LTC1860IS8 [Linear]

mPower, 12-Bit, 250ksps 1- and 2-Channel ADCs in MSOP; 的mPower , 12位, 250ksps的1和2通道ADC ,采用MSOP
LTC1860IS8
型号: LTC1860IS8
厂家: Linear    Linear
描述:

mPower, 12-Bit, 250ksps 1- and 2-Channel ADCs in MSOP
的mPower , 12位, 250ksps的1和2通道ADC ,采用MSOP

文件: 总12页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1860/LTC1861  
µPower, 12-Bit, 250ksps  
1- and 2-Channel ADCs in MSOP  
U
FEATURES  
DESCRIPTIO  
TheLTC®1860/LTC1861are12-bitA/Dconvertersthatare  
offered in MSOP and SO-8 packages and operate on a  
single 5V supply. At 250ksps, the supply current is only  
850µA. The supply current drops at lower speeds because  
the LTC1860/LTC1861 automatically power down to a  
typical supply current of 1nA between conversions. These  
12-bitswitchedcapacitorsuccessiveapproximationADCs  
include sample-and-holds.TheLTC1860hasadifferential  
analoginputwithanadjustablereferencepin.TheLTC1861  
offers a software-selectable 2-channel MUX and an ad-  
justable reference pin on the MSOP version.  
12-Bit 250ksps ADCs in MSOP Package  
Single 5V Supply  
Low Supply Current: 850µA (Typ)  
Auto Shutdown Reduces Supply Current  
to 2µA at 1ksps  
True Differential Inputs  
1-Channel (LTC1860) or 2-Channel (LTC1861)  
Versions  
SPI/MICROWIRETM Compatible Serial I/O  
High Speed Upgrade to LTC1286/LTC1298  
Pin Compatible with 16-Bit LTC1864/LTC1865  
The 3-wire, serial I/O, MSOP or SO-8 package and  
extremely high sample rate-to-power ratio make these  
ADCs ideal choices for compact, low power, high speed  
systems.  
U
APPLICATIO S  
High Speed Data Acquisition  
Portable or Compact Instrumentation  
Low Power Battery-Operated Instrumentation  
Isolated and/or Remote Data Acquisition  
TheseADCscanbeusedinratiometricapplicationsorwith  
external references. The high impedance analog inputs  
and the ability to operate with reduced spans down to 1V  
full scale, allow direct connection to signal sources in  
many applications, eliminating the need for external gain  
stages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
U
TYPICAL APPLICATIO  
Supply Current vs Sampling Frequency  
Single 5V Supply, 250ksps, 12-Bit Sampling ADC  
1000  
1µF  
100  
10  
5V  
LTC1860  
1
2
3
4
8
7
6
V
V
CC  
REF  
+
1
IN  
IN  
SCK  
SDO  
ANALOG INPUT  
0V TO 5V  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
0.1  
0.01  
5
GND  
CONV  
1860 TA01  
0.01  
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
1860 TA02  
18601f  
1
LTC1860/LTC1861  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Power Dissipation.............................................. 400mW  
Operating Temperature Range  
Supply Voltage (VCC) ................................................. 7V  
Ground Voltage Difference  
LTC1860C/LTC1861C............................. 0°C to 70°C  
LTC1860I/LTC1861I .......................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
AGND, DGND LTC1861 MSOP Package ........... ±0.3V  
Analog Input .................... (GND – 0.3V) to (VCC + 0.3V)  
Digital Input ..................................... (GND – 0.3V) to 7V  
Digital Output .................. (GND – 0.3V) to (VCC + 0.3V)  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
V
IN  
1
2
3
4
8 V  
CC  
REF  
CONV  
CH0  
1
2
3
4
5
10  
9
V
V
SCK  
SDO  
SDI  
REF  
CC  
+
7 SCK  
LTC1860CMS8  
LTC1860IMS8  
LTC1861CMS  
LTC1861IMS  
6 SDO  
5 CONV  
IN¯  
CH1  
8
GND  
AGND  
DGND  
7
6
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
MS PART MARKING  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 210°C/W  
LTWR  
LTWS  
LTWT  
LTWU  
TJMAX = 150°C, θJA = 210°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
CONV  
CH0  
V
CC  
1
2
3
4
8
7
6
5
V
V
CC  
REF  
+
SCK  
SDO  
SDI  
IN  
IN  
SCK  
LTC1860CS8  
LTC1860IS8  
LTC1861CS8  
LTC1861IS8  
CH1  
SDO  
CONV  
GND  
GND  
S8 PART MARKING  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1861  
1861I  
1860  
1860I  
TJMAX = 150°C, θJA = 175°C/W  
TJMAX = 150°C, θJA = 175°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
U W  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
A
PARAMETER  
Resolution  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
No Missing Codes Resolution  
INL  
12  
Bits  
(Note 3)  
±1  
LSB  
Transition Noise  
Gain Error  
0.07  
LSB  
RMS  
±20  
mV  
Offset Error  
LTC1860 SO-8 and MSOP, LTC1861 MSOP  
LTC1861 SO-8  
±2  
±3  
±5  
±7  
mV  
mV  
+
Input Differential Voltage Range  
Absolute Input Range  
V
= IN – IN  
0
V
V
IN  
+
REF  
IN Input  
0.05  
0.05  
V
+ 0.05  
V
V
CC  
V
IN Input  
/2  
CC  
V
Input Range  
LTC1860 S0-8 and MSOP, LTC1861 MSOP  
(Note 4)  
1
V
V
REF  
CC  
Analog Input Leakage Current  
Input Capacitance  
±1  
µA  
C
IN  
In Sample Mode  
During Conversion  
12  
5
pF  
pF  
18601f  
2
LTC1860/LTC1861  
U W  
DY A IC ACCURACY  
T = 25°C. V = 5V, f  
SAMPLE  
= 250kHz, unless otherwise specified.  
CONDITIONS  
A
CC  
SYMBOL PARAMETER  
SNR Signal-to-Noise Ratio  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
THD Total Hamonic Distortion Up to 5th Harmonic 100kHz Input Signal  
MIN  
TYP  
72  
MAX  
UNITS  
dB  
100kHz Input Signal  
71  
dB  
77  
dB  
Full Power Bandwidth  
20  
MHz  
kHz  
Full Linear BaU ndwidth  
S/(N + D) 68dB  
125  
DIGITAL A DDCELECTRICALCHARACTERISTICS  
The denotes specifications which apply  
over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 5.25V  
= 4.75V  
2.4  
CC  
CC  
IN  
0.8  
2.5  
V
I
I
= V  
µA  
µA  
IH  
IL  
CC  
= 0V  
2.5  
IN  
V
OH  
V
CC  
V
CC  
= 4.75V, I = 10µA  
= 4.75V, I = 360µA  
4.5  
2.4  
4.74  
4.72  
V
V
O
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
= 4.75V, I = 1.6mA  
0.4  
V
µA  
OL  
CC  
O
I
I
I
I
CONV = V  
±3  
OZ  
CC  
V
OUT  
V
OUT  
= 0V  
25  
20  
mA  
mA  
SOURCE  
SINK  
= V  
CC  
Reference Current (LTC1860 SO-8, MSOP and CONV = V  
LTC1861 MSOP)  
0.001  
0.05  
3
0.1  
µA  
mA  
REF  
CC  
f
= f  
SMPL  
SMPL(MAX)  
I
Supply Current  
CONV = V After Conversion  
0.001  
0.85  
3
1.3  
µA  
mA  
CC  
CC  
f
= f  
SMPL  
SMPL(MAX)  
P
D
Power Dissipation  
f
= f  
4.25  
mW  
SMPL  
SMPL(MAX)  
W U  
U
U
U
W
The denotes specifications which apply over the  
RECO E DED OPERATI G CO DITIO S  
full operating temperature range, otherwise specifications are TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
20  
UNITS  
V
V
Supply Voltage  
4.75  
CC  
f
t
t
Clock Frequency  
DC  
MHz  
µs  
SCK  
CYC  
SMPL  
Total Cycle Time  
12 • SCK + t  
CONV  
Analog Input Sampling Time  
LTC1860  
LTC1861  
12  
10  
SCK  
SCK  
t
Setup Time CONVBefore First SCK,  
(See Figure 1)  
30  
ns  
suCONV  
t
t
t
t
t
Holdtime SDI After SCK↑  
Setup Time SDI Stable Before SCK↑  
SCK High Time  
LTC1861  
LTC1861  
15  
15  
ns  
ns  
hDI  
suDI  
f
f
= f  
SCK(MAX)  
= f  
SCK(MAX)  
40%  
40%  
1/f  
1/f  
WHCLK  
WLCLK  
WHCONV  
SCK  
SCK  
SCK  
SCK Low Time  
SCK  
CONV High Time Between Data  
Transfer Cycles  
t
µs  
CONV  
t
t
CONV Low Time During Data Transfer  
12  
13  
SCK  
ns  
WLCONV  
hCONV  
Hold Time CONV Low After Last SCK↑  
18601f  
3
LTC1860/LTC1861  
W U  
The denotes specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating  
Conditions, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
t
f
t
Conversion Time (See Figure 1)  
Maximum Sampling Frequency  
Delay Time, SCKto SDO Data Valid  
2.75  
3.2  
CONV  
250  
kHz  
SMPL(MAX)  
dDO  
C
= 20pF  
15  
20  
25  
ns  
ns  
LOAD  
t
t
t
Delay Time, CONVto SDO Hi-Z  
30  
30  
10  
60  
60  
ns  
ns  
ns  
dis  
en  
Delay Time, CONVto SDO Enabled  
C
C
= 20pF  
= 20pF  
LOAD  
LOAD  
Time Output Data Remains  
Valid After SCK↓  
5
hDO  
t
t
SDO Rise Time  
SDO Fall Time  
C
C
= 20pF  
= 20pF  
8
4
ns  
ns  
r
f
LOAD  
LOAD  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Integral nonlinearity is defined as deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
of a device may be impaired.  
Note 2: All voltage values are with respect to GND.  
Note 4: Channel leakage current is measured while the part is in sample  
mode.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Sampling  
Frequency  
Sleep Current vs Temperature  
Supply Current vs Temperature  
1000  
800  
600  
400  
200  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
= 5V  
CONV = V  
CC  
CONV LOW = 800ns  
TA = 25°C  
V
= 5V  
CC  
1
CONV HIGH = 3.2µS  
0.1  
f
= 250kHz  
SMPL  
V
V
= 5V  
REF  
CC  
= 5V  
0.01  
–50  
0
25  
50  
75 100 125  
125  
–25  
–50  
0
50  
TEMPERATURE (°C)  
25  
75 100  
–25  
0.01  
0.1  
1.0  
10  
100  
1000  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kHz)  
1860/61 G02  
1860/61 G03  
1860/61 G01  
18601f  
4
LTC1860/LTC1861  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reference Current vs  
Reference Voltage  
Reference Current vs  
Sample Rate  
Reference Current vs  
Temperature  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
f
= 250kHz  
= 25°C  
= 5V  
f
V
V
= 250kHz  
= 5V  
REF  
CONV IS LOW FOR 800ns  
S
A
CC  
S
CC  
T
T
V
V
= 25°C  
A
V
= 5V  
= 5V  
CC  
= 5V  
REF  
0
50  
100  
150  
200  
250  
0
1
2
3
4
5
–50  
0
25  
50  
75 100 125  
–25  
SAMPLE RATE (kHz)  
V
REF  
(V)  
TEMPERATURE (°C)  
1860/61 G04  
1860/61 G06  
1860/61 G05  
Analog Input Leakage vs  
Temperature  
Typical INL Curve  
Typical DNL Curve  
100  
75  
50  
25  
0
1.0  
0.5  
1.0  
0.5  
T
V
V
= 25°C  
T
V
V
= 25°C  
V
V
= 5V  
= 5V  
A
A
CC  
REF  
CONV = 0V  
= 5V  
= 5V  
CC  
CC  
= 5V  
= 5V  
REF  
REF  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
–25  
0
25  
50  
75  
125  
–50  
100  
0
512  
1536 2048 2560 3072  
3584  
4096  
1024  
2048  
0
512  
1536  
2560 3072  
4096  
3584  
1024  
TEMPERATURE (°C)  
CODE  
CODE  
1860/61 G09  
1860/61 G07  
1860/61 G07  
Change in Gain Error vs  
Reference Voltage  
Change in Offset Error vs  
Reference Voltage  
Change in Offset vs Temperature  
5
4
1.0  
0.8  
5
4
T
= 25°C  
CC  
V
CC  
= 5V  
V
= 5V  
A
CC  
V
= 5V  
T
A
= 25°C  
3
0.6  
3
2
0.4  
2
1
0.2  
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
–50  
0
25  
50  
75 100 125  
0
2
3
4
5
–25  
1
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE(V)  
1860/61 G10  
1860/61 G11  
1860/61 G12  
18601f  
5
LTC1860/LTC1861  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Signal-to-(Noise + Distortion)  
vs Input Level  
Change in Gain Error vs  
Temperature  
4096 Point FFT  
0
–20  
1.0  
0.8  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V  
= 5V  
f
f
= 204.1kHz  
= 99.5kHz  
= 25°C  
f
= 10kHz  
CC  
REF  
S
IN  
A
T
= 25°C  
IN  
T
V
= 5V  
CC  
A
0.6  
V
= 5V  
CC  
0.4  
–40  
0.2  
–60  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–100  
–120  
–40 –35 –30 –25 –20 –15 –10 –5  
INPUT LEVEL (dB)  
0
0
10 20 30 40 50 60 70 80 90 100  
f (kHz)  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
1195 G20  
1860/61 G15  
1860/61 G13  
Signal-to-(Noise + Distortion)  
vs fIN  
Total Harmonic Distortion  
vs fIN  
Spurious Free Dynamic Range  
vs fIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
TA = 25°C  
T
V
V
= 25°C  
A
V
CC  
V
IN  
= 5V  
= 0dB  
= 5V  
CC  
= 0dB  
IN  
SNR  
SINAD  
T
V
V
= 25°C  
A
= 5V  
CC  
= 0dB  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
f
(kHz)  
f
(kHz)  
f
(kHz)  
IN  
IN  
IN  
1860/61 G18  
1860/61 G17  
1860/61 G16  
U
U
U
PI FU CTIO S  
LTC1860  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
VREF (Pin 1): Reference Input. The reference input defines  
the span of the A/D converter and must be kept free of  
noise with respect to GND.  
IN+, IN(Pins 2, 3): Analog Inputs. These inputs must be  
free of noise with respect to GND.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this pin.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
V
CC (Pin 8): Positive Supply. This supply must be kept  
CONV (Pin 5): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
18601f  
6
LTC1860/LTC1861  
U
U
U
PI FU CTIO S  
LTC1861 (MSOP Package)  
LTC1861 (SO-8 Package)  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to AGND.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
AGND (Pin 4): Analog Ground. AGND should be tied  
directly to an analog ground plane.  
DGND (Pin 5): Digital Ground. DGND should be tied  
directly to an analog ground plane.  
SDI (Pin 5): Digital Data Input. The A/D configuration  
word is shifted into this input.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SDI (Pin 6): Digital Data Input. The A/D configuration  
word is shifted into this input.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
SDO (Pin 7): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK(Pin8):ShiftClockInput. Thisclocksynchronizesthe  
VCC (Pin 8): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane. VREF is tied internally to this pin.  
serial data transfer.  
VCC (Pin 9): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
VREF (Pin 10): Reference Input. The reference input de-  
fines the span of the A/D converter and must be kept free  
of noise with respect to AGND.  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
V
CC  
(SDI) SCK  
CONV  
PIN NAMES IN  
PARENTHESES  
REFER TO LTC1861  
SDO  
SERIAL  
PORT  
CONVERT  
CLK  
BIAS AND  
SHUTDOWN  
DATA IN  
12-BITS  
+
IN  
+
(CH0)  
12-BIT  
SAMPLING  
ADC  
DATA OUT  
IN  
(CH1)  
1860/61 BD  
GND  
V
REF  
18601f  
7
LTC1860/LTC1861  
TEST CIRCUITS  
Load Circuit for tdDO, tr, tf, tdis and ten  
Voltage Waveforms for SDO Rise and Fall Times, tr, tf  
TEST POINT  
V
OH  
SDO  
V
OL  
V
t
WAVEFORM 2, t  
3k  
CC dis  
en  
SDO  
t
WAVEFORM 1  
dis  
t
t
f
1860 TC04  
r
20pF  
1860 TC01  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
CONV  
V
CONV  
IH  
SDO  
1860 TC03  
t
en  
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
90%  
10%  
t
dis  
Voltage Waveforms for SDO Delay Times, tdDO and thDO  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
SCK  
V
IL  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
t
dDO  
t
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
hDO  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
V
V
OH  
OL  
1860 TC05  
SDO  
1860 TC02  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1860 OPERATION  
Analog Inputs  
The LTC1860 has a unipolar differential analog input. The  
converter will measure the voltage between the “IN+” and  
“IN” inputs. A zero code will occur when IN+ minus IN–  
equals zero. Full scale occurs when IN+ minus INequals  
VREF minus 1LSB. See Figure 2. Both the “IN+” and  
“IN” inputs are sampled at the same time, so common  
mode noise on the inputs is rejected by the ADC. If “IN”  
isgroundedandVREF istiedtoVCC, arail-to-railinputspan  
will result on “IN+” as shown in Figure 3.  
Operating Sequence  
The LTC1860 conversion cycle begins with the rising edge  
of CONV. After a period equal to tCONV, the conversion is  
finished. If CONV is left high after this time, the LTC1860  
goesintosleepmodedrawingonlyleakagecurrent. Onthe  
fallingedgeofCONV, theLTC1860goesintosamplemode  
and SDO is enabled. SCK synchronizes the data transfer  
with each bit being transmitted from SDO on the falling  
SCK edge. The receiving system should capture the data  
from SDO on the rising edge of SCK. After completing the  
data transfer, if further SCK clocks are applied with CONV  
low, SDO will output zeros indefinitely. See Figure 1.  
Reference Input  
ThevoltageonthereferenceinputoftheLTC1860(andthe  
LTC1861 MSOP package) defines the full-scale range of  
the A/D converter. These ADCs can operate with reference  
voltages from VCC to 1V.  
18601f  
8
LTC1860/LTC1861  
W U U  
APPLICATIO S I FOR ATIO  
U
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
1
2
3
4
5
6
7
8
9 10 11 12  
SCK  
SDO  
B10  
B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B11  
B9  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER  
SCK CLOCKS ARE APPLIED WITH CONV LOW, THE ADC  
WILL OUTPUT ZEROS INDEFINITELY  
1860 F01  
Figure 1. LTC1860 Operating Sequence  
1µF  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
V
CC  
LTC1860  
1
2
3
4
8
7
6
V
V
REF  
+
CC  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
V
= 0V TO V  
CC  
IN  
IN  
SCK  
V
*
IN  
IN  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
SDO  
5
+
*V = IN – IN  
GND  
CONV  
IN  
1860 F03  
1860 F02  
Figure 2. LTC1860 Transfer Curve  
Figure 3. LTC1860 with Rail-to-Rail Input Span  
LTC1861 OPERATION  
Operating Sequence  
given channel selection, the converter will measure the  
voltage between the two channels indicated by the “+”  
and “–” signs in the selected row of the following table.  
In single-ended mode, all input channels are measured  
with respect to GND (or AGND). A zero code will occur  
when the “+” input minus the “–” input equals zero. Full  
scale occurs when the “+” input minus the “–” input  
equals VREF minus 1LSB. See Figure 5. Both the “+” and  
“–” inputs are sampled at the same time so common  
mode noise is rejected. The input span in the SO-8  
package is fixed at VREF = VCC. If the “–” input in  
differential mode is grounded, a rail-to-rail input span  
will result on the “+” input.  
TheLTC1861conversioncyclebeginswiththerisingedge  
of CONV. After a period equal to tCONV, the conversion is  
finished. If CONV is left high after this time, the LTC1861  
goes into sleep mode. The LTC1861’s 2-bit data word is  
clocked into the SDI input on the rising edge of SCK after  
CONV goes low. Additional inputs on the SDI pin are then  
ignored until the next CONV cycle. The shift clock (SCK)  
synchronizes the data transfer with each bit being trans-  
mitted on the falling SCK edge and captured on the rising  
SCK edge in both transmitting and receiving systems. The  
data is transmitted and received simultaneously (full du-  
plex). After completing the data transfer, if further SCK  
clocks are applied with CONV low, SDO will output zeros  
indefinitely. See Figure 4.  
Reference Input  
The reference input of the LTC1861 SO-8 package is  
internally tied to VCC. The span of the A/D converter is  
therefore equal to VCC. The voltage on the reference input  
of the LTC1861 MSOP package defines the span of the A/  
D converter. The LTC1861 MSOP package can operate  
Analog Inputs  
The two bits of the input word (SDI) assign the MUX  
configuration for the next requested conversion. For a  
with reference voltages from 1V to VCC.  
18601f  
9
LTC1860/LTC1861  
W U U  
U
APPLICATIO S I FOR ATIO  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
SDI  
S/D O/S  
DON’T CARE  
DON’T CARE  
1
2
3
4
5
6
7
8
9 10 11 12  
SCK  
SDO  
B10  
B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B11  
B9  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1860 F04  
Figure 4. LTC1861 Operating Sequence  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
Table 1. Multiplexer Channel Selection  
MUX ADDRESS  
CHANNEL #  
SGL/DIFF ODD/SIGN  
0
1
GND  
1
1
0
0
0
1
0
1
+
*
SINGLE-ENDED  
MUX MODE  
DIFFERENTIAL  
MUX MODE  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
V
IN  
+
+
+
*V = (SELECTED “+” CHANNEL) –  
IN  
(SELECTED “–” CHANNEL)  
REFER TO TABLE 1  
1860 F05  
186465 TBL1  
Figure 5. LTC1861 Transfer Curve  
induce errors or noise in the output code. Bypass the VCC  
and VREF pins directly to the analog ground plane with a  
minimum of 1µF tantalum. Keep the bypass capacitor  
leads as short as possible.  
GENERAL ANALOG CONSIDERATIONS  
Grounding  
The LTC1860/LTC1861 should be used with an analog  
ground plane and single point grounding techniques. Do  
not use wire wrapping techniques to breadboard and  
evaluatethedevice.Toachievetheoptimumperformance,  
use a printed circuit board. The ground pins (AGND and  
DGND for the LTC1861 MSOP package and GND for the  
LTC1860 and LTC1861 SO-8 package) should be tied  
directly to the analog ground plane with minimum lead  
length.  
Analog Inputs  
Because of the capacitive redistribution A/D conversion  
techniques used, the analog inputs of the LTC1860/  
LTC1861 have capacitive switching input current spikes.  
These current spikes settle quickly and do not cause a  
problem if source resistances are less than 200or high  
speed op amps are used (e.g., the LT®1211, LT1469,  
LT1807, LT1810, LT1630, LT1226orLT1215). Butiflarge  
source resistances are used, or if slow settling op amps  
drive the inputs, take care to ensure the transients caused  
by the current spikes settle completely before the conver-  
sion begins.  
Bypassing  
For good performance, the VCC and VREF pins must be free  
of noise and ripple. Any changes in the VCC/VREF voltage  
with respect to ground during the conversion cycle can  
18601f  
10  
LTC1860/LTC1861  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.52  
(.206)  
REF  
8
7 6  
5
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.88 ± 0.1  
(.192 ± .004)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
1
2
3
4
(.0165 ± .0015)  
TYP  
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
NOTE:  
0.22 – 0.38  
(.009 – .015)  
0.13 ± 0.05  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
(.005 ± .002)  
0.65  
(.0256)  
BCS  
MSOP (MS8) 1001  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
5.23  
(.206)  
MIN  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
3.2 – 3.45  
(.126 – .136)  
4.88 ± 0.10  
(.192 ± .004)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
0.13 ± 0.05  
(.005 ± .002)  
MSOP (MS) 1001  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
TYP  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
18601f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
11  
LTC1860/LTC1861  
U
TYPICAL APPLICATIO  
Sample Two Channels Simultaneously with a Single Input ADC  
5V  
0.1µF  
f
1
+
(0V TO 0.66V)  
0.1µF  
0.1µF  
1µF  
1µF  
4.096V  
REF  
100Ω  
1/2  
LT1492  
4.096V  
REF  
100pF  
5k  
5k  
20k  
5pF  
8
1
REF  
SCK  
28.7k  
V
7
6
5
CC  
10k  
2
3
+
IN  
10k  
1µF  
LTC1860  
SDO  
IN  
5V  
CONV  
GND  
4
0.1µF  
0.1µF  
f
8
2
+
(0V TO 2V)  
100Ω  
1/2  
LT1492  
100pF  
4
1860 TA03  
RELATED PARTS  
PART NUMBER  
12-Bit Serial I/O ADCs  
LTC1286/LTC1298  
LTC1400  
SAMPLE RATE  
POWER DISSIPATION  
DESCRIPTION  
12.5ksps/11.1ksps  
400ksps  
1.3mW/1.7mW  
75mW  
1-Channel with Ref. Input (LTC1286), 2-Channel (LTC1298), 5V  
1-Channel, Bipolar or Unipolar Operation, Internal Reference, 5V  
SO-8 with Internal Reference, 3V  
LTC1401  
200ksps  
15mW  
LTC1402  
2.2Msps  
90mW  
Serial I/O, Bipolar or Unipolar, Internal Reference  
SO-8 with Internal Reference, Bipolar or Unipolar, 5V  
LTC1404  
600ksps  
25mW  
14-Bit Serial I/O ADCs  
LTC1417  
400ksps  
200ksps  
20mW  
15mW  
16-Pin SSOP, Unipolar or Bipolar, Reference, 5V  
Serial/Parallel I/O, Internal Reference, 5V  
LTC1418  
16-Bit Serial I/O ADCs  
LTC1609  
200ksps  
250ksps  
65mW  
Configurable Bipolar or Unipolar Input Ranges, 5V  
SO-8, MS8, 1-Channel, 5V/SO-8, MS10, 2-Channel, 5V  
LTC1864/LTC1865  
References  
4.25mW  
LT1460  
Micropower Precision Series Reference  
Micropower Low Dropout Reference  
Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23  
60µA Supply Current, 10ppm/°C, SOT-23  
LT1790  
18601f  
LT/TP 0502 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY