LTC1861CS8#TR [Linear]

LTC1861 - µPower, 12-Bit, 250ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1861CS8#TR
型号: LTC1861CS8#TR
厂家: Linear    Linear
描述:

LTC1861 - µPower, 12-Bit, 250ksps 1- and 2-Channel ADCs in MSOP; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

转换器 模数转换器 光电二极管
文件: 总16页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1860/LTC1861  
µPower, 12-Bit, 250ksps  
1- and 2-Channel ADCs in MSOP  
FEATURES  
DESCRIPTION  
The LTC®1860/LTC1861 are 12-bit A/D converters that are  
offeredinMSOPandSO-8packagesandoperateonasingle  
5V supply. At 250ksps, the supply current is only 850μA.  
The supply current drops at lower speeds because the  
LTC1860/LTC1861 automatically power down to a typical  
supply current of 1nA between conversions. These 12-bit  
switchedcapacitorsuccessiveapproximationADCsinclude  
sample-and-holds. The LTC1860 has a differential analog  
input with an adjustable reference pin. The LTC1861 offers  
a software-selectable 2-channel MUX and an adjustable  
reference pin on the MSOP version.  
n
12-Bit 250ksps ADCs in MSOP Package  
n
Single 5V Supply  
n
Low Supply Current: 850μA (Typ)  
Auto Shutdown Reduces Supply Current  
n
to 2μA at 1ksps  
True Differential Inputs  
n
n
1-Channel (LTC1860) or 2-Channel (LTC1861)  
Versions  
SPI/MICROWIRETM Compatible Serial I/O  
n
n
High Speed Upgrade to LTC1286/LTC1298  
n
Pin Compatible with 16-Bit LTC1864/LTC1865  
n
Guaranteed Operation to 125°C (MSOP Package)  
The 3-wire, serial I/O, MSOP or SO-8 package and  
extremely high sample rate-to-power ratio make these  
ADCs ideal choices for compact, low power, high speed  
systems.  
APPLICATIONS  
n
High Speed Data Acquisition  
Portable or Compact Instrumentation  
Low Power Battery-Operated Instrumentation  
Isolated and/or Remote Data Acquisition  
n
These ADCs can be used in ratiometric applications or  
with external references. The high impedance analog in-  
puts and the ability to operate with reduced spans down  
to 1V full scale, allow direct connection to signal sources  
in many applications, eliminating the need for external  
gain stages.  
n
n
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Single 5V Supply, 250ksps, 12-Bit Sampling ADC  
Supply Current vs Sampling Frequency  
1MF  
1000  
5V  
100  
10  
LTC1860  
1
2
3
4
8
7
6
V
V
CC  
REF  
+
IN  
IN  
SCK  
SDO  
ANALOG INPUT  
0V TO 5V  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
1
5
GND  
CONV  
1860 TA01  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
1860 TA02  
18601fa  
1
LTC1860/LTC1861  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Power Dissipation.............................................. 400mW  
Operating Temperature Range  
LTC1860C/LTC1861C...............................0°C to 70°C  
LTC1860I/LTC1861I .......................... 40°C to 85°C  
LTC1860H/LTC1861H.........................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ..................300°C  
Supply Voltage (V ) .................................................7V  
CC  
Ground Voltage Difference  
AGND, DGND LTC1861 MSOP Package............. 0.3V  
Analog Input ....................(GND – 0.3V) to (V + 0.3V)  
CC  
Digital Input .................................... (GND – 0.3V) to 7V  
Digital Output ................... (GND – 0.3V) to (V + 0.3V)  
CC  
PIN CONFIGURATION  
LTC1860  
LTC1861  
TOP VIEW  
TOP VIEW  
CONV  
CH0  
1
2
3
4
5
10  
9
V
V
SCK  
SDO  
SDI  
REF  
CC  
V
1
2
3
4
8 V  
CC  
REF  
+
IN  
7 SCK  
CH1  
8
6 SDO  
5 CONV  
IN¯  
AGND  
DGND  
7
6
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
T
= 150°C, θ = 210°C/W  
JMAX  
JA  
T
JMAX  
= 150°C, θ = 210°C/W  
JA  
LTC1860  
LTC1861  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
CONV  
CH0  
V
CC  
REF  
CC  
+
IN  
SCK  
SCK  
SDO  
SDI  
IN  
SDO  
CONV  
CH1  
GND  
GND  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 175°C/W  
T = 150°C, θ = 175°C/W  
JMAX JA  
JMAX  
JA  
18601fa  
2
LTC1860/LTC1861  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1860CMS8#PBF  
LTC1860IMS8#PBF  
LTC1860HMS8#PBF  
LTC1860CS8#PBF  
LTC1860IS8#PBF  
LTC1861CMS#PBF  
LTC1861IMS#PBF  
LTC1861HMS#PBF  
LTC1861CS8#PBF  
LTC1861IS8#PBF  
LEAD BASED FINISH  
LTC1860CMS8  
TAPE AND REEL  
LTC1860CMS8#TRPBF  
LTC1860IMS8#PBF  
LTC1860HMS8#PBF  
LTC1860CS8#PBF  
LTC1860IS8#PBF  
LTC1861CMS#PBF  
LTC1861IMS#PBF  
LTC1861HMS#PBF  
LTC1861CS8#PBF  
LTC1861IS8#PBF  
TAPE AND REEL  
LTC1860CMS8  
LTC1860IMS8  
PART MARKING  
LTWR  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
LTWS  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTWS  
1860  
1860I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTWT  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
LTWU  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTWU  
1861  
1861I  
8-Lead Plastic SO  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING  
LTWR  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
LTC1860IMS8  
LTWS  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1860HMS8  
LTC1860CS8  
LTC1860HMS8  
LTC1860CS8  
LTWS  
1860  
LTC1860IS8  
LTC1860IS8  
1860I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTC1861CMS  
LTC1861CMS  
LTWT  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic SO  
LTC1861IMS  
LTC1861IMS  
LTWU  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1861HMS  
LTC1861HMS  
LTWU  
LTC1861CS8  
LTC1861CS8  
1861  
LTC1861IS8  
LTC1861IS8  
1861I  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
18601fa  
3
LTC1860/LTC1861  
CONVERTER AND MULTIPLEXER CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
SYMBOL  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
l
l
l
Resolution  
No Missing Codes Resolution  
INL  
12  
Bits  
(Note 3)  
1
LSB  
Transition Noise  
Gain Error  
0.07  
LSB  
RMS  
l
20  
mV  
l
l
Offset Error  
LTC1860 SO-8 and MSOP, LTC1861 MSOP  
LTC1861 SO-8  
2
3
5
7
mV  
mV  
+
l
Input Differential Voltage Range  
Absolute Input Range  
V
= IN – IN  
0
V
V
IN  
+
REF  
IN Input  
IN Input  
–0.05  
–0.05  
V
+ 0.05  
V
V
CC  
V
/2  
CC  
V
Input Range  
LTC1860 SO-8 and MSOP, LTC1861 MSOP  
(Note 4)  
1
V
V
REF  
CC  
l
Analog Input Leakage Current  
Input Capacitance  
1
μA  
C
In Sample Mode  
During Conversion  
12  
5
pF  
pF  
IN  
DYNAMIC ACCURACY  
T = 25°C. VCC = 5V, fSAMPLE = 250kHz, unless otherwise specified.  
A
SYMBOL  
SNR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
72  
MAX  
UNITS  
dB  
Signal-to-Noise Ratio  
S/(N + D)  
THD  
Signal-to-Noise Plus Distortion Ratio  
Total Hamonic Distortion Up to 5th Harmonic  
Full Power Bandwidth  
100kHz Input Signal  
100kHz Input Signal  
71  
dB  
77  
dB  
20  
MHz  
kHz  
Full Linear Bandwidth  
S/(N + D) ≥ 68dB  
125  
The denotes specifications which apply  
DIGITAL AND DC ELECTRICAL CHARACTERISTICS  
over the full operating temperature range, otherwise specifications are T = 25°C. VCC = 5V, VREF = 5V, unless otherwise noted.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
l
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 5.25V  
= 4.75V  
2.4  
IH  
IL  
CC  
CC  
IN  
V
0.8  
2.5  
V
I
I
= V  
μA  
μA  
IH  
CC  
= 0V  
–2.5  
IL  
IN  
l
l
V
V
CC  
V
CC  
= 4.75V, I = 10μA  
= 4.75V, I = 360μA  
4.5  
2.4  
4.74  
4.72  
V
V
OH  
OL  
O
O
l
V
Low Level Output Voltage  
V
CC  
= 4.75V, I = 1.6mA  
0.4  
V
O
18601fa  
4
LTC1860/LTC1861  
The denotes specifications which apply  
DIGITAL AND DC ELECTRICAL CHARACTERISTICS  
over the full operating temperature range, otherwise specifications are T = 25°C. VCC = 5V, VREF = 5V, unless otherwise noted.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
CONV = V  
MIN  
TYP  
MAX  
UNITS  
μA  
l
I
I
I
I
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
3
OZ  
CC  
V
OUT  
V
OUT  
= 0V  
–25  
20  
mA  
SOURCE  
SINK  
REF  
= V  
mA  
CC  
l
l
Reference Current (LTC1860 SO-8,  
MSOP and LTC1861 MSOP)  
CONV = V  
0.001  
0.05  
3
0.1  
μA  
mA  
CC  
f
= f  
SMPL  
SMPL(MAX)  
l
l
l
I
CC  
Supply Current  
CONV = V After Conversion  
0.001  
0.001  
0.85  
3
5
1.3  
μA  
μA  
mA  
CC  
CONV = V After Conversion, H-Grade  
CC  
f
= f  
SMPL  
SMPL(MAX)  
P
D
Power Dissipation  
f
= f  
1.25  
mV  
SMPL  
SMPL(MAX)  
The denotes specifications which apply over  
RECOMMENDED OPERATING CONDITIONS  
the full operating temperature range, otherwise specifications are T = 25°C.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
Clock Frequency  
4.75  
5.25  
V
CC  
l
l
f
20  
16.7  
MHz  
MHz  
SCK  
H-Grade  
t
t
Total Cycle Time  
12 • SCK + t  
μs  
CYC  
CONV  
Analog Input Sampling Time  
LTC1860 (Note 5)  
LTC1861 (Note 5)  
12  
10  
SCK  
SCK  
SMPL  
t
Setup Time CONVBefore First SCK,  
60  
65  
30  
30  
ns  
ns  
suCONV  
(See Figure 1)  
H-Grade  
LTC1861  
LTC1861  
t
t
t
t
t
Holdtime SDI After SCK↑  
Setup Time SDI Stable Before SCK↑  
SCK High Time  
15  
15  
ns  
ns  
hDI  
suDI  
f
f
= f  
= f  
40%  
40%  
1/f  
1/f  
WHCLK  
WLCLK  
WHCONV  
SCK  
SCK  
SCK(MAX)  
SCK(MAX)  
SCK  
SCK Low Time  
SCK  
CONV High Time Between Data Transfer (Note 5)  
Cycles  
t
μs  
CONV  
t
t
CONV Low Time During Data Transfer  
(Note 5)  
12  
SCK  
ns  
WLCONV  
Hold Time CONV Low After Last SCK↑  
13  
hCONV  
18601fa  
5
LTC1860/LTC1861  
The denotes specifications which apply over the full operating temperature  
TIMING CHARACTERISTICS  
Conditions, unless otherwise noted.  
range, otherwise specifications are T = 25°C. VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating  
A
SYMBOL  
PARAMETER  
CONDITIONS  
H-Grade  
MIN  
TYP  
MAX  
UNITS  
l
l
t
f
t
Conversion Time (See Figure 1)  
2.75  
2.75  
3.2  
3.3  
μs  
μs  
CONV  
l
l
Maximum Sampling Frequency  
250  
248  
kHz  
kHz  
SMPL(MAX)  
dDO  
H-Grade  
Delay Time, SCKto SDO Data Valid  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
15  
20  
25  
30  
ns  
ns  
ns  
l
l
= 20pF  
= 20pF, H-Grade  
l
l
t
t
t
Delay Time, CONVto SDO Hi-Z  
30  
30  
60  
65  
ns  
ns  
dis  
H-Grade  
l
l
Delay Time, CONVto SDO Enabled  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF, H-Grade  
30  
30  
60  
65  
ns  
ns  
en  
l
Time Output Data Remains Valid After  
SCK↓  
C
= 20pF  
5
10  
ns  
hDO  
LOAD  
t
t
SDO Rise Time  
SDO Fall Time  
C
C
= 20pF  
= 20pF  
8
4
ns  
ns  
r
f
LOAD  
LOAD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Integral nonlinearity is defined as deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 4: Channel leakage current is measured while the part is in sample  
mode.  
Note 5: Guaranteed by design, not subject to test.  
Note 2: All voltage values are with respect to GND.  
18601fa  
6
LTC1860/LTC1861  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Sampling  
Frequency  
Supply Current vs Temperature  
Sleep Current vs Temperature  
1000  
800  
600  
400  
200  
0
1000  
1000  
100  
10  
= 5V  
CONV = V  
CC  
CONV LOW = 800ns  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TA = 25oC  
V
CC  
= 5V  
1
CONV HIGH = 3.2MS  
0.1  
f
V
V
= 250kHz  
SMPL  
CC  
REF  
= 5V  
= 5V  
0.01  
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
0.01  
0.1  
1.0  
10  
100  
1000  
–25  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
SAMPLING FREQUENCY (kHz)  
1860/61 G02  
1860/61 G03  
1860/61 G01  
Reference Current vs  
Sample Rate  
Reference Current vs  
Temperature  
Reference Current vs  
Reference Voltage  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
60  
50  
40  
30  
20  
10  
0
f
V
V
= 250kHz  
= 5V  
REF  
f
= 250kHz  
= 25oC  
= 5V  
CONV IS LOW FOR 800ns  
S
CC  
S
A
CC  
T
T
V
V
= 25oC  
A
= 5V  
V
= 5V  
CC  
= 5V  
REF  
0
50  
100  
150  
200  
250  
–50  
0
25  
50  
75 100 125  
–25  
0
1
2
3
4
5
SAMPLE RATE (kHz)  
TEMPERATURE (oC)  
V
(V)  
REF  
1860/61 G04  
1860/61 G05  
1860/61 G06  
Analog Input Leakage vs  
Temperature  
Typical INL Curve  
Typical DNL Curve  
1.0  
0.5  
100  
75  
50  
25  
0
1.0  
0.5  
T
V
V
= 25oC  
T
V
V
= 25oC  
V
V
= 5V  
= 5V  
A
A
CC  
REF  
CONV = 0V  
= 5V  
= 5V  
CC  
CC  
= 5V  
= 5V  
REF  
REF  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
–25  
0
25  
50  
75  
125  
0
512  
1536 2048 2560 3072  
CODE  
4096  
–50  
100  
1024  
3584  
0
512  
1536 2048 2560 3072  
3584  
4096  
1024  
TEMPERATURE (oC)  
CODE  
1860/61 G07  
1860/61 G09  
1860/61 G07  
18601fa  
7
LTC1860/LTC1861  
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in Offset Error vs  
Reference Voltage  
Change in Gain Error vs  
Reference Voltage  
Change in Offset vs Temperature  
5
4
1.0  
0.8  
5
4
V
CC  
= 5V  
V
CC  
= 5V  
T
= 25oC  
CC  
A
T
= 25oC  
V
= 5V  
A
3
0.6  
3
2
0.4  
2
1
0.2  
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
0
2
3
4
5
–50  
0
25  
50  
75 100 125  
1
–25  
0
1
2
3
4
5
REFERENCE VOLTAGE(V)  
TEMPERATURE (oC)  
REFERENCE VOLTAGE (V)  
1860/61 G12  
1860/61 G11  
1860/61 G10  
Change in Gain Error vs  
Temperature  
Signal-to-(Noise + Distortion)  
vs Input Level  
4096 Point FFT  
1.0  
0.8  
0
–20  
80  
V
V
= 5V  
REF  
CC  
f
= 10kHz  
= 25oC  
= 5V  
f
f
= 204.1kHz  
= 99.5kHz  
= 25oC  
IN  
A
CC  
S
= 5V  
T
IN  
70  
60  
50  
40  
30  
20  
10  
0
V
T
A
0.6  
V
= 5V  
CC  
0.4  
–40  
0.2  
0
–60  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–100  
–120  
–50  
0
25  
50  
75 100 125  
–40 –35 –30 –25 –20 –15 –10 –5  
INPUT LEVEL (dB)  
0
–25  
0
10 20 30 40 50 60 70 80 90 100  
f (kHz)  
TEMPERATURE (oC)  
1860/61 G13  
1195 G20  
1860/61 G15  
Signal-to-(Noise + Distortion)  
vs fIN  
Total Harmonic Distortion  
vs fIN  
Spurious Free Dynamic Range  
vs fIN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = 25oC  
T
V
V
= 25oC  
A
V
CC  
V
IN  
= 5V  
= 0dB  
= 5V  
CC  
= 0dB  
IN  
SNR  
SINAD  
T
V
V
= 25oC  
A
= 5V  
CC  
= 0dB  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
f
(kHz)  
f
(kHz)  
f
(kHz)  
IN  
IN  
IN  
1860/61 G17  
1860/61 G18  
1860/61 G16  
18601fa  
8
LTC1860/LTC1861  
PIN FUNCTIONS  
LTC1860  
SDI (Pin 6): Digital Data Input. The A/D configuration  
word is shifted into this input.  
V
(Pin 1): Reference Input. The reference input defines  
REF  
the span of the A/D converter and must be kept free of  
SDO (Pin 7): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
noise with respect to GND.  
+
IN , IN (Pins 2, 3): Analog Inputs. These inputs must be  
SCK (Pin 8): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
free of noise with respect to GND.  
GND (Pin 4): Analog Ground. GND should be tied directly  
V
(Pin 9): Positive Supply. This supply must be kept  
to an analog ground plane.  
frCeCe of noise and ripple by bypassing directly to the  
analog ground plane.  
CONV (Pin 5): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
V
REF  
(Pin10):ReferenceInput.Thereferenceinputdefines  
the span of the A/D converter and must be kept free of  
noise with respect to AGND.  
LTC1861 (SO-8 Package)  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this pin.  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
SCK (Pin 7): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
V
(Pin 8): Positive Supply. This supply must be kept  
frCeCe of noise and ripple by bypassing directly to the  
analog ground plane.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
LTC1861 (MSOP Package)  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is  
left high after the A/D conversion is finished, the part  
powers down. A logic low on this input enables the SDO  
pin, allowing the data to be shifted out.  
SDI (Pin 5): Digital Data Input. The A/D configuration  
word is shifted into this input.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to AGND.  
SCK (Pin 7): Shift Clock Input. This clock synchronizes  
the serial data transfer.  
AGND(Pin4):AnalogGround.AGNDshouldbetieddirectly  
to an analog ground plane.  
V
(Pin 8): Positive Supply. This supply must be kept  
frCeCeofnoiseandripplebybypassingdirectlytotheanalog  
DGND(Pin5):DigitalGround.DGNDshouldbetieddirectly  
to an analog ground plane.  
ground plane. V is tied internally to this pin.  
REF  
18601fa  
9
LTC1860/LTC1861  
FUNCTIONAL BLOCK DIAGRAM  
V
CC  
(SDI) SCK  
CONV  
PIN NAMES IN  
PARENTHESES  
REFER TO LTC1861  
SDO  
SERIAL  
PORT  
CONVERT  
CLK  
BIAS AND  
SHUTDOWN  
DATA IN  
12-BITS  
+
IN  
+
(CH0)  
12-BIT  
SAMPLING  
ADC  
DATA OUT  
IN  
(CH1)  
1860/61 BD  
GND  
V
REF  
TEST CIRCUITS  
Load Circuit for tdDO, tr, tf, tdis and ten  
Voltage Waveforms for SDO Rise and Fall Times, tr, tf  
TEST POINT  
V
OH  
SDO  
V
OL  
V
t
WAVEFORM 2, t  
3k  
CC dis  
en  
SDO  
t
r
t
f
1860 TC04  
t
dis  
WAVEFORM 1  
20pF  
1860 TC01  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
CONV  
V
CONV  
SDO  
IH  
SDO  
1860 TC03  
90%  
10%  
WAVEFORM 1  
(SEE NOTE 1)  
t
en  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
Voltage Waveforms for SDO Delay Times, tdDO and thDO  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
SCK  
V
IL  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
t
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
dDO  
1860 TC05  
t
hDO  
V
V
OH  
OL  
SDO  
1860 TC02  
18601fa  
10  
LTC1860/LTC1861  
APPLICATIONS INFORMATION  
t
suCONV  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
1
2
3
4
5
6
7
8
9 10 11 12  
SCK  
SDO  
B10  
B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B9  
B11  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER  
Figure 1. LTC1860 Operating Sequence  
1MF  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
V
CC  
LTC1860  
1
2
3
4
8
7
6
V
V
REF  
+
CC  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
V
*
IN  
V
IN  
= 0V TO V  
CC  
IN  
IN  
SCK  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
+
SDO  
*V = IN – IN  
IN  
5
GND  
CONV  
1860 F03  
1860 F02  
Figure 2. LTC1860 Transfer Curve  
Figure 3. LTC1860 with Rail-to-Rail Input Span  
LTC1860 OPERATION  
Analog Inputs  
The LTC1860 has a unipolar differential analog input. The  
Operating Sequence  
+
converter will measure the voltage between the “IN ”  
+
The LTC1860 conversion cycle begins with the rising edge  
of CONV. After a period equal to t  
and “IN ” inputs. A zero code will occur when IN minus  
+
, the conversion is  
CONV  
IN equals zero. Full scale occurs when IN minus IN  
+
finished. If CONV is left high after this time, the LTC1860  
goesintosleepmodedrawingonlyleakagecurrent. Onthe  
falling edge of CONV, the LTC1860 goes into sample mode  
and SDO is enabled. SCK synchronizes the data transfer  
with each bit being transmitted from SDO on the falling  
SCK edge. The receiving system should capture the data  
from SDO on the rising edge of SCK. After completing the  
data transfer, if further SCK clocks are applied with CONV  
low, SDO will output zeros indefinitely. See Figure 1.  
equals V minus 1LSB. See Figure 2. Both the “IN ” and  
REF  
“IN ” inputs are sampled at the same time, so common  
mode noise on the inputs is rejected by the ADC. If “IN ”  
is grounded and V  
span will result on “IN ” as shown in Figure 3.  
is tied to V , a rail-to-rail input  
REF  
CC  
+
Reference Input  
The voltage on the reference input of the LTC1860 (and the  
LTC1861 MSOP package) defines the full-scale range of  
the A/D converter. These ADCs can operate with reference  
voltages from V to 1V.  
CC  
18601fa  
11  
LTC1860/LTC1861  
APPLICATIONS INFORMATION  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
SDI  
S/D O/S  
DON’T CARE  
DON’T CARE  
1
2
3
4
5
6
7
8
9 10 11 12  
SCK  
SDO  
B10  
B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B11  
B9  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1860 F04  
Figure 4. LTC1861 Operating Sequence  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
Table 1. Multiplexer Channel Selection  
MUX ADDRESS  
CHANNEL #  
*
V
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
SGL/DIFF ODD/SIGN  
0
1
GND  
IN  
1
1
0
0
0
1
0
1
+
SINGLE-ENDED  
MUX MODE  
DIFFERENTIAL  
+
+
+
*V = (SELECTED “+” CHANNEL) –  
IN  
(SELECTED “–” CHANNEL)  
REFER TO TABLE 1  
1860 F05  
MUX MODE  
186465 TBL1  
Figure 5. LTC1861 Transfer Curve  
LTC1861 OPERATION  
Analog Inputs  
The two bits of the input word (SDI) assign the MUX  
configuration for the next requested conversion. For a  
given channel selection, the converter will measure the  
voltage between the two channels indicated by the “+”  
andsignsintheselectedrowofthefollowingtable. In  
single-endedmode, allinputchannelsaremeasuredwith  
respect to GND (or AGND). A zero code will occur when  
the “+” input minus the “–” input equals zero. Full scale  
occurs when the “+” input minus the “–” input equals  
Operating Sequence  
The LTC1861 conversion cycle begins with the rising edge  
of CONV. After a period equal to t  
, the conversion is  
CONV  
finished. If CONV is left high after this time, the LTC1861  
goes into sleep mode. The LTC1861’s 2-bit data word is  
clocked into the SDI input on the rising edge of SCK after  
CONV goes low. Additional inputs on the SDI pin are then  
ignored until the next CONV cycle. The shift clock (SCK)  
synchronizes the data transfer with each bit being trans-  
mitted on the falling SCK edge and captured on the rising  
SCK edge in both transmitting and receiving systems.  
The data is transmitted and received simultaneously (full  
duplex). After completing the data transfer, if further SCK  
clocks are applied with CONV low, SDO will output zeros  
indefinitely. See Figure 4.  
V
minus 1LSB. See Figure 5. Both the “+” and “–”  
REF  
inputs are sampled at the same time so common mode  
noise is rejected. The input span in the SO-8 package is  
fixed at V  
= V . If the “–” input in differential mode  
REF  
CC  
is grounded, a rail-to-rail input span will result on the  
“+” input.  
18601fa  
12  
LTC1860/LTC1861  
APPLICATIONS INFORMATION  
Reference Input  
Bypassing  
The reference input of the LTC1861 SO-8 package is  
For good performance, the V and V pins must be free  
CC REF  
internally tied to V . The span of the A/D converter is  
of noise and ripple. Any changes in the V /V voltage  
CC  
CC REF  
therefore equal to V . The voltage on the reference input  
with respect to ground during the conversion cycle can  
CC  
of the LTC1861 MSOP package defines the span of the A/D  
induce errors or noise in the output code. Bypass the V  
CC  
converter. The LTC1861 MSOP package can operate with  
and V  
pins directly to the analog ground plane with  
REF  
reference voltages from 1V to V .  
a minimum of 1μF tantalum. Keep the bypass capacitor  
leads as short as possible.  
CC  
GENERAL ANALOG CONSIDERATIONS  
Grounding  
Analog Inputs  
Because of the capacitive redistribution A/D conversion  
techniquesused,theanaloginputsoftheLTC1860/LTC1861  
have capacitive switching input current spikes. These cur-  
rent spikes settle quickly and do not cause a problem if  
source resistances are less than 200Ω or high speed op  
ampsareused(e.g.,theLT®1211,LT1469,LT1807,LT1810,  
LT1630,LT1226orLT1215).Butiflargesourceresistances  
are used, or if slow settling op amps drive the inputs, take  
care to ensure the transients caused by the current spikes  
settle completely before the conversion begins.  
The LTC1860/LTC1861 should be used with an analog  
groundplaneandsinglepointgroundingtechniques.Donot  
use wire wrapping techniques to breadboard and evaluate  
the device. To achieve the optimum performance, use a  
printed circuit board. The ground pins (AGND and DGND  
for the LTC1861 MSOP package and GND for the LTC1860  
and LTC1861 SO-8 package) should be tied directly to the  
analog ground plane with minimum lead length.  
18601fa  
13  
LTC1860/LTC1861  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.889 p 0.127  
(.035 p .005)  
8
7 6  
5
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
5.23  
3.20 – 3.45  
(.206)  
DETAIL “A”  
0.254  
(.126 – .136)  
MIN  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
1
2
3
4
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.53 p 0.152  
(.021 p .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 p 0.0508  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
REF  
10 9  
8
7 6  
0.889 p 0.127  
(.035 p .005)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0o – 6o TYP  
5.23  
(.206)  
MIN  
0.254  
(.010)  
3.20 – 3.45  
(.126 – .136)  
GAUGE PLANE  
1
2
3
4 5  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
RECOMMENDED SOLDER PAD LAYOUT  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
NOTE:  
MSOP (MS) 0307 REV E  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18601fa  
14  
LTC1860/LTC1861  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 p.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 p.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 p.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45o  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0o– 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
18601fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC1860/LTC1861  
TYPICAL APPLICATION  
Sample Two Channels Simultaneously with a Single Input ADC  
5V  
0.1MF  
f
1
+
(0V TO 0.66V)  
0.1MF  
0.1MF  
1MF  
1MF  
4.096V  
REF  
1007  
1/2  
LT1492  
4.096V  
REF  
100pF  
5k  
5k  
20k  
5pF  
8
1
REF  
SCK  
28.7k  
V
7
6
5
CC  
10k  
2
3
+
IN  
10k  
1MF  
LTC1860  
SDO  
IN  
5V  
CONV  
GND  
4
0.1MF  
0.1MF  
f
8
2
+
(0V TO 2V)  
1007  
1/2  
LT1492  
100pF  
4
1860 TA03  
RELATED PARTS  
PART NUMBER  
12-Bit Serial I/o ADCs  
LTC1286/LTC1298  
LTC1400  
SAMPLE RATE  
POWER DISSIPATION  
DESCRIPTION  
12.5ksps/11.1ksps  
400ksps  
1.3mW/1.7mW  
75mW  
1-Channel with Ref. Input (LTC1286), 2-Channel (LTC1298), 5V  
1-Channel, Bipolar or Unipolar Operation, Internal Reference, 5V  
SO-8 with Internal Reference, 3V  
LTC1401  
200ksps  
15mW  
LTC1402  
2.2Msps  
90mW  
Serial I/O, Bipolar or Unipolar, Internal Reference  
SO-8 with Internal Reference, Bipolar or Unipolar, 5V  
LTC1404  
600ksps  
25mW  
14-Bit Serial I/O ADCs  
LTC1417  
400ksps  
200ksps  
20mW  
15mW  
16-Pin SSOP, Unipolar or Bipolar, Reference, 5V  
Serial/Parallel I/O, Internal Reference, 5V  
LTC1418  
16-Bit Serial I/O ADCs  
LTC1609  
200ksps  
250ksps  
65mW  
Configurable Bipolar or Unipolar Input Ranges, 5V  
SO-8, MS8, 1-Channel, 5V/SO-8, MS10, 2-Channel, 5V  
LTC1864/LTC1865  
References  
4.25mW  
LT1460  
Micropower Precision Series Reference  
Micropower Low Dropout Reference  
Bandgap, 130μA Supply Current, 10ppm/°C, Available in SOT-23  
60μA Supply Current, 10ppm/°C, SOT-23  
LT1790  
18601fa  
LT 1207 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY