW, 74.3dB SNR, 5mm × 5mm QFN Package  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
450MHz 1dB BW, 47dB OIP3, Digital Gain Control  
10.5dB to 33ddB in 1.5dB/Step  
LT5515  
LT5516  
LT5517  
LT5522  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
40MHz to 900MHz Direct Conversion Quadrature Demodulator 21dBm IIP3, Integrated LO Quadrature Generator  
600MHz to 2.7GHz High Linearity Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz,  
NF = 12.5dB, 50Single-Ended RF and LO Ports  
2249f  
LT/TP 1004 1K • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
©LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1741CFW

12-Bit, 65Msps Low Noise ADC
Linear

LTC1741IFW

12-Bit, 65Msps Low Noise ADC
Linear

LTC1741IFW#PBF

LTC1741 - 12-Bit, 65Msps Low Noise ADC; Package: TSSOP; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1742

14-Bit, 80Msps Low Power 3V ADC
Linear

LTC1742CFW

14-Bit, 65Msps Low Noise ADC
Linear

LTC1742IFW

14-Bit, 65Msps Low Noise ADC
Linear

LTC1742IFW#PBF

LTC1742 - 14-Bit, 65Msps Low Noise ADC; Package: TSSOP; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1742IFW#TR

LTC1742 - 14-Bit, 65Msps Low Noise ADC; Package: TSSOP; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1742IFW#TRPBF

LTC1742 - 14-Bit, 65Msps Low Noise ADC; Package: TSSOP; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1743

12-Bit, 50Msps ADC
Linear

LTC1743CFW

12-Bit, 50Msps ADC
Linear

LTC1743CFW#PBF

LTC1743 - 12-Bit, 50Msps ADC; Package: TSSOP; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear