LTC1864ACS8 [Linear]

レPower, 16-Bit, 250ksps 1- and 2-Channel ADCs in MSOP; レ功耗,16位, 250ksps的1和2通道ADC ,采用MSOP
LTC1864ACS8
型号: LTC1864ACS8
厂家: Linear    Linear
描述:

レPower, 16-Bit, 250ksps 1- and 2-Channel ADCs in MSOP
レ功耗,16位, 250ksps的1和2通道ADC ,采用MSOP

文件: 总20页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1864/LTC1865  
µPower, 16-Bit, 250ksps  
1- and 2-Channel ADCs in MSOP  
U
FEATURES  
DESCRIPTIO  
TheLTC®1864/LTC1865are16-bitA/Dconvertersthatare  
offered in MSOP and SO-8 packages and operate on a  
single 5V supply. At 250ksps, the supply current is only  
850µA. The supply current drops at lower speeds because  
the LTC1864/LTC1865 automatically power down  
between conversions. These 16-bit switched capacitor  
successiveapproximationADCsincludesample-and-holds.  
The LTC1864 has a differential analog input with an  
adjustable reference pin. The LTC1865 offers a software-  
selectable 2-channel MUX and an adjustable reference pin  
on the MSOP version.  
16-Bit 250ksps ADCs in MSOP Package  
Single 5V Supply  
Low Supply Current: 850µA (Typ)  
Auto Shutdown Reduces Supply Current  
to 2µA at 1ksps  
True Differential Inputs  
1-Channel (LTC1864) or 2-Channel (LTC1865)  
Versions  
SPI/MICROWIRETM Compatible Serial I/O  
16-Bit Upgrade to 12-Bit LTC1286/LTC1298  
Pin Compatible with 12-Bit LTC1860/LTC1861  
The 3-wire, serial I/O, small MSOP or SO-8 package and  
extremely high sample rate-to-power ratio make these  
ADCs ideal choices for compact, low power, high speed  
systems.  
U
APPLICATIO S  
High Speed Data Acquisition  
Portable or Compact Instrumentation  
These ADCs can be used in ratiometric applications or  
with external references. The high impedance analog  
inputs and the ability to operate with reduced spans down  
to 1V full scale, allow direct connection to signal sources  
in many applications, eliminating the need for external  
gain stages.  
Low Power Battery-Operated Instrumentation  
Isolated and/or Remote Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
U
TYPICAL APPLICATIO  
Supply Current vs Sampling Frequency  
1000  
Single 5V Supply, 250ksps, 16-Bit Sampling ADC  
100  
10  
1µF  
5V  
LTC1864  
1
1
2
3
4
8
7
6
V
V
CC  
REF  
+
IN  
IN  
SCK  
SDO  
ANALOG INPUT  
0V TO 5V  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
0.1  
5
GND  
CONV  
0.01  
1864 TA01  
0.01  
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
1864 TA02  
sn18645 18645fs  
1
LTC1864/LTC1865  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Operating Temperature Range  
Supply Voltage (VCC) ................................................. 7V  
Ground Voltage Difference  
LTC1864C/LTC1865C/  
LTC1864AC/LTC1865AC ........................ 0°C to 70°C  
LTC1864I/LTC1865I/  
LTC1864AI/LTC1865AI ..................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
AGND, DGND LTC1865 MSOP Package ........... ±0.3V  
Analog Input ............... (GND – 0.3V) to (VCC + 0.3V)  
Digital Input ................................(GND – 0.3V) to 7V  
Digital Output .............. (GND – 0.3V) to (VCC + 0.3V)  
Power Dissipation.............................................. 400mW  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
LTC1865CMS  
LTC1864CMS8  
LTC1864IMS8  
LTC1864ACMS8  
LTC1864AIMS8  
CONV  
CH0  
1
2
3
4
5
10  
9
V
V
SCK  
SDO  
SDI  
V
IN  
1
2
3
4
8 V  
CC  
REF  
CC  
REF  
+
7 SCK  
LTC1865IMS  
LTC1865ACMS  
LTC1865AIMS  
CH1  
8
6 SDO  
5 CONV  
IN¯  
AGND  
DGND  
7
6
GND  
MS8 PACKAGE  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTHQ  
MS PART MARKING  
LTHS  
TJMAX = 150°C, θJA = 210°C/W  
TJMAX = 150°C, θJA = 210°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CONV  
CH0  
V
CC  
V
V
CC  
REF  
+
LTC1864CS8  
LTC1864IS8  
LTC1864ACS8  
LTC1864AIS8  
LTC1865CS8  
LTC1865IS8  
LTC1865ACS8  
LTC1865AIS8  
SCK  
SDO  
SDI  
IN  
IN  
SCK  
CH1  
SDO  
CONV  
GND  
GND  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 150°C, θJA = 175°C/W  
TJMAX = 150°C, θJA = 175°C/W  
1864  
1864I  
1864A  
1864AI  
1865  
1865I  
1865A  
1865AI  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
U W  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
A
LTC1864/LTC1865  
LTC1864A/LTC1865A  
PARAMETER  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
16  
14  
16  
No Missing Codes Resolution  
INL  
15  
Bits  
(Note 3)  
±8  
±6  
LSB  
Transition Noise  
Gain Error  
1.1  
1.1  
LSB  
RMS  
±20  
±20  
mV  
sn18645 18645fs  
2
LTC1864/LTC1865  
U
U W  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating Conditions, unless otherwise noted.  
LTC1864/LTC1865  
LTC1864A/LTC1865A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Offset Error  
LTC1864 SO-8 and MSOP, LTC1865 MSOP  
LTC1865 SO-8  
±2  
±3  
±5  
±7  
±2  
±3  
±5  
±7  
mV  
mV  
+
Input Differential Voltage Range  
Absolute Input Range  
V
= IN – IN  
0
V
0
V
REF  
V
IN  
+
REF  
IN Input  
IN Input  
0.05  
0.05  
V
+ 0.05  
CC  
0.05  
0.05  
V
+ 0.05  
V
V
CC  
V
CC  
V
/2  
/2  
CC  
V
REF  
Input Range  
LTC1864 SO-8 and MSOP,  
LTC1865 MSOP  
1
V
1
V
CC  
V
CC  
Analog Input Leakage Current  
(Note 4)  
±1  
±1  
µA  
C
IN  
Input Capacitance  
In Sample Mode  
During Conversion  
12  
5
12  
5
pF  
pF  
U W  
DY A IC ACCURACY  
TA = 25°C. VCC = 5V, VREF = 5V, fSAMPLE = 250kHz, unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
87  
dB  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
10kHz Input Signal  
100kHz Input Signal  
83  
76  
dB  
dB  
THD  
Total Hamonic Distortion Up to 5th Harmonic 10kHz Input Signal  
100kHz Input Signal  
88  
77  
dB  
dB  
Full Power Bandwidth  
20  
MHz  
kHz  
Full Linear Bandwidth  
S/(N + D) 75dB  
125  
U
DIGITAL A DDCELECTRICALCHARACTERISTICS  
The denotes specifications which apply  
over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
V
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 5.25V  
= 4.75V  
2.4  
CC  
CC  
IN  
0.8  
2.5  
V
I
I
= V  
µA  
µA  
IH  
IL  
CC  
= 0V  
2.5  
IN  
V
OH  
V
CC  
V
CC  
= 4.75V, I = 10µA  
= 4.75V, I = 360µA  
4.5  
2.4  
4.74  
4.72  
V
V
O
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
= 4.75V, I = 1.6mA  
0.4  
V
µA  
OL  
CC  
O
I
I
I
I
CONV = V  
±3  
OZ  
CC  
V
OUT  
V
OUT  
= 0V  
25  
20  
mA  
mA  
SOURCE  
SINK  
= V  
CC  
Reference Current (LTC1864 SO-8 and  
MSOP, LTC1865 MSOP)  
CONV = V  
0.001  
0.05  
3
0.1  
µA  
mA  
REF  
CC  
f
= f  
SMPL  
SMPL(MAX)  
I
Supply Current  
CONV = V After Conversion  
0.001  
0.85  
3
1.3  
µA  
mA  
CC  
CC  
f
= f  
SMPL  
SMPL(MAX)  
P
D
Power Dissipation  
f
= f  
SMPL(MAX)  
4.25  
mW  
SMPL  
sn18645 18645fs  
3
LTC1864/LTC1865  
W U  
U
U
U
W
The denotes specifications which apply over the  
RECO E DED OPERATI G CO DITIO S  
full operating temperature range, otherwise specifications are TA = 25°C.  
LTC1864/LTC1865  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
20  
UNITS  
V
V
Supply Voltage  
4.75  
CC  
f
t
t
Clock Frequency  
DC  
MHz  
µs  
SCK  
CYC  
SMPL  
Total Cycle Time  
16 • SCK + t  
CONV  
Analog Input Sampling Time  
LTC1864  
LTC1865  
16  
14  
SCK  
SCK  
t
Setup Time CONVBefore First SCK↑  
(See Figure 1)  
30  
ns  
suCONV  
t
t
t
t
t
Hold Time SDI After SCK↑  
Setup Time SDI Stable Before SCK↑  
SCK High Time  
LTC1865  
LTC1865  
15  
15  
ns  
ns  
hDI  
suDI  
f
f
= f  
SCK(MAX)  
= f  
SCK(MAX)  
40%  
40%  
1/f  
1/f  
WHCLK  
WLCLK  
WHCONV  
SCK  
SCK  
SCK  
SCK Low Time  
SCK  
CONV High Time Between Data  
Transfer Cycles  
t
µs  
CONV  
t
t
CONV Low Time During Data Transfer  
16  
13  
SCK  
ns  
WLCONV  
hCONV  
Hold Time CONV Low After Last SCK↑  
W U  
The denotes specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are TA = 25°C. VCC = 5V, VREF = 5V, fSCK = fSCK(MAX) as defined in Recommended Operating  
Conditions, unless otherwise noted.  
LTC1864/LTC1865  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
t
f
t
Conversion Time (See Figure 1)  
Maximum Sampling Frequency  
Delay Time, SCKto SDO Data Valid  
2.75  
3.2  
CONV  
250  
kHz  
SMPL(MAX)  
dDO  
C
= 20pF  
15  
20  
25  
ns  
ns  
LOAD  
t
t
t
Delay Time, CONVto SDO Hi-Z  
30  
30  
10  
60  
60  
ns  
ns  
ns  
dis  
en  
Delay Time, CONVto SDO Enabled  
C
C
= 20pF  
= 20pF  
LOAD  
LOAD  
Time Output Data Remains  
Valid After SCK↓  
5
hDO  
t
t
SDO Rise Time  
SDO Fall Time  
C
C
= 20pF  
= 20pF  
8
4
ns  
ns  
r
f
LOAD  
LOAD  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Integral nonlinearity is defined as deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
of a device may be impaired.  
Note 2: All voltage values are with respect to GND.  
Note 4: Channel leakage current is measured while the part is in sample  
mode.  
sn18645 18645fs  
4
LTC1864/LTC1865  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Sampling  
Sleep Current vs Temperature  
Frequency  
Supply Current vs Temperature  
1000  
800  
600  
400  
200  
0
1000  
1000  
100  
10  
V
A
= 5V  
CONV = V = 5V  
CC  
CC  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
CONV LOW = 800ns  
1
V
V
f
= 5V  
CC  
0.1  
= 5V  
REF  
= 250kHz  
SAMPLE  
CONV HIGH = 3.2µS  
50  
75 100 125  
TEMPERATURE (°C)  
0.01  
0.1  
SAMPLING FREQUENCY (kHz)  
1.0  
10  
100  
1000  
–50  
0
25  
–50  
0
25  
50  
75 100 125  
0.01  
–25  
–25  
TEMPERATURE (°C)  
1864/65 G01  
1864/65 G02  
1864/65 G03  
Reference Current vs  
Sampling Rate  
Reference Current vs  
Temperature  
Reference Current vs  
Reference Voltage  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
60  
50  
40  
30  
20  
10  
0
V
V
f
= 5V  
= 5V  
V
T
= 5V  
= 25°C  
= 5V  
V
T
S
= 5V  
CC  
REF  
CC  
CC  
A
= 25°C  
A
= 250kHz  
V
REF  
f
= 250kHz  
S
CONV LOW = 800ns  
0
50  
100  
150  
200  
250  
0
1
2
3
4
5
–50  
0
25  
50  
75 100 125  
–25  
SAMPLE RATE (kHz)  
V
(V)  
TEMPERATURE (°C)  
REF  
1864/65 G04  
1864/65 G06  
1864/65 G05  
Analog Input Leakage Current vs  
Temperature  
Typical INL Curve  
Typical DNL Curve  
100  
75  
50  
25  
0
4
2
2
1
V
V
= 5V  
REF  
CONV = 0V  
V
T
= 5V  
CC  
V
T
= 5V  
CC  
A
CC  
A
= 5V  
= 25°C  
= 25°C  
V
= 5V  
V
= 5V  
REF  
REF  
0
0
–2  
–4  
–1  
–2  
–25  
0
25  
50  
75  
125  
–50  
100  
0
16384  
32768  
CODE  
65536  
49152  
0
16384  
32768  
CODE  
65536  
49152  
TEMPERATURE (°C)  
1864/65 G09  
1864/65 G07  
1864/65 G08  
sn18645 18645fs  
5
LTC1864/LTC1865  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Change in Gain Error vs  
Reference Voltage  
Change in Offset Error vs  
Reference Voltage  
Change in Offset vs Temperature  
5
4
75  
50  
20  
15  
V
V
= 5V  
= 5V  
V
T
= 5V  
CC  
REF  
V
T
= 5V  
CC  
A
CC  
= 25°C  
= 25°C  
A
3
10  
2
5
1
0
25  
0
–1  
–2  
–3  
–4  
–5  
–5  
0
–10  
–15  
–20  
–25  
–50  
0
25  
50  
75 100 125  
–25  
0
1
2
3
4
5
0
2
3
4
5
1
TEMPERATURE (°C)  
REFERENCE VOLTAGE(V)  
REFERENCE VOLTAGE (V)  
1864/65 G11  
1864/65 G10  
1864/65 G12  
Histogram of 4096 Conversions  
of a DC Input Voltage  
Change in Gain Error vs  
Temperature  
4096 Point FFT Nonaveraged  
5
4
0
–20  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
T
REF  
= 5V  
V
V
= 5V  
= 5V  
f
f
V
V
T
= 203.125kHz  
= 99.72763kHz  
= 5V  
REF  
= 25°C  
CC  
A
V
CC  
REF  
S
IN  
CC  
= 25°C  
1534  
= 5V  
3
= 5V  
–40  
2
A
1178  
1
–60  
0
729  
–80  
–1  
–2  
–3  
–4  
–5  
516  
2
–100  
–120  
–140  
127  
0
0
12  
3
0
0
5
–50  
0
25  
50  
75 100 125  
0
CODE  
–25  
–4 –3 –2 –1  
1
4
0
40  
60  
80  
100  
120  
20  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1864/65 G13  
1864/65 G14  
1864/65 G15  
SFDR vs Frequency  
SINAD vs Frequency  
THD vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SNR  
SINAD  
V
= 5V  
= 5V  
V
V
T
= 5V  
= 5V  
V
= 5V  
CC  
REF  
= 25°C  
CC  
REF  
CC  
V
T
V
T
= 5V  
REF  
= 25°C  
= 25°C  
A
A
A
V
= 0dB  
V
= 0dB  
V
= 0dB  
IN  
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
F
(kHz)  
F
(kHz)  
F
(kHz)  
IN  
IN  
IN  
1864/5 G18  
1864/5 G16  
1864/5 G17  
sn18645 18645fs  
6
LTC1864/LTC1865  
U
U
U
PI FU CTIO S  
LTC1864  
VREF (Pin 1): Reference Input. The reference input defines  
the span of the A/D converter and must be kept free of  
noise with respect to GND.  
IN+, IN(Pins 2, 3): Analog Inputs. These inputs must be  
free of noise with respect to GND.  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this pin.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
V
CC (Pin 8): Positive Supply. This supply must be kept  
CONV (Pin 5): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
LTC1865 (MSOP Package)  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
SDO (Pin 7): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK(Pin8):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
VCC (Pin 9): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to AGND.  
AGND (Pin 4): Analog Ground. AGND should be tied  
directly to an analog ground plane.  
VREF (Pin 10): Reference Input. The reference input de-  
fines the span of the A/D converter and must be kept free  
of noise with respect to AGND.  
DGND (Pin 5): Digital Ground. DGND should be tied  
directly to an analog ground plane.  
SDI (Pin 6): Digital Data Input. The A/D configuration  
word is shifted into this input.  
LTC1865 (SO-8 Package)  
SDI (Pin 5): Digital Data Input. The A/D configuration  
CONV (Pin 1): Convert Input. A logic high on this input  
starts the A/D conversion process. If the CONV input is left  
high after the A/D conversion is finished, the part powers  
down. A logic low on this input enables the SDO pin,  
allowing the data to be shifted out.  
word is shifted into this input.  
SDO (Pin 6): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
SCK(Pin7):ShiftClockInput. Thisclocksynchronizesthe  
serial data transfer.  
CH0, CH1 (Pins 2, 3): Analog Inputs. These inputs must  
be free of noise with respect to GND.  
VCC (Pin 8): Positive Supply. This supply must be kept  
free of noise and ripple by bypassing directly to the  
analog ground plane. VREF is tied internally to this pin.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
sn18645 18645fs  
7
LTC1864/LTC1865  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
V
CC  
(SDI) SCK  
CONV  
PIN NAMES IN  
PARENTHESES  
REFER TO LTC1865  
SDO  
SERIAL  
PORT  
CONVERT  
CLK  
BIAS AND  
SHUTDOWN  
DATA IN  
16 BITS  
+
IN  
+
(CH0)  
16-BIT  
SAMPLING  
ADC  
DATA OUT  
IN  
(CH1)  
1864/65 BD  
GND  
V
REF  
TEST CIRCUITS  
Load Circuit for tdDO, tr, tf, tdis and ten  
Voltage Waveforms for SDO Rise and Fall Times, tr, tf  
TEST POINT  
V
OH  
SDO  
V
OL  
V
t
WAVEFORM 2, t  
en  
3k  
CC dis  
SDO  
t
dis  
WAVEFORM 1  
t
r
t
f
1864 TC04  
20pF  
1864 TC01  
Voltage Waveforms for ten  
Voltage Waveforms for tdis  
CONV  
V
CONV  
IH  
SDO  
1864 TC03  
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
90%  
10%  
t
en  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
Voltage Waveforms for SDO Delay Times, tdDO and thDO  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
SCK  
V
IL  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
t
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
dDO  
1864 TC05  
t
hDO  
V
V
OH  
OL  
SDO  
1864 TC02  
sn18645 18645fs  
8
LTC1864/LTC1865  
W U U  
APPLICATIO S I FOR ATIO  
LTC1864 OPERATION  
U
Analog Inputs  
The LTC1864 has a unipolar differential analog input. The  
converter will measure the voltage between the “IN+” and  
“IN” inputs. A zero code will occur when IN+ minus IN–  
equals zero. Full scale occurs when IN+ minus INequals  
VREF minus 1LSB. See Figure 2. Both the “IN+” and  
“IN” inputs are sampled at the same time, so common  
mode noise on the inputs is rejected by the ADC. If “IN”  
isgroundedandVREF istiedtoVCC, arail-to-railinputspan  
will result on “IN+” as shown in Figure 3.  
Operating Sequence  
The LTC1864 conversion cycle begins with the rising edge  
of CONV. After a period equal to tCONV, the conversion is  
finished. If CONV is left high after this time, the LTC1864  
goesintosleepmodedrawingonlyleakagecurrent. Onthe  
fallingedgeofCONV, theLTC1864goesintosamplemode  
and SDO is enabled. SCK synchronizes the data transfer  
with each bit being transmitted from SDO on the falling  
SCK edge. The receiving system should capture the data  
from SDO on the rising edge of SCK. After completing the  
data transfer, if further SCK clocks are applied with CONV  
low, SDO will output zeros indefinitely. See Figure 1.  
Reference Input  
The voltage on the reference input of the LTC1864 defines  
thefull-scalerangeoftheA/Dconverter. TheLTC1864can  
operate with reference voltages from VCC to 1V.  
CONV  
t
SMPL  
8
SLEEP MODE  
t
CONV  
1
2
3
4
5
6
7
9 10 11 12 13 14 15 16  
SCK  
SDO  
B14  
B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B15  
B13  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1854 F01  
Figure 1. LTC1864 Operating Sequence  
1µF  
V
CC  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
LTC1864  
V
1
2
3
4
8
7
6
V
REF  
CC  
+
V
= 0V TO V  
CC  
IN  
IN  
SCK  
IN  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
V *  
IN  
SDO  
5
GND  
CONV  
1864 F03  
+
*V = IN – IN  
IN  
1864 F02  
Figure 2. LTC1864 Transfer Curve  
Figure 3. LTC1864 with Rail-to-Rail Input Span  
sn18645 18645fs  
9
LTC1864/LTC1865  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1865 OPERATION  
single-ended mode, all input channels are measured with  
respect to GND. A zero code will occur when the “+” input  
minus the “–” input equals zero. Full scale occurs when  
the “+” input minus the “–” input equals VREF minus  
1LSB. See Figure 5. Both the “+” and “–” inputs are  
sampled at the same time so common mode noise is  
rejected. The input span in the SO-8 package is fixed at  
VREF = VCC. If the “–” input in differential mode is  
grounded, a rail-to-rail input span will result on the “+”  
input.  
Operating Sequence  
TheLTC1865conversioncyclebeginswiththerisingedge  
of CONV. After a period equal to tCONV, the conversion is  
finished. If CONV is left high after this time, the LTC1865  
goes into sleep mode drawing only leakage current. The  
LTC1865’s 2-bit data word is clocked into the SDI input on  
the rising edge of SCK after CONV goes low. Additional  
inputs on the SDI pin are then ignored until the next CONV  
cycle. Theshiftclock(SCK)synchronizesthedatatransfer  
witheachbitbeingtransmittedonthefallingSCKedgeand  
captured on the rising SCK edge in both transmitting and  
receiving systems. The data is transmitted and received  
simultaneously (full duplex). After completing the data  
transfer, if further SCK clocks are applied with CONV low,  
SDO will output zeros indefinitely. See Figure 4.  
Reference Input  
The reference input of the LTC1865 SO-8 package is  
internally tied to VCC. The span of the A/D converter is  
therefore equal to VCC. The voltage on the reference input  
of the LTC1865 MSOP package defines the span of the  
A/D converter. The LTC1865 MSOP package can operate  
with reference voltages from 1V to VCC.  
Analog Inputs  
Table 1. Multiplexer Channel Selection  
The two bits of the input word (SDI) assign the MUX  
configuration for the next requested conversion. For a  
given channel selection, the converter will measure the  
voltage between the two channels indicated by the “+”  
and “–” signs in the selected row of the following table. In  
MUX ADDRESS  
CHANNEL #  
SGL/DIFF ODD/SIGN  
0
1
GND  
1
1
0
0
0
1
0
1
+
SINGLE-ENDED  
MUX MODE  
DIFFERENTIAL  
MUX MODE  
+
+
+
1864 TBL1  
CONV  
t
SMPL  
SLEEP MODE  
t
CONV  
SDI  
S/D O/S  
DON’T CARE  
DON’T CARE  
10 11 12 13 14 15 16  
1
2
3
4
5
6
7
8
9
SCK  
SDO  
B0*  
B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1  
B14  
B15  
B13  
Hi-Z  
Hi-Z  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER SCK CLOCKS ARE  
APPLIED WITH CONV LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY  
1864 F04  
Figure 4. LTC1865 Operating Sequence  
sn18645 18645fs  
10  
LTC1864/LTC1865  
W U U  
APPLICATIO S I FOR ATIO  
U
induce errors or noise in the output code. Bypass the VCC  
and VREF pins directly to the analog ground plane with a  
minimum of 1µF tantalum. Keep the bypass capacitor  
leads as short as possible.  
GENERAL ANALOG CONSIDERATIONS  
Grounding  
The LTC1864/LTC1865 should be used with an analog  
ground plane and single point grounding techniques. Do  
not use wire wrapping techniques to breadboard and  
evaluatethedevice.Toachievetheoptimumperformance,  
use a printed circuit board. The ground pins (AGND and  
DGND for the LTC1865 MSOP package and GND for the  
LTC1864 and LTC1865 SO-8 package) should be tied  
directly to the analog ground plane with minimum lead  
length.  
Analog Inputs  
Because of the capacitive redistribution A/D conversion  
techniques used, the analog inputs of the LTC1864/  
LTC1865 have capacitive switching input current spikes.  
These current spikes settle quickly and do not cause a  
problem if source resistances are less than 200or high  
speed op amps are used (e.g., the LT®1211, LT1469,  
LT1807, LT1810, LT1630, LT1226orLT1215). Butiflarge  
source resistances are used, or if slow settling op amps  
drive the inputs, take care to ensure the transients caused  
by the current spikes settle completely before the conver-  
sion begins.  
Bypassing  
For good performance, the VCC and VREF pins must be free  
of noise and ripple. Any changes in the VCC/VREF voltage  
with respect to ground during the conversion cycle can  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  
*
V
IN  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
*V = (SELECTED “+” CHANNEL) –  
IN  
1864 F05  
(SELECTED “–” CHANNEL)  
REFER TO TABLE 1  
Figure 5. LTC1865 Transfer Curve  
sn18645 18645fs  
11  
LTC1864/LTC1865  
W U U  
U
APPLICATIO S I FOR ATIO  
sn18645 18645fs  
12  
LTC1864/LTC1865  
W U U  
APPLICATIO S I FOR ATIO  
U
Component Side Silk Screen for LTC1864 Evaluation Circuit  
Component Side Showing Traces  
(Note Wider Traces on Analog Side)  
Bottom Side Showing Traces  
(Note Almost No Analog Traces on Board Bottom)  
Ground Layer with Separate Analog and Digital Grounds  
Supply Layer with 5V Digital Supply and Analog Ground Repeated  
sn18645 18645fs  
13  
LTC1864/LTC1865  
APPLICATIO S I FOR ATIO  
W U U  
U
U11  
5V  
AN  
5V  
DIG  
15V  
LT1121CST-5  
R4  
2  
1
3
V
V
OUT  
IN  
C26  
GND  
2
10µF  
6.3V  
1206  
5V  
AN  
C3  
10µF  
6.3V  
1206  
C4  
0.1µF  
5V  
5V  
DIG  
15V  
DIG  
LTC1485  
RO V  
RN1  
330  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1V to 5V REFERENCE  
0V to V INPUT  
V
IN  
IN  
V
CC  
SCK  
SDO  
REF  
CC  
B
A
1
2
3
4
8
7
6
5
+
REF  
RE  
DE  
DI  
GND  
CONV  
GND  
120Ω  
U3  
LTC1864CMS8  
ANALOG GROUND PLANE  
4 CONDUCTOR  
TELEPHONE WIRES  
TO RECEIVER  
C23  
0.1µF  
C24  
0.1µF  
5V  
5V  
DIG  
DIG  
4
2
1
5
500Ω  
5V  
U12A  
U12B  
16  
16  
74AC109  
2
74AC109  
U9B  
74AC00  
3
6
7
14  
10  
9
V
V
CC  
CC  
J
K
Q
Q
J
K
Q
Q
3
4
1
5
13  
12  
15  
11  
MC74VHC1G66  
CLK  
CLK  
CLR  
PRE  
CLR  
PRE  
8
8
GND  
5V  
GND  
5V  
DIG  
DIG  
U9A  
74AC00  
C16  
0.1µF  
C17  
0.1µF  
5V  
5V  
DIG  
DIG  
5V  
DIG  
74AC74  
Q
74AC86  
U6  
U7  
C18  
PRE  
D
CLK  
CLR  
5V  
74HC163AD  
74HC163AD  
0.1µF  
DIG  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
RESET  
CLK  
P0  
P1  
P2  
P3  
ENP  
GND  
RESET  
CLK  
P0  
P1  
P2  
P3  
ENP  
GND  
V
RCO  
V
CC  
RCO  
CC  
15  
14  
13  
12  
11  
10  
9
U10  
Q
LTC1799  
Q0  
Q1  
Q2  
Q3  
Q0  
Q1  
Q2  
Q3  
100k  
5
4
1
2
3
+
V
5V  
DIG  
OUT  
DIV  
GND  
SET  
74AC74  
Q
ENT  
LO  
ENT  
LO  
PRE  
D
CLK  
CLR  
U13C  
74AC32  
Q
CLK  
1864/65 AI2  
U13B  
74AC32  
Figure 6. LTC1864 Manchester Transmitter  
sn18645 18645fs  
14  
LTC1864/LTC1865  
W U U  
APPLICATIO S I FOR ATIO  
U
V
V
V
CC  
CC  
CC  
IC3A  
IC2B  
IC4B  
74AC08  
74AC74  
74AC74  
IC2A  
5
6
IC6D  
74AC32  
4
IC5C  
IC4A  
74AC08  
9
8
10  
12  
11  
13  
PRE  
D
CLK  
CLR  
Q
Q
74AC74  
V
V
CC  
CC IC1A  
74AC74  
PRE  
D
CLK  
CLR  
Q
Q
2
3
1
74AC86  
5
6
4
PRE  
D
CLK  
CLR  
Q
Q
CLK  
CLK  
2
3
1
5
6
4
2
3
1
PRE  
D
CLK  
CLR  
Q
Q
CLK  
DATA IN  
CLK  
9
8
10  
PRE  
D
CLK  
Q
Q
12  
11  
13  
CLK  
IC6C  
74LS32D  
CLR  
DATA  
DATA  
IC1B  
74AC74  
V
IC3B  
CC  
IC4D  
74AC08  
74AC74  
IC4C  
74AC08  
10  
12  
11  
13  
9
8
PRE  
D
CLK  
CLR  
Q
Q
STROBE  
CLK  
IC8  
74AC595  
RECEIVE CLOCK AT  
8 X TRANSMIT  
CLOCK FREQUENCY  
14  
15  
1
2
3
4
5
6
7
9
SER  
SCK  
SCL  
RCK  
8
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
QHIN  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
11  
10  
12  
13  
U1  
LTC1485  
V
CC  
V
CC  
1
2
3
4
8
7
6
5
RO  
RE  
DE  
DI  
V
CC  
B
A
D8  
GND  
OPTIONAL SERIAL TO  
PARALLEL CONVERTER  
V
CC  
IC9  
15V SUPPLY TO  
TRANSMITTER  
74AC595  
14  
11  
10  
12  
13  
15  
1
2
3
4
5
6
7
9
SER  
SCK  
SCL  
RCK  
8
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
QHIN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
STROBE  
IC7B  
74AC109  
4 CONDUCTOR  
TELEPHONE WIRES  
TO TRANSMITTER  
R1  
120  
11  
14  
12  
13  
10  
Q
PRE  
J
CLK  
K
DATA  
15  
9
CLR  
Q
1864/65 AI3  
Figure 7. LTC1864 Manchester Receiver  
sn18645 18645fs  
15  
LTC1864/LTC1865  
W U U  
U
APPLICATIO S I FOR ATIO  
Transmit LTC1864 Data Over Modular Telephone Wire  
Using Simple Transmitter/Receiver  
zeros, a start bit, followed by the 16 data bits (one sample  
every 48 clock cycles) at a clock frequency of 1MHz set by  
the LTC1799 oscillator. Sending at least 18 zeros before  
each start bit ensures that if synchronization is lost, the  
receiver can resynchronize to a start bit under all condi-  
tions. The serial to parallel converter shown in Figure 7  
requires 18 zeros to avoid triggering on data bits.  
Figure 6 shows a simple Manchester encoder and differ-  
ential transmitter suitable for use with the LTC1864. This  
circuit allows transmission of data over inexpensive tele-  
phone wire. This is useful for measuring a remote sensor,  
particularly when the cost of preserving the analog signal  
over a long distance is high.  
The Manchester receiver shown in Figure 7 was adopted  
from Xilinx application note 17-30 and would typically be  
implemented in an FPGA. The decoder clock frequency is  
nominally 8 times the transmit clock frequency and is very  
tolerant of frequency errors. The outputs of the decoder  
aredataandastrobethatindicatesavaliddatabit.Thedata  
can be deserialized using shift registers as shown. The  
startbitresetstheJ-K/flip-floponitswayintothefirstshift  
register. When it appears at the QHIN output of the second  
shiftregister, itsetstheflip-flopthatloadstheparalleldata  
into the output register.  
Manchester encoding is a clock signal that is modulated  
by exclusive ORing with the data signal. The resulting  
signalcontainsbothclockanddatainformationandhasan  
average duty cycle of 50%, that also allows transformer  
coupling. In practice, generating a Manchester encoded  
signal with an XOR gate will often produce glitches due to  
the skew between data and clock transitions. The D flip-  
flops in this encoder retime the clock and data such that  
the respective edges are closely aligned, effectively sup-  
pressing glitches. The retimed data and clock are then  
XORed to produce the Manchester encoded data, which is  
interfaced to telephone wire with an LTC1485 RS485  
transceiver.  
With AC family CMOS logic at 5V the receiver clock  
frequency is limited to 20MHz; the corresponding trans-  
mitter clock frequency is 2.5MHz. If the receiver is imple-  
mented in an FPGA that can be clocked at 160MHz, the  
LTC1864 can be clocked at its rated clock frequency of  
20MHz.  
In order to synchronize to incoming data, the receiver  
needs a sequence to indicate the start of a data word. The  
transmitter schematic shows logic that will produce 31  
sn18645 18645fs  
16  
LTC1864/LTC1865  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.52  
(.206)  
REF  
8
7 6 5  
5.23  
3.2 – 3.45  
(.206)  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.88 ± 0.1  
(.192 ± .004)  
(.126 – .136)  
MIN  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
0.13 ± 0.05  
(.005 ± .002)  
0.65  
(.0256)  
BCS  
MSOP (MS8) 1001  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn18645 18645fs  
17  
LTC1864/LTC1865  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
5.23  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
3.2 – 3.45  
(.206)  
4.88 ± 0.10  
(.192 ± .004)  
(.126 – .136)  
MIN  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
0.13 ± 0.05  
(.005 ± .002)  
MSOP (MS) 1001  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
TYP  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn18645 18645fs  
18  
LTC1864/LTC1865  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
SO8 1298  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
sn18645 18645fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
19  
LTC1864/LTC1865  
U
TYPICAL APPLICATIO  
Sample Two Channels Simultaneously with a Single Input ADC  
4096 Point FFT of Output  
5V  
0.1µF  
f
1
0
10  
20  
30  
40  
+
(0V TO 0.66V)  
0.1µF  
0.1µF  
1µF  
1µF  
4.096V  
f
1
f
2
f
S
= 7.507324kHz AT 530mV  
P-P  
100  
1/2  
REF  
= 45.007324kHz AT 1.7V  
= 100kHz  
P-P  
LT1492  
4.096V  
REF  
100pF  
5k  
20k  
8
1
28.7k  
50  
V
REF  
SCK  
7
6
5
5pF  
60  
70  
80  
90  
100  
110  
120  
130  
CC  
10k  
2
3
+
IN  
10k  
1µF  
LTC1864  
SDO  
IN  
5V  
5k  
CONV  
GND  
4
0.1µF  
0.1µF  
f
2
8
+
(0V TO 2V)  
100Ω  
1/2  
LT1492  
0
5
10 15 20 25 30 35 40 45 50  
FREQUENCY (kHz)  
100pF  
4
1864/65 TA03b  
1860 TA03  
RELATED PARTS  
PART NUMBER  
14-Bit Serial I/O ADCs  
LTC1417  
SAMPLE RATE  
POWER DISSIPATION  
DESCRIPTION  
400ksps  
200ksps  
20mW  
15mW  
16-Pin SSOP, Unipolar or Bipolar, Reference, 5V or ±5V  
Serial/Parallel I/O, Internal Reference, 5V or ±5V  
LTC1418  
16-Bit Serial I/O ADCs  
LTC1609  
200ksps  
65mW  
Configurable Bipolar or Unipolar Input Ranges, 5V  
References  
LT1460  
Micropower Precision Series Reference  
Micropower Low Dropout Reference  
Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23  
60µA Supply Current, 10ppm/°C, SOT-23  
LT1790  
Op Amps  
LT1468/LT1469  
LT1806/LT1807  
LT1809/LT1810  
Single/Dual 90MHz, 16-Bit Accurate Op Amps  
Single/Dual 325MHz Low Noise Op Amps  
Single/Dual 180MHz Low Distortion Op Amps  
22V/µs Slew Rate, 75µV/125µV Offset  
140V/µs Slew Rate, 3.5nV/Hz Noise, 80dBc Distortion  
350V/µs Slew Rate, 90dBc Distortion at 5MHz  
sn18645 18645fs  
LT/TP 0502 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY