LTC1863LCGN [Linear]

Micropower, 3V, 12-/16-Bit, 8-Channel 175ksps ADCs; 微功耗, 3V , 12位/ 16位, 8通道175ksps模数转换器
LTC1863LCGN
型号: LTC1863LCGN
厂家: Linear    Linear
描述:

Micropower, 3V, 12-/16-Bit, 8-Channel 175ksps ADCs
微功耗, 3V , 12位/ 16位, 8通道175ksps模数转换器

转换器 模数转换器
文件: 总16页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1863L/LTC1867L  
Micropower, 3V,  
12-/16-Bit, 8-Channel  
175ksps ADCs  
U
FEATURES  
DESCRIPTIO  
The LTC®1863L/LTC1867L are pin compatible, 8-channel  
12-/16-bit A/D converters with serial I/O and an internal  
reference.  
Sample Rate: 175ksps  
16-Bit No Missing Codes and ±3LSB Max INL  
8-Channel Multiplexer with:  
Single Ended or Differential Inputs and  
Unipolar or Bipolar Conversion Modes  
The 8-channel input multiplexer can be configured for  
either single-ended or differential inputs and unipolar or  
bipolar conversions (or combinations thereof). The ADCs  
convert 0V to 2.5V unipolar inputs or ±1.25V bipolar  
inputs. The ADCs typically draw only 750µA from a single  
2.7V supply. The automatic nap and sleep modes benefit  
power sensitive applications.  
SPI/MICROWIRETM Serial I/O  
2.7V Guaranteed Supply Voltage  
Pin Compatible with LTC1863/LTC1867  
True Differential Inputs  
On-Chip or External Reference  
Low Power: 750µA at 175ksps, 300µA at 50ksps  
The LTC1867L’s DC performance is outstanding with a  
±3LSBINLspecificationand16-bitnomissingcodesover  
temperature.  
Sleep Mode  
Automatic Nap Mode Between Conversions  
16-Pin Narrow SUSOP Package  
Housed in a compact, narrow 16-pin SSOP package, the  
LTC1863L/LTC1867L can be used in space-sensitive as  
well as low power applications.  
APPLICATIO S  
Industrial Process Control  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
High Speed Data Acquisition  
Battery Operated Systems  
Multiplexed Data Acquisition Systems  
Imaging Systems  
W
BLOCK DIAGRA  
Integral Nonlinearity vs Output Code  
(LTC1867L)  
LTC1863L/LTC1867L  
1
2
3
4
5
6
7
8
CH0  
CH1  
16  
15  
14  
13  
12  
11  
10  
2.0  
V
DD  
V
f
= 2.7V  
SAMPLE  
DD  
= 175ksps  
GND  
1.5  
1.0  
CH2  
SDI  
ANALOG  
INPUT  
MUX  
CH3  
12-/16-BIT  
175ksps  
ADC  
+
SDO  
SERIAL  
PORT  
0.5  
CH4  
SCK  
CH5  
0
CS/CONV  
CH6  
V
REF  
–0.5  
–1.0  
–1.5  
–2.0  
CH7/COM  
INTERNAL  
1.25V REF  
9
REFCOMP  
32768  
0
16384  
49152  
65536  
1863L7L BD  
OUTPUT CODE  
1863L7L G01  
1863L7Lf  
1
LTC1863L/LTC1867L  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Notes 1, 2)  
ORDER PART  
Supply Voltage (VDD)................................... –0.3V to 6V  
Analog Input Voltage  
CH0-CH7/COM (Note 3) .......... 0.3V to (VDD + 0.3V)  
VREF, REFCOMP (Note 4)......... 0.3V to (VDD + 0.3V)  
Digital Input Voltage (SDI, SCK, CS/CONV)  
(Note 4) .................................................0.3V to 10V  
Digital Output Voltage (SDO) ....... 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1863LC/LTC1867LC/LTC1867LAC .... 0°C to 70°C  
LTC1863LI/LTC1867LI/LTC1867LAI .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
CH0  
CH1  
1
2
3
4
5
6
7
8
16  
V
DD  
LTC1863LCGN  
LTC1863LIGN  
LTC1867LCGN  
LTC1867LIGN  
LTC1867LACGN  
LTC1867LAIGN  
15 GND  
CH2  
14  
13  
12  
11  
10  
9
SDI  
CH3  
SDO  
CH4  
SCK  
CH5  
CS/CONV  
CH6  
V
REF  
CH7/COM  
REFCOMP  
GN PART MARKING  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
1863L  
1863LI  
1867L*  
TJMAX = 110°C, θJA = 95°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
U
CO VERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VDD = 2.7V, external VREF = 1.25V (Notes 5, 6)  
LTC1863L  
TYP  
LTC1867L  
TYP  
LTC1867LA  
TYP  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
Resolution  
No Missing Codes  
Integral Linearity Error  
12  
15  
16  
Bits  
Unipolar (Note 7)  
Bipolar  
±1  
±1  
±4  
±4  
±3  
±3  
LSB  
LSB  
Differential Linearity Error  
Transition Noise  
Offset Error  
±1  
–2  
–1  
LSB  
0.1  
1.6  
1.6  
LSB  
RMS  
Unipolar (Note 8)  
Bipolar  
±3  
±4  
±32  
±64  
±32  
±64  
LSB  
LSB  
Offset Error Match  
Unipolar  
Bipolar  
±1  
±1  
±4  
±4  
±3  
±3  
LSB  
LSB  
Offset Error Drift  
Gain Error  
±0.5  
±0.5  
±0.5  
ppm/°C  
Unipolar  
Bipolar  
±6  
±6  
±96  
±96  
±64  
±64  
LSB  
LSB  
Gain Error Match  
Unipolar  
Bipolar  
±1  
±1  
±4  
±4  
±3  
±3  
LSB  
LSB  
Gain Error Tempco  
Internal Reference  
External Reference  
±20  
±3  
±20  
±3  
±20  
±3  
ppm/°C  
ppm/°C  
Power Supply Sensitivity  
V
= 2.7V – 3.6V  
±1  
±3  
±3  
LSB  
DD  
U W  
DY A IC ACCURACY  
VDD = 3V, external VREF = 1.25V (Note 5)  
LTC1863L  
TYP  
LTC1867L/LTC1867LA  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
83.3  
82.6  
MAX  
UNITS  
dB  
SNR  
Signal-to-Noise Ratio  
1kHz Input Signal  
1kHz Input Signal  
73.2  
73.1  
S/(N+D)  
Signal-to-(Noise + Distortion) Ratio  
dB  
1863L7Lf  
2
LTC1863L/LTC1867L  
U W  
DY A IC ACCURACY  
VDD = 3V, external VREF = 1.25V (Note 5)  
LTC1863L  
TYP  
LTC1867L/LTC1867LA  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
dB  
THD  
Total Harmonic Distortion  
1kHz Input Signal, Up to 5th Harmonic  
1kHz Input Signal  
–92.3  
–94.5  
–100  
1.25  
– 91  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Isolation  
92.8  
–112  
1.25  
dB  
100kHz Input Signal  
–3dB Point  
dB  
MHz  
U
Full Power BU andwidth  
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
LTC1863L/LTC1867L/LTC1867LA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Input Range  
Unipolar Mode (Note 9)  
Bipolar Mode  
0 to 2.5  
±1.25  
V
V
C
Analog Input Capacitance for CH0 to  
CH7/COM  
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
32  
4
pF  
pF  
IN  
t
Sample-and-Hold Acquisition Time  
Input Leakage Current  
2.01  
1.68  
µs  
ACQ  
On Channels, CHX = 0V or V  
±1  
µA  
DD  
U U  
U
(Note 5)  
I TER AL REFERE CE CHARACTERISTICS  
LTC1863L/LTC1867L/LTC1867LA  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.25  
±20  
0.3  
3
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
I
= 0  
= 0  
1.235  
1.265  
REF  
REF  
REF  
REF  
OUT  
OUT  
ppm/°C  
mV/V  
kΩ  
2.7V V 3.6V  
DD  
I ⏐ ≤0.1mA  
OUT  
REFCOMP Output Voltage  
I
= 0  
2.5  
V
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863L/LTC1867L/LTC1867LA  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.6V  
= 2.7V  
1.9  
V
V
IH  
IL  
DD  
DD  
IN  
0.45  
I
= 0V to V  
±10  
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage (SDO)  
2
IN  
V
DD  
V
DD  
= 2.7V, I = –10µA  
= 2.7V, I = –200µA  
2.68  
2.65  
V
V
OH  
O
2.3  
O
V
Low Level Output Voltage (SDO)  
V
DD  
V
DD  
= 2.7V, I = 160µA  
= 2.7V, I = 1.6mA  
0.05  
0.15  
V
V
OL  
O
0.4  
O
I
I
Output Source Current  
Output Sink Current  
SDO = 0V  
SDO = V  
–9.7  
6
mA  
mA  
SOURCE  
SINK  
DD  
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
CS/CONV = High, SDO = 0V or V  
CS/CONV = High (Note 10)  
±10  
15  
µA  
pF  
DD  
Data Format  
Unipolar  
Bipolar  
Straight Binary  
Two’s Complement  
1863L7Lf  
3
LTC1863L/LTC1867L  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863L/LTC1867L/LTC1867LA  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
3.6  
1
UNITS  
V
(Note 9)  
2.7  
V
DD  
I
f
= 175ksps, Internal REF  
SAMPLE  
0.75  
170  
0.2  
mA  
µA  
µA  
DD  
NAP Mode  
SLEEP Mode  
3
P
Power Dissipation  
f
= 175ksps  
SAMPLE  
2
2.7  
mW  
DISS  
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1863L/LTC1867L/LTC1867LA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.7  
20  
UNITS  
kHz  
µs  
f
t
t
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
175  
SAMPLE  
3.2  
CONV  
Acquisition Time  
2.01  
40  
5
1.68  
µs  
ACQ  
SCK  
1
SCK Frequency  
MHz  
ns  
CS/CONV High Time  
Short CS/CONV Pulse Mode  
100  
22  
17  
20  
–6  
6
SDO Valid After SCK↓  
C = 25pF (Note 11)  
L
47  
ns  
2
SDO Valid Hold Time After SCK↓  
SDO Valid After CS/CONV↓  
SDI Setup Time Before SCK↑  
SDI Hold Time After SCK↑  
SLEEP Mode Wake-Up Time  
Bus Relinquish Time After CS/CONV↑  
C = 25pF  
L
ns  
3
C = 25pF  
L
40  
ns  
4
15  
15  
ns  
5
ns  
6
C
= 10µF, C = 2.2µF  
VREF  
80  
30  
ms  
ns  
7
REFCOMP  
C = 25pF  
L
50  
8
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 8: Unipolar offset is the offset voltage measured from +1/2LSB  
when the output code flickers between 0000 0000 0000 0000 and  
0000 0000 0000 0001 for LTC1867L and between 0000 0000 0000 and  
0000 0000 0001 for LTC1863L. Bipolar offset is the offset voltage  
measured from –1/2LSB when output code flickers between 0000 0000  
0000 0000 and 1111 1111 1111 1111 for LTC1867L, and between  
0000 0000 0000 and 1111 1111 1111 for LTC1863L.  
Note 2: All voltage values are with respect to GND (unless otherwise  
noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
of greater than 100mA without latchup.  
Note 4: When these pin voltages are taken below GND, they will be  
clamped by internal diodes. This product can handle input currents of  
greater than 100mA below GND without latchup. These pins are not  
Note 9: Recommended operating conditions. The input range of ±1.25V  
for bipolar mode is measured with respect to V = 1.25V. For unipolar  
IN  
mode, common mode input range is 0V to V for the positive input and  
DD  
0V to 1.5V for the negative input. For bipolar mode, common mode input  
clamped to V  
.
DD  
range is 0V to V for both positive and negative inputs.  
DD  
Note 5: V = 2.7V, f  
= 175ksps and f  
= 20MHz at 25°C,  
DD  
SAMPLE  
SCK  
Note 10: Guaranteed by design, not subject to test.  
t = t = 5ns and V = 1.25V for bipolar mode unless otherwise specified.  
r
f
IN  
Note 11: t of 47ns maximum allows f  
up to 10MHz for rising capture  
2
SCK  
Note 6: Linearity, offset and gain error specifications apply for both  
unipolar and bipolar modes. The INL and DNL are tested in bipolar mode.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
with 50% duty cycle and f  
up to 20MHz for falling capture (with 3ns  
SCK  
setup time for the receiving logic).  
1863L7Lf  
4
LTC1863L/LTC1867L  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1867L)  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
4096 Points FFT Plot  
(VDD = 2.7V, Internal REF)  
0
–20  
–40  
2.0  
1.5  
2.0  
1.5  
V
= 2.7V  
DD  
f
= 175ksps  
SAMPLE  
1.0  
1.0  
0.5  
0.5  
–60  
–80  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–100  
–120  
–140  
21.875  
43.75  
87.5  
32768  
32768  
0
65.625  
0
16384  
49152  
65536  
0
16384  
49152  
65536  
FREQUENCY (kHz)  
OUTPUT CODE  
OUTPUT CODE  
1863L7L G03  
1863L7L G01  
1863L7L G02  
4096 Points FFT Plot  
(VDD = 3V, REFCOMP = Ext 3V)  
Signal-to-(Noise + Distortion)  
Ratio vs Input Frequency  
Crosstalk vs Input Frequency  
–60  
–70  
0
–20  
–40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V = 3V  
DD  
SAMPLE  
f
= 175ksps  
SNR  
–80  
–90  
–60  
–80  
SINAD  
–100  
–110  
–120  
–130  
–140  
ADJACENT PAIR  
–100  
–120  
–140  
NONADJACENT  
PAIR  
V
= 3V  
DD  
INTERNAL REF  
= 175ksps  
f
SAMPLE  
0.1  
1
10  
100  
1000  
21.875  
43.75  
87.5  
0
65.625  
1
10  
INPUT FREQUENCY (kHz)  
100  
ACTIVE CHANNEL INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
1863L7L G05  
1863L7L G04  
1863L7L G06  
Supply Current vs fSAMPLE  
(LTC1863L/LTC1867L)  
Total Harmonic Distortion  
vs Input Frequency  
Power Supply Feedthrough  
vs Ripple Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
800  
700  
600  
500  
400  
300  
200  
100  
–100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
V
= 3V  
V
= 2.7V  
DD  
DD  
f
= 175ksps  
SAMPLE  
V
= 10mV  
RIPPLE  
P-P  
SFDR  
THD  
V
= 3V  
DD  
INTERNAL REF  
= 175ksps  
f
SAMPLE  
1
10  
f
100  
(ksps)  
1000  
1
10  
100  
1000  
1
10  
INPUT FREQUENCY (kHz)  
100  
RIPPLE FREQUENCY (kHz)  
SAMPLE  
1863L7L G09  
1863L7L G08  
1863L7L G06  
1863L7Lf  
5
LTC1863L/LTC1867L  
U W  
(LTC1863L/LTC1867L)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Histogram for 4096 Conversions  
(LTC1867L)  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
1200  
1000  
800  
600  
400  
200  
0
1500  
1250  
1000  
750  
1200  
1100  
1000  
900  
f = 175ksps  
SAMPLE  
INTERNAL REF  
V
= 2.7V  
f
= 175ksps  
DD  
SAMPLE  
1044  
895  
INTERNAL REF  
830  
3.6V  
DD  
DD  
3.3V  
3V  
465  
DD  
800  
333  
2.7V  
DD  
261  
170  
700  
58  
23  
9
7
1
500  
600  
–50  
–25  
0
25  
50  
75  
100  
20 21 22 23 24 25 26 27 28 29 30 31  
CODE  
2.7  
3
3.3  
3.6  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1863L7L G11  
1863L7L G12  
1963L7L G10  
Offset Drift (LTC1867L)  
vs Temperature  
Gain Error Drift (LTC1867L)  
vs Temperature  
REFCOMP vs Load Current  
15  
10  
5
2.510  
2.505  
2.500  
10  
5
V
= 2.7V  
V
f
= 2.7V  
DD  
V
= 2.7V  
DD  
DD  
UNIPOLAR  
MODE  
= 175ksps  
= 1.25V  
f
= 175ksps  
= 1.25V  
SAMPLE  
EXT V  
SAMPLE  
EXT V  
REF  
REF  
UNIPOLAR/BIPOLAR  
BIPOLAR  
MODE  
2.495  
2.490  
2.485  
2.480  
2.475  
0
0
–5  
–10  
–15  
–5  
–10  
–50  
0
25  
50  
75  
100  
0.5  
1
2
–25  
0
1.5  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1863L7L G15  
1863L7L G13  
1863L7L G14  
Differential Nonlinearity  
vs Output Code (LTC1863L)  
Integral Nonlinearity  
vs Output Code (LTC1863L)  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
2048 2560  
CODE  
2048 2560  
CODE  
0
512 1024 1536  
3072 3584 4096  
0
512 1024 1536  
3072 3584 4096  
1863L7L G16  
1863L7L G17  
1863L7Lf  
6
LTC1863L/LTC1867L  
U
U
U
PI FU CTIO S  
CHO-CH7/COM (Pins 1-8): Analog Input Pins. Analog  
inputs must be free of noise with respect to GND. CH7/  
COM can be either a separate channel or the common  
minus input for the other channels. Unused channels  
should be tied to ground.  
SCK (Pin 12): Shift Clock. This clock synchronizes the  
serial data transfer.  
SDO (Pin 13): Digital Data Output. The A/D conversion  
result is shifted out of this output. Straight binary format  
for unipolar mode and two’s complement format for  
bipolar mode.  
REFCOMP(Pin9):ReferenceBufferOutputPin.Bypassto  
GND with 10µF tantalum capacitor in parallel with 0.1µF  
ceramiccapacitor(2.5VNominal).TooverdriveREFCOMP,  
tie VREF to GND.  
SDI (Pin 14): Digital Data Input Pin. The A/D configuration  
word is shifted into this input.  
GND (Pin 15): Analog and Digital GND.  
V
REF (Pin 10): 1.25V Reference Output. This pin can also  
VDD (Pin 16): Analog and Digital Power Supply. Bypass to  
GND with 10µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor.  
be used as an external reference buffer input for improved  
accuracy and drift. Bypass to GND with 2.2µF tantalum  
capacitor in parallel with 0.1µF ceramic capacitor.  
CS/CONV (Pin 11): This input provides the dual function  
of initiating conversions on the ADC and also frames the  
serial data transfer.  
U
U
U U U  
TYPICAL CO ECTIO DIAGRA  
+
2.7V TO 3.6V  
10µF  
CH0  
V
DD  
±1.25V  
DIFFERENTIAL  
INPUTS  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
GND  
SDI  
LTC1863L/  
LTC1867L  
SDO  
SCK  
DIGITAL  
I/O  
2.5V  
SINGLE-ENDED  
INPUT  
+
CS/CONV  
1.25V  
V
REF  
2.2µF  
CH7/COM REFCOMP  
2.5V  
10µF  
1863L7L TCD  
TEST CIRCUITS  
Load Circuits for Access Timing  
Load Circuits for Output Float Delay  
2.7V  
2.7V  
3k  
3k  
SDO  
SDO  
SDO  
SDO  
3k  
C
L
C
L
3k  
C
C
L
L
(A) V TO Hi-Z  
OH  
(B) V TO Hi-Z  
OL  
(A) Hi-Z TO V AND V TO V  
OH OL  
(B) Hi-Z TO V AND V TO V  
OL OH  
OH  
OL  
1863L7L TC02  
1863L7L TC01  
1863L7Lf  
7
LTC1863L/LTC1867L  
W U  
W
TI I G DIAGRA S  
t
(For Short Pulse Mode)  
t (SDO Valid After SCK),  
2
1
t (SDO Valid Hold Time After SCK)  
3
t
1
t
2
50%  
50%  
CS/CONV  
SCK  
SDO  
0.45V  
t
3
1.9V  
0.45V  
t (SDI Setup Time Before SCK),  
5
t (SDO Valid After CS/CONV)  
4
t (SDI Hold Time After SCK)  
6
t
t
6
t
4
5
1.9V  
CS/CONV  
SDO  
SCK  
SDI  
0.45V  
Hi-Z  
1.9V  
0.45V  
1.9V  
0.45V  
1.9V  
0.45V  
t (SLEEP Mode Wake-Up Time)  
7
t (BUS Relinquish Time)  
8
t
t
7
8
1.9V  
SCK  
50%  
CS/CONV  
SDO  
SLEEP BIT (SLP = 0)  
READ-IN  
90%  
10%  
Hi-Z  
CS/CONV  
50%  
1863L7L TD  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
The LTC1863L/LTC1867L are complete, low power, multi-  
plexedADCs.Theyconsistofa12-/16-bit,175kspscapaci-  
tive successive approximation A/D converter, a precision  
internal reference, a configurable 8-channel analog input  
multiplexer (MUX) and a serial port for data transfer.  
During the conversion, the internal differential 16-bit  
capacitive DAC output is sequenced by the SAR from the  
most significant bit (MSB) to the least significant bit  
(LSB). The input is sucessively compared with the binary  
weighted charges supplied by the differential capacitive  
DAC. Bit decisions are made by a low power, differential  
comparator that rejects common mode noise. At the end  
ofaconversion, theDACoutputbalancestheanaloginput.  
The SAR content (a 12-/16-bit data word) that represents  
the analog input is loaded into the 12-/16-bit output  
latches.  
Conversions are started by a rising edge on the CS/CONV  
input. Once a conversion cycle has begun, it cannot be  
restarted.Betweenconversions,theADCsreceiveaninput  
word for channel selection and output the conversion  
result, and the analog input is acquired in preparation for  
thenextconversion.Intheacquirephase,aminimumtime  
of 2.01µs will provide enough time for the sample-and-  
hold capacitors to acquire the analog signal.  
1863L7Lf  
8
LTC1863L/LTC1867L  
W U U  
APPLICATIO S I FOR ATIO  
U
Changing the MUX Assignment “On the Fly”  
Analog Input Multiplexer  
1st Conversion  
2nd Conversion  
The analog input multiplexer is controlled by a 7-bit input  
data word. The input data word is defined as follows:  
+
+
CH2  
CH3  
+
CH2  
CH3  
SD OS S1 S0 COM UNI SLP  
SD = SINGLE/DIFFERENTIAL BIT  
OS = ODD/SIGN BIT  
{
{
{
{
CH4  
CH5  
+
+
CH4  
CH5  
CH7/COM  
(UNUSED)  
CH7/COM (  
)
S1 = ADDRESS SELECT BIT 1  
S0 = ADDRESS SELECT BIT 0  
COM = CH7/COM CONFIGURATION BIT  
UNI = UNIPOLAR/BIPOLAR BIT  
SLP = SLEEP MODE BIT  
1863L7L AI02  
Tables 1 and 2 show the configurations when COM = 0,  
and COM = 1.  
Table 1. Channel Configuration (When COM = 0, CH7/COM Pin  
Is Used as CH7)  
Channel Configuration  
SD  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
OS  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
S1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
S0 COM  
“+”  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7  
“–”  
CH1  
CH3  
CH5  
CH7  
CH0  
CH2  
CH4  
CH6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Examples of Multiplexer Options  
4 Differential  
8 Single-Ended  
CH0  
CH1  
+
+
(
(
)
)
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7/COM  
+
+
+
+
+
+
+
+
{
{
{
{
+
(
(
)
)
CH2  
CH3  
+
+
+
(
(
)
)
CH4  
CH5  
+
CH6  
(
(
)
)
CH7/COM  
+
GND (  
)
7 Single-Ended  
to CH7/COM  
Combinations of Differential  
and Single-Ended  
CH0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
+
+
+
+
+
+
+
+
{
CH1  
CH2  
CH3  
{
+
+
+
+
+
CH4  
CH5  
CH6  
CH7/COM  
Table 2. Channel Configuration (When COM = 1, CH7/COM Pin  
Is Used as COMMON)  
CH7/COM (  
)
GND ( )  
1863L7L AI01  
Channel Configuration  
"+"  
SD  
1
OS  
0
S1  
0
S0 COM  
"–"  
0
1
0
1
0
1
0
1
1
1
1
1
1
1
CH0  
CH2  
CH4  
CH6  
CH1  
CH3  
CH5  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
CH7/COM  
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1863L7Lf  
9
LTC1863L/LTC1867L  
W U U  
U
APPLICATIO S I FOR ATIO  
Driving the Analog Inputs  
The analog inputs of the LTC1863L/LTC1867L are easy to  
drive. Each of the analog inputs can be used as a single-  
ended input relative to the GND pin (CH0-GND, CH1-GND,  
etc)orinpairs(CH0andCH1, CH2andCH3, CH4andCH5,  
CH6 and CH7) for differential inputs. In addition, CH7 can  
act as a COM pin for both single-ended and differential  
modes if the COM bit in the input word is high. Regardless  
of the MUX configuration, the “+” and “–” inputs are  
sampled at the same instant. Any unwanted signal that is  
common mode to both inputs will be reduced by the  
common mode rejection of the sample-and-hold circuit.  
The inputs draw only one small current spike while charg-  
ing the sample-and-hold capacitors during the acquire  
mode. In conversion mode, the analog inputs draw only a  
small leakage current. If the source impedance of the  
driving circuit is low then the LTC1863L/LTC1867L inputs  
can be driven directly. More acquisition time should be  
allowed for a higher impedance source.  
LT1638/LT1639: Dual/quad 1.2MHz, 0.4V/µs amplifiers,  
230µA per amplifier, 3V, 5V and ±15V supplies.  
LT1881/LT1882: Dual and quad, 200pA bias current, rail-  
to-rail output op amps, up to ±15V supplies.  
LTC1992-2: Gain of 2 fully differential input/output am-  
plifier/driver, 2.5mV offset, CLOAD stable, 2.7V to ±5V  
supplies.  
LT1995: 30MHz, 1000V/µs gain selectable amplifier, pin  
configurable as a difference amplifier, inverting and  
noninverting amplifier, ±2.5V to ±15V supplies.  
LTC6912: Dual programmable gain amplifiers with SPI  
serial interface, 2mV offset, 2.7V to ±5V supplies.  
LTC6915: Zero drift, instrumentation amplifier with SPI  
programmable gain, 125dB CMRR, 0.1% gain accuracy,  
10µV offset.  
Input Filtering  
The following list is a summary of the op amps that are  
suitable for driving the LTC1863L/LTC1867L. More de-  
tailed information is available in the Linear Technology  
data books or Linear Technology website.  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1863L/LTC1867L noise and distortion. Noisy in-  
put circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications. For instance, Figure 1 shows a 50  
source resistor and a 2000pF capacitor to ground on the  
input will limit the input bandwidth to 1.6MHz. The source  
impedance has to be kept low to avoid gain error and  
degradation in the AC performance. The capacitor also  
acts as a charge reservoir for the input sample-and-hold  
and isolates the ADC input from sampling glitch sensitive  
circuitry. High quality capacitors and resistors should be  
LT®1468: 90MHz, 22V/µs 16-bit accurate amplifier  
LT1469: Dual LT1468  
LT1490A/LT1491A: Dual/quad micropower amplifiers,  
50µA/amplifier max, 500µV offset, common mode range  
extends 44V above Vindependent of V+, 3V, 5V and ±15V  
supplies.  
LT1568: Very low noise, active RC filter building block,  
cutoff frequency up to 10MHz, 2.7V to ±5V supplies.  
1000pF  
50  
ANALOG  
INPUT  
50  
CH0  
CH0  
DIFFERENTIAL  
LTC1863L/  
2000pF  
LTC1863L/  
LTC1867L  
ANALOG  
INPUTS  
1000pF  
1000pF  
LTC1867L  
GND  
50Ω  
CH1  
REFCOMP  
REFCOMP  
10µF  
10µF  
1863L7L F01a  
1863L7L F01b  
Figure 1a. Optional RC Input Filtering for Single-Ended Input  
Figure 1b. Optional RC Input Filtering for Differential Inputs  
1863L7Lf  
10  
LTC1863L/LTC1867L  
W U U  
APPLICATIO S I FOR ATIO  
U
usedsincethesecomponentscanadddistortion.NPOand  
silver mica type dielectric capacitors have excellent linear-  
ity. Carbon surface mount resistors can also generate  
distortion from self heating and from damage that may  
occur during soldering. Metal film surface mount resis-  
tors are much less susceptible to both problems.  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency.Figure3ashowsatypicalSINADof81.4dBwith  
a175kHzsamplingrateanda1kHzinput.HigherSINADcan  
be obtained with a 3V supply. For example, when an exter-  
nal 3V is applied to REFCOMP (tie VREF to GND), a SINAD  
of 83.5dB can be achieved as shown in Figure 3b.  
DC Performance  
0
Onewayofmeasuringthetransitionnoiseassociatedwith  
a high resolution ADC is to use a technique where a DC  
signal is applied to the input of the ADC and the resulting  
output codes are collected over a large number of conver-  
sions. For example, in Figure 2 the distribution of output  
codes is shown for a DC input that had been digitized 4096  
times. The distribution is Gaussian and the RMS code  
transition noise is about 1.6LSB.  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
1200  
V
= 2.7V  
DD  
1044  
895  
INTERNAL REF  
21.875  
43.75  
87.5  
0
65.625  
1000  
800  
600  
400  
200  
0
FREQUENCY (kHz)  
830  
1863L7L G03  
Figure 3a. LTC1867L Nonaveraged 4096 Point  
FFT Plot with 2.7V Supply  
465  
333  
0
261  
170  
–20  
–40  
58  
23  
9
7
1
20 21  
24 25 26 27 28 29 30 31  
CODE  
22 23  
–60  
–80  
1863L7L G12  
Figure 2. LTC1867L Histogram for 4096 Conversions  
–100  
–120  
–140  
Dynamic Performance  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise at  
the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental.  
21.875  
43.75  
87.5  
0
65.625  
FREQUENCY (kHz)  
1863L7L F03b  
Figure 3b. LTC1867L Nonaveraged 4096 Point  
FFT Plot with 3V Supply  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
1863L7Lf  
11  
LTC1863L/LTC1867L  
W U U  
U
APPLICATIO S I FOR ATIO  
band between DC and half the sampling frequency. THD is  
expressed as:  
compensation pin, REFCOMP, must be bypassed with a  
10µF ceramic or tantalum in parallel with a 0.1µF ceramic  
for best noise performance.  
2
V22 + V32 + V42... + VN  
THD = 20log  
Digital Interface  
V1  
The LTC1863L and LTC1867L have a very simple digital  
interface that is enabled by the control input, CS/CONV. A  
logic rising edge applied to the CS/CONV input will initiate  
a conversion. After the conversion, taking CS/CONV low  
will enable the serial port and the ADC will present digital  
data in two’s complement format in bipolar mode or  
straight binary format in unipolar mode, through the SCK/  
SDO serial port.  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
Internal Reference  
T
he LTC1863L and LTC1867L have an on-chip, tempera-  
ture compensated, curvature corrected, bandgap refer-  
ence that is factory trimmed to 1.25V. It is internally  
connected to a reference amplifier and is available at VREF  
(Pin 10). A 3k resistor is in series with the output so that  
it can be easily overdriven by an external reference if  
better drift and/or accuracy are required as shown in  
Figure4.ThereferenceamplifiergainstheVREF voltageby  
2x to 2.5V at REFCOMP (Pin 9). This reference amplifier  
Internal Clock  
The internal clock is factory trimmed to achieve a typical  
conversion time of 3.2µs and a maximum conversion  
time, 3.7µs, overthefulloperatingtemperaturerange. The  
typical acquisition time is 1.68µs, and a throughput sam-  
pling rate of 175ksps is tested and guaranteed.  
R1  
3k  
Automatic Nap Mode  
V
10  
2.2µF  
9
REF  
BANDGAP  
REFERENCE  
1.25V  
TheLTC1863LandLTC1867Lgointoautomaticnapmode  
when CS/CONV is held high after the conversion is com-  
plete. With a typical operating current of 750µA and auto-  
matic 170µA nap mode between conversions, the power  
dissipation drops with reduced sample rate. The ADC only  
keepstheVREFand REFCOMPvoltagesactivewhenthepart  
is in the automatic nap mode. The slower the sample rate  
allows the power dissipation to be lower (see Figure 5).  
REFCOMP  
REFERENCE  
AMP  
2.5V  
10µF  
R2  
R3  
GND  
15  
LTC1863L/LTC1867L  
1863L7L F04a  
800  
V
= 2.7V  
DD  
Figure 4a. LT1867L Reference Circuit  
700  
600  
500  
400  
300  
200  
100  
3V  
V
IN  
LT1790A-1.25  
10  
2.2µF  
9
V
V
OUT  
REF  
LTC1863L/  
LTC1867L  
REFCOMP  
+
10µF  
0.1µF  
15  
1
10  
f
100  
(ksps)  
1000  
GND  
SAMPLE  
1863L7L F04b  
1863L7L G09  
Figure 5. Supply Current vs fSAMPLE  
Figure 4b. Using the LT1790A-1.25 as an External Reference  
1863L7Lf  
12  
LTC1863L/LTC1867L  
W U U  
APPLICATIO S I FOR ATIO  
U
If the CS/CONV returns low during a bit decision, it can  
create a small error. For best performance ensure that the  
CS/CONVreturnsloweitherwithin100nsaftertheconver-  
sion starts (i.e. before the first bit decision) or after the  
conversion ends. If CS/CONV is low when the conversion  
ends, the MSB bit will appear on SDO at the end of the  
conversion and the ADC will remain powered up.  
the common return for these bypass capacitors is essen-  
tial to the low noise operation of the ADC. The width for  
these tracks should be as wide as possible.  
Timing and Control  
Conversion start is controlled by the CS/CONV digital  
input. The rising edge transition of the CS/CONV will start  
aconversion.Onceinitiated,itcannotberestarteduntilthe  
conversion is complete. Figures 6 and 7 show the timing  
diagrams for two types of CS/CONV pulses.  
Sleep Mode  
If the SLP = 1 is selected in the input word, the ADC will  
enter SLEEP mode and draw only leakage current (pro-  
vided that all the digital inputs stay at GND or VDD). After  
release from the SLEEP mode, the ADC needs 80ms to  
wake up (charge the 2.2µF/10µF bypass capacitors on  
VREF/REFCOMP pins).  
Example 1 (Figure 6) shows the LTC1863L/LTC1867L  
operating in automatic nap mode with CS/CONV signal  
staying HIGH after the conversion. Automatic nap mode  
provides power reduction at reduced sample rate.  
The ADCs can also operate with the CS/CONV signal  
returning LOW before the conversion ends. In this mode  
(Example 2, Figure 7), the ADCs remain powered up. The  
digital output, SDO, will go HIGH immediately after the  
conversion is complete if the analog inputs are above half  
scaleinunipolarmodeorbelowhalfscaleinbipolarmode.  
This is a way to measure the conversion time of the A/D  
converter.  
Board Layout and Bypassing  
To obtain the best performance, a printed circuit board  
with a ground plane is required. Layout for the printed  
circuit board should ensure digital and analog signal lines  
are separated as much as possible. In particular, care  
should be taken not to run any digital signal alongside an  
analog signal.  
Figures 8 and 9 are the transfer characteristics for the  
bipolar and unipolar mode.  
All analog inputs should be screened by GND. VREF  
REFCOMP and VDD should be bypassed to this ground  
plane as close to the pin as possible; the low impedance of  
,
1/f  
SCK  
CS/CONV  
t
NAP MODE  
CONV  
NOT NEEDED FOR LTC1863L  
12 13 14 15 16  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
DON'T CARE  
DON'T CARE  
SD 0S  
MSB  
S1 S0 COM UNI SLP  
Hi-Z  
Hi-Z  
SDO  
(LTC1863L)  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
(LTC1867L)  
1867 F06  
Figure 6. Example 1, CS/CONV Starts a Conversion and Remains HIGH Until Next Data Transfer. With CS/CONV  
Remaining HIGH after the Conversion, Automatic Nap Modes Provides Power Reduction at Reduced Sample Rate  
1863L7Lf  
13  
LTC1863L/LTC1867L  
U
W U U  
APPLICATIO S I FOR ATIO  
t
CS/CONV  
ACQ  
NOT NEEDED FOR LTC1863L  
12 13 14 15 16  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
SD 0S  
S1 S0 COM UNI SLP  
DON'T CARE  
DON'T CARE  
t
CONV  
SDO  
MSB = D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
(LTC1863L)  
Hi-Z  
Hi-Z  
t
CONV  
SDO  
(LTC1867L)  
MSB = D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
1863L7L F07  
Figure 7. Example 2, CS/CONV Starts a Conversion with Short Active HIGH Pulse.  
With CS/CONV Returning LOW Before the Conversion, the ADC Remains Powered Up.  
111...111  
011...111  
011...110  
111...110  
BIPOLAR  
ZERO  
100...001  
100...000  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
UNIPOLAR  
ZERO  
FS = 2.5V  
FS = 2.5V  
n
000...001  
000...000  
n
1LSB = FS/2  
100...001  
100...000  
1LSB = FS/2  
1LSB (LTC1863L) = 610µV  
1LSB (LTC1867L) = 38.1µV  
1LSB (LTC1863L) = 610µV  
1LSB (LTC1867L) = 38.1µV  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FS/2  
FS/2 – 1LSB  
0V  
FS – 1LSB  
LSB  
INPUT VOLTAGE (V)  
1863L7L F09  
1863L7L F08  
Figure 8. LTC1863L/LTC1867L Bipolar Transfer  
Characteristics (Two’s Complement)  
Figure 9. LTC1863L/LTC1867L Unipolar Transfer  
Characteristics (Straight Binary)  
1863L7Lf  
14  
LTC1863L/LTC1867L  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1863L7Lf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1863L/LTC1867L  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1417  
14-Bit, 400ksps Serial ADC  
20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
Low Input Offset: 75µV/125µV  
LT1468/LT1469  
LTC1609  
Single/Dual 90MHz, 22V/µs, 16-Bit Accurate Op Amps  
16-Bit, 200ksps Serial ADC  
65mW, Configurable Bipolar and Unipolar Input Ranges, 5V Supply  
60µA Supply Current, 10ppm/°C, SOT-23 Package  
LT1790  
Micropower Low Dropout Reference  
Micropower Precision Series Reference  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
10-Bit/12-Bit, 8-Channel, 400ksps ADC  
12-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LT1790A-1.25  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
Bandgap, 60µA Max Supply Current, 10ppm/°C, SOT-23 Package  
Parallel Output, Programmable MUX and Sequencer, 5V Supply  
Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
5V Supply, Pin Compatible with LTC1863L/LTC1867L  
850µA at 250ksps, 2µA at 1ksps, SO-8 and MSOP Packages  
450µA at 150ksps, 10µA at 1ksps, SO-8 and MSOP Packages  
LTC1860L/LTC1861L 3V, 12-Bit, 1-/2-Channel 150ksps ADC  
LTC1863/LTC1867  
LTC1864/LTC1865  
12-/16-Bit, 8-Channel 200ksps ADC  
16-Bit, 1-/2-Channel 250ksps ADC in MSOP  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel 150ksps ADC in MSOP  
1863L7Lf  
LT/TP 0105 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
©LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY