LTC1980_1 [Linear]

Combination Battery Charger and DC/DC Converter; 组合电池充电器和DC / DC转换器
LTC1980_1
型号: LTC1980_1
厂家: Linear    Linear
描述:

Combination Battery Charger and DC/DC Converter
组合电池充电器和DC / DC转换器

转换器 电池
文件: 总16页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1980  
Combination Battery  
Charger and DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®1980 integrates PWM power control for charg-  
ing a battery and converting the battery voltage to a  
regulated output or simultaneously charging the battery  
whilepoweringasystemloadfromanunregulatedACwall  
adapter. Combining these features into a single IC pro-  
duces a smaller area and lower cost solution compared to  
presentlyavailablemulti-ICsolutions.TheLTC1980shares  
the discrete components for both the battery charger and  
theDC/DCconverterthusminimizingsizeandcostrelative  
to dual controller solutions. Both the battery charger and  
DC/DC converter use a current mode flyback topology for  
high efficiency and excellent transient response. Optional  
BurstModeoperationandpower-downmodeallowpower  
density, efficiency and output ripple to be tailored to the  
application.  
Single Controller IC Includes Battery Charger  
Plus DC/DC Converter  
Wall Adapter Voltage May be Above or Below  
Battery Voltage  
LDO Controller Allows Simultaneous Charging  
and Regulating from Wall Adapter Input  
Standalone Li-Ion Battery Charger Including Charge  
Termination, Overvoltage Protection, Shorted-Cell  
Detection and Battery Recharge  
Selectable 4.1V, 4.2V, 8.2V and 8.4V Float Voltages  
Simple NiMH and NiCd Battery Charger  
Pin Programmable Regulator Burst Mode® Operation  
and Shutdown for High Efficiency  
High Efficiency Current Mode 300kHz PWM  
Reduced Component Architecture  
Undervoltage Protection and Soft-Start Ensures  
Start-Up with Current Limited Wall Adapter  
Small 24-Pin SSOP Package  
The LTC1980 provides a complete Li-Ion battery charger  
with charge termination timer, preset Li-Ion battery volt-  
ages, overvoltage and undervoltage protection, and user-  
programmableconstant-currentcharging.Automaticbat-  
tery recharging, shorted-cell detection, and open-drain  
C/10 and wall plug detect outputs are also provided. User  
programming allows NiMH and NiCd battery chemistries  
to be charged as well.  
U
APPLICATIO S  
Digital Cameras  
Handheld Computers  
Personal Digital Assistants  
1W to 10W Uninterruptable Power Supplies  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
Patents Pending.  
U
TYPICAL APPLICATIO  
Li-Ion Charger and DC/DC Converter Using One IC  
3.3V Regulator Efficiency vs Load Current  
POWER FLOW  
90  
CHARGING  
BATTERY  
OPERATION  
UNREGULATED  
85  
80  
75  
70  
65  
60  
WALL ADAPTER  
Li-Ion  
BATTERY  
INPUT (3V TO 10V)  
SYSTEM  
POWER  
BAT-FET  
REG-FET  
LDO/  
SWITCH  
V
A
FIGURE 5  
= 3.6V  
3.3V  
1.8V  
1.5V  
BAT  
= 25°C  
SYSTEM LOAD  
T
DC/DC  
CONVERTERS  
10  
100  
1000  
LTC1980  
LOAD CURRENT (mA)  
1980 TA01  
1980 G04  
1980f  
1
LTC1980  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VREG to GND ............................................. –0.5V to 12V  
VBAT to GND ............................................. –0.5V to 12V  
PROG, ISENSE .............................................. –0.5V to 5V  
PROGT, REGFB, VC, BATT1, BATT2  
TIMER, SS ............................................ –0.5V to VBIAS2  
LDOFB, LDODRV .................................... –0.5V to VREG  
WA, VBIAS1, REG....................................... –0.5V to 12V  
MODE ................................................... –0.5V to VBIAS1  
VBIAS2 ......................................................... –0.5V to 5V  
OVP ............................................................ –0.5V to 5V  
PGND to GND .................................... Connect Together  
Operating Ambient Temperature Range  
ORDER PART  
NUMBER  
TOP VIEW  
PROG  
PROGT  
REGFB  
1
2
3
4
5
6
7
8
9
SS  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OVP  
CAOUT  
LTC1980EGN  
V
C
I
SENSE  
LDOFB  
GND  
LDODRV  
V
BIAS2  
V
V
REG  
BAT  
WA  
TIMER  
MODE  
REG  
BATT1  
BATT2 10  
RGTDR 11  
PGND 12  
BGTDR  
V
BIAS1  
(Note 2) ................................................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
GN PACKAGE  
24-LEAD NARROW PLASTIC SSOP  
TJMAX = 125°C, θJA = 85°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VBAT = 2.4V, VREG = 5V, VBAT unloaded.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.85  
TYP  
MAX  
10  
UNITS  
V
V
V
V
Positive Supply Voltage, V  
Positive Supply Voltage, V  
Feedback Voltage  
V
V
BAT  
REG  
BAT  
2.85  
10  
REG  
REGFB Tied to V  
1.194  
1.194  
1.225 1.256  
1.225 1.256  
0.75  
V
FB  
C
Voltage on PROGT Pin  
Burst Mode Operation  
Supply Current, Quiescent, V  
PROGT Tied to V  
V
PROGT  
BURST  
C
I
Regulator Mode, REGFB = 1.5V  
mA  
REG  
REG  
I
I
Supply Current, Quiescent, V  
Regulator Mode, REGFB = 0V  
Mode = 0V  
2
4.3  
15  
mA  
µA  
V
HIGH  
Supply Current in Shutdown Mode, V  
SHDN  
REG  
V
V
Positive-Going Undervoltage Lockout Voltage  
Undervoltage Lockout Hysteresis  
From Either V  
From Either V  
or V  
or V  
2.45  
2.7  
100  
10  
2.85  
UVL  
BAT  
BAT  
REG  
REG  
mV  
µA  
V
UVHYS  
I
Soft-Start Ramp Current  
BATT1 = 0, BATT2 = 0, Charger Mode  
BATT1 = 0, BATT2 = 0  
SS  
V
V
V
V
V
Output Float Voltage in Constant Voltage Mode  
Output Float Voltage in Constant Voltage Mode  
Output Float Voltage in Constant Voltage Mode  
Output Float Voltage in Constant Voltage Mode  
Output Float Voltage in Constant Voltage Mode  
4.059  
4.158  
8.118  
8.316  
1.207  
4.1  
4.2  
8.2  
8.4  
4.141  
4.242  
8.282  
8.484  
FLOAT0  
FLOAT1  
FLOAT2  
FLOAT3  
FLOAT4  
BATT1 = 1, BATT2 = 0  
V
BATT1 = 0, BATT2 = 1 (Note 3)  
BATT1 = 1, BATT2 = 1 (Note 3)  
V
V
BATT1 = Open, BATT2 = Don’t Care  
Measured from OVP Input  
1.225 1.243  
V
V
V
Recharge Threshold, Delta Voltage with Respect  
to Float Voltage  
BATT2 = 0, BATT1 = 0 or 1  
200  
400  
mV  
mV  
RCHG0  
Recharge Threshold, Delta Voltage with Respect  
to Float Voltage  
BATT2 = 1, BATT1 = 0 or 1  
RCHG1  
1980f  
2
LTC1980  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VBAT = 2.4V, VREG = 5V, VBAT unloaded.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Recharge Threshold, Delta Voltage with Respect  
to Float Voltage, Measured at OVP  
BATT 1 = Open  
60  
mV  
RCHG2  
V
V
Charger Shorted Cell Threshold  
BATT2 = 0  
2.55  
5.2  
2.7  
5.4  
1.0  
350  
2.8  
V
LT0  
LT1  
Charger Shorted Cell Threshold  
BATT2 = 1  
5.65  
V
I
Input Bias Current, Low Dropout Regulator  
Transconductance, Low Dropout Regulator  
Output Low Voltage, Low Dropout Regulator  
Output High Voltage, Low Dropout Regulator  
Low Dropout Regulator Output Current, Source/Sink  
Error Amplifier Open-Loop Voltage Gain  
Error Amplifier Input Bias Current  
Measured at LDOFB Pin  
Measured from LDOFB to LDODRV  
µA  
BLDO  
g
µmhos  
mldo  
V
V
0.1  
V
V
OLLDO  
OHLDO  
OUTLDO  
V
– 0.1  
REG  
I
±20  
µA  
dB  
µA  
V
A
From REGFB to V  
SS = Open  
60  
VOL  
BEA  
C
I
–0.1  
0
0.1  
0.5  
2
V
V
Error Amplifier Output Low Voltage  
OLEA  
OHEA  
OUT  
Error Amplifier Output High Voltage  
1.4  
V
I
Error Amplifier Output Source Current  
Error Amplifier Output Sink Current  
0.5  
–1.2  
mA  
mA  
g
Float Voltage Error Amplifier Transconductance  
Measured from OVP to SS,  
Charger Mode, BATT1 = Open  
65  
µmhos  
mflt  
I
Float Voltage Error Amplifier Input Current  
(Measured at OVP Input)  
–0.1  
–6  
0.1  
6
µA  
BFLT  
V
Current Amplifier Offset Voltage  
mV  
µA  
OS1  
VCA  
I
Input Bias Current, I  
Input  
–100  
2.44  
BIS  
SENSE  
A
Current Amplifier Voltage Gain  
Measured from I  
CAOUT Pin  
to  
2.3  
2.55  
V/V  
SENSE  
R
PROG Pin On Resistance  
PROG Pin Leakage Current  
Switching Frequency  
400  
100  
300  
10  
nA  
kHz  
ns  
ns  
kHz  
µA  
µA  
PROG  
PROG  
S
I
f
260  
340  
t , t  
r
Driver Output Transition Times  
Driver Output Break Times  
Timer Frequency  
C = 15pF  
L
f
t
f
I
I
V
= V = 10V  
REG  
100  
4.5  
–4  
BREAK  
TIMER  
TIMER1  
TIMER2  
BAT  
C = 1000pF  
TIMER Pin Source Current  
TIMER Pin Sink Current  
REG On Resistance  
4
R
REG  
68  
I
I
REG Pull-Down Current  
REG Leakage Current  
2
5
9
µA  
nA  
V
REGPD  
REGLK  
60  
V
V
REG Logic Threshold  
0.3  
1.3  
VTHREG  
IL1  
Digital Input Low Voltage,  
Negative-Going, Wall Adapter (WA)  
V
V
= 5V  
= 5V  
1.185  
1.221 1.247  
1.226 1.257  
100  
V
REG  
REG  
V
Digital Input High Voltage,  
Positive-Going, Wall Adapter (WA)  
1.195  
V
IH1  
V
V
Digital Input Low Voltage, BATT1  
Digital Input High Voltage, BATT1  
mV  
V
IL2  
IH2  
V
BIAS2  
–100  
1980f  
3
LTC1980  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.VBAT = 2.4V, VREG = 5V, VBAT unloaded.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
Digital Input Pull-Up Voltage, BATT1  
Digital Input Low Voltage, BATT2  
Digital Input High Voltage, BATT2  
Digital Input Current, WA  
BATT1 Input Floating  
1.6  
P2  
0.3  
V
IL3  
IH3  
2
V
I
I
I
–5  
5
10  
1
µA  
µA  
µA  
I1  
Digital Input Current, BATT1  
Digital Input Current, BATT2  
–10  
–1  
I2  
I3  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LTC1980E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
Note 3: T = 0°C to 70°C.  
A
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Feedback Reference Voltage  
vs Temperature  
Switching Frequency Variance  
vs Temperature  
Regulator Load Regulation  
1.5  
1.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
1.2240  
1.2235  
1.2230  
1.2225  
1.2220  
1.2215  
1.2210  
1.2205  
V
V
A
= 4.2V  
BAT  
REG  
3.3V  
T
= 25°C  
FIGURE 5  
0.5  
0
–0.5  
–1.0  
–1.5  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
0
100  
200  
300  
400  
500  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1980 G02  
1980 G03  
1980 G01  
3.3V Regulator Efficiency  
vs Load Current  
5V Regulator Efficiency  
vs Load Current  
Regulator Load Step Response  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
V
REG  
50mV/DIV  
I
L
500mA/DIV  
V
T
= 3.6V  
BAT  
A
1980 G06  
V
V
= 3.6V  
100µs/DIV  
BAT  
REG  
= 25°C  
V
A
FIGURE 5  
= 3.6V  
BAT  
= 25°C  
3.3V  
R8 = 309k  
FIGURE 5  
T
I
= 100mA TO 500mA  
= 25°C  
L
T
A
FIGURE 5  
10  
100  
1000  
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1980 G04  
1980 G05  
1980f  
4
LTC1980  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical BGTDR and RGTDR  
Waveforms  
Typical ISENSE Waveforms,  
Regulator  
Typical Operation with Burst  
Mode Operation Disabled  
V
REG  
BGTDR  
1V/DIV  
50mV/DIV  
I
SENSE  
20mV/DIV  
PIN 21  
FIGURE 5  
I
SENSE  
RGTDR  
1V/DIV  
50mV/DIV  
1980 G07  
1980 G08  
1980 G09  
V
V
T
= 3.6V  
= 3.3V  
1µs/DIV  
V
V
I
= 3.6V  
= 3.3V  
1µs/DIV  
V
V
I
= 3.6V  
1µs/DIV  
BAT  
REG  
A
BAT  
REG  
L
BAT  
REG  
L
3.3V  
= 25°C  
= 500mA  
= 500mA  
I
= 500mA  
T
= 25°C  
MODE = V  
= 25°C  
L
A
BIAS1  
FIGURE 5  
T
A
FIGURE 5  
Regulator Output Transient  
Response—Wall Adapter “Hot  
Plugged”  
Regulator Output Transient  
Response—Wall Adapter Removal  
Burst Mode Circuit Operation  
V
REG  
V
50mV/DIV  
V
REG  
1V/DIV  
REG  
1V/DIV  
V
BGTDR  
2V/DIV  
LDO  
V
LDO  
0.5V/DIV  
0.1V/DIV  
1980 G11  
1980 G10  
1980 G12  
V
V
V
I
= 3.6V  
= 3.3V  
500µs/DIV  
V
V
I
= 3.6V  
= 3.3V  
200µs/DIV  
V
V
V
I
= 3.6V  
= 3.3V  
500µs/DIV  
BAT  
REG  
LDO  
BAT  
REG  
L
BAT  
REG  
LDO  
= 3.1V  
= 10mA  
= 3.1V  
= 200mA  
WALL ADAPTER  
= 25°C  
T
= 25°C  
= 200mA  
LDO  
A
LDO  
V
T
= 6V TO 0V  
FIGURE 5  
V
T
= 0V TO 6V  
WALL ADAPTER  
= 25°C  
A
A
FIGURE 5  
FIGURE 5  
Typical CTIMER Waveform  
Mode Pin Input Current vs VIN  
1.5  
1.0  
V
V
T
= 2.4V  
= 5V  
BAT  
REG  
= 25°C  
A
0.5  
TIMER  
100mV/DIV  
PIN 17  
0
–0.5  
–1.0  
–1.5  
1980 G14  
C
A
= 0.24µF 5ms/DIV  
TIMER  
T
= 25°C  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
MODE PIN V (V)  
IN  
1980 G13  
1980f  
5
LTC1980  
U
U
U
PI FU CTIO S  
PROG (Pin 1): Charge Current Ratio Programming Pin.  
Programsthefullchargecurrentwhenthechargerisinthe  
constant current mode. A resistor placed between the  
PROG pin and the PROGT pin (Pin 2) determines the  
charge current. The PROG pin connects to an open drain  
MOSFET which turns on for full current and is off when  
trickle charging.  
VREG (Pin 7): Connection Point to the DC/DC Converter  
Side of the Combo Charger/Converter Circuit.  
WA (Pin 8): Wall Adapter Comparator Input. An external  
resistor divider from the wall adapter output to WA to  
ground sets the threshold which determines if charging  
can occur. If the wall adapter is below this threshold, the  
LTC1980 assumes the wall adapter is not present and the  
charger shuts down. Wall adapter sense threshold is set  
higher than the DC/DC converter output voltage to insure  
correct operation.  
PROGT (Pin 2): Trickle Charge Programming Pin. Pro-  
grams the trickle charge current for a deeply discharged  
battery. Two resistors are used, one between the PROGT  
pin and CAOUT (Pin 22) and another from PROGT to  
ground. A capacitor between the PROGT pin and VC (Pin  
4) provides compensation for the constant current feed-  
back loop.  
BATT1 (Pin 9): Logic Input Pin for Selecting  
Preprogrammed Li-Ion Charge Voltage. See Truth Table  
logic settings.  
BATT2 (Pin 10): Logic Input Pin for Selecting  
Preprogrammed Li-Ion Charge Voltage. The following  
combinations of BATT1 and BATT2 select the correct Li-  
Ion charge voltage. See Truth Table.  
REGFB (Pin 3): DC/DC Converter Feedback Pin. This pin is  
usedtoprogramtheDC/DCconverteroutputvoltagewhen  
the LTC1980 is in the DC/DC (regulator) converter mode.  
AnexternalresistordividerfromVREG toREGFBtoground  
programstheoutputvoltage. Thevirtualreferencevoltage  
(VREF) on this pin is 1.225V. A series RC from the REGFB  
pin to VC (Pin 4) provides pole-zero compensation for the  
regulator outer loop.  
BATT2  
BATT1  
FLOAT VOLTAGE  
0
0
4.1V  
0
1
4.2V  
1
1
0
8.2V  
8.4V  
1
Open  
VC (Pin 4): Control Signal of the Inner Loop of the Current  
Mode PWM. A common current mode loop is used by the  
batterychargerandvoltageregulatorfunctions. Minimum  
duty factor (measured on BGTDR (Pin 14) in regulator  
mode and RGTDR (Pin 11) in charger mode) occurs at  
approximately 1V. Duty factor increases as VC increases.  
This part includes slope compensation, so there is some  
variation in VC for minimum and maximum duty factor as  
VREG or VBAT is varied.  
Don’t Care  
Externally Set Via OVP  
Logic 1 = V  
(Pin 19), Logic 0 = GND  
BIAS2  
RGTDR (Pin 11): DC/DC Converter (Regulator) Side Gate  
Drive Pin. This pin provides gate drive to the external  
MOSFET (REG-FET) that connects to VREG via the trans-  
former.  
PGND (Pin 12): Power Ground. Refer to the Applications  
Information section for proper use of ground and power  
ground connections.  
LDOFB (Pin 5): Low Dropout Regulator Feedback Pin.  
This pin is used to program the low dropout linear regula-  
tor output voltage. An external resistor divider from the  
outputoftheLDOregulator(drainoftheexternalMOSFET)  
to LDOFB to ground programs the output voltage. The  
virtual reference voltage on this pin is 1.225V.  
VBIAS1 (Pin 13): Internally Generated Power Bus. Bypass  
thispinwitha1µForlargerceramiccapacitor(orotherlow  
ESR capacitor) to PGND (Pin 12). Do not connect any load  
to this pin.  
BGTDR (Pin 14): DC/DC Converter (Battery) Side Gate  
Drive Pin. This pin provides gate drive to the external  
MOSFET (BAT-FET) that connects to VBAT via the trans-  
former.  
LDODRV (Pin 6): Low Dropout Error Amplifier Output.  
This pin drives the gate of an external PMOS pass transis-  
tor. This pin is pulled up to VREG (shutting off the pass  
transistor)ifMODE(Pin16)isgroundedorifundervoltage  
occurs.  
1980f  
6
LTC1980  
U
U
U
PI FU CTIO S  
REG(Pin15):BidirectionalRegulatorModeControlPin. A  
pull-up resistor is required between this pin and VBIAS2  
This pin is open when charging normally, has a weak pull-  
down (approximately 5µA) when conditioning the battery  
and a strong pull-down when in regulator mode. Pulling  
this pin low forces the IC into regulator mode.  
ISENSE (Pin 21): Current Sense Input Pin. Connects inter-  
nally to a current amplifier and zero current comparator.  
This pin should Kelvin-connect to the current sense resis-  
tor (RSENSE) .  
.
CAOUT (Pin 22): Current Amplifier Output. A program  
resistor connects between this pin and PROGT (Pin 2) to  
set the charge current (in constant-current mode).  
MODE (Pin 16): Selects different operating modes in both  
charger and DC/DC converter configurations. Also en-  
ables and disables Burst Mode operation. See Mode Pin  
Operation table in Application section.  
OVP (Pin 23): Overvoltage Protection. This pin connects  
to the tap on an optional external voltage divider con-  
nected across the battery. This allows nonstandard float  
voltages to be used for the battery charger. Overvoltage,  
restart and undervoltage thresholds will also be affected  
by the external voltage division ratio. To use this pin,  
BATT1 (Pin 9) must float.  
TIMER (Pin 17): A timing capacitor on this pin determines  
the normal charge time for charge termination.  
C(µF) = 0.25 • Time (Hours)  
V
BAT (Pin18): Thispinconnectstothepositiveterminalof  
SS (Pin 24): Soft-Start. A capacitor between this pin and  
ground sets the battery charge ramp rate. Battery charge  
currentisverylowthemomentaftertheconverterswitches  
fromDC/DCconverter(regulator)modetobatterycharger  
mode then ramps up to final battery charge current from  
there.Thisinsuresthatthewalladapterisnotloadeddown  
with a large inrush current that could prevent correct  
battery charger operation.  
the battery and the battery side of the power converter.  
VBIAS2 (Pin 19): Internally Generated Voltage. Bypass this  
pin with a 1µF or larger ceramic capacitor (or other low  
ESR capacitor). Do not connect any load to this pin.  
GND (Pin 20): Signal Ground. This pin should Kelvin-  
connect to the current sense resistor (RSENSE).  
The same capacitor, which sets the soft-start ramp rate,  
also sets the compensation for the battery float voltage  
control loop.  
1980f  
7
LTC1980  
W
BLOCK DIAGRA  
LDOFB  
5
V
LDODRV  
6
CAOUT  
22  
BIAS1  
13  
REF_UVL  
I
21  
SENSE  
V
REF  
REFERENCE  
+
+
+
I = O  
COMP  
GM  
V
BAT 18  
V
V
REF  
MAX  
V
+
REF  
UVL  
V
REG  
+
+
DD  
V
REG  
7
V
V
REF  
REF  
V
19  
SR_EN  
BIAS2  
DIS  
L
H
DUMP  
XFMR  
V
V
M
REF  
MODE 16  
MODE  
S
R
H = BURST MODE OPERATION OFF  
OPEN = BURST MODE OPERATION ON  
L = DISABLE  
RGTDR  
BGTDR  
11  
14  
12  
OSC  
Q
RAMP  
+
V
4
REG  
V
PWM  
COMP  
C
AC  
V
BAT  
PGND  
PROGT  
REGFB  
2
3
AC  
SLEEP  
V
V
+
REF  
REF  
EA  
WAKE  
+
BATT1  
9
BURST  
V
+
REF  
CONDITION BATTERY  
OVP 23  
10  
BATT2  
V
+
REF  
RECHARGE  
START  
TIMEOUT  
TIMER  
SHORT CYCLE  
17 TIMER  
V
REF  
+
8
WA  
5µA  
1
PROG  
15  
REG  
V
+
REF  
GM  
20  
GND  
REG  
24  
1980 BD  
SS  
1980f  
8
LTC1980  
U
OPERATIO  
The LTC1980 is an IC designed to provide a regulated  
voltage to a system load from an unregulated or regulated  
wall adapter, or from a battery and also charge a battery,  
therebyprovidinganuninterruptablepowersourceforthe  
system. When the wall adapter is present it provides  
power to the system load and, if needed, a portion of the  
power can be used to simultaneously charge the battery.  
If the wall adapter is removed, the LTC1980 uses the  
battery as a power source to continue providing a regu-  
lated output voltage to power the system.  
(Figure 1). The unique bidirectional power converter to-  
pology (Figure 2) accounts for much of the area savings.  
A transformer based design allows the wall adapter volt-  
age to be less than or greater than the battery voltage.  
The LTC1980 includes a 300kHz DC/DC PWM converter  
thatoperatesintwomodes.Thefirstmodeiswhenthewall  
adapter is present and the LTC1980 is used to charge the  
battery using a constant-current/constant-voltage charge  
scheme. The second mode is when the wall adapter is  
removed and the battery powers the LTC1980 and the  
DC/DC converter generates a regulated output voltage.  
Combining these two functions into a single IC reduces  
circuit area compared to presently available solutions  
Existing Methods  
CHARGE  
TERMINATION  
Using the LTC1980  
BATTERY  
CHARGER  
FROM  
WALL ADAPTER  
FROM WALL ADAPTER  
LTC1980-BASED  
POWER DESIGN  
TO SYSTEM LOAD  
DC/DC CONVERTERS  
POWER ROUTING  
LOW DROPOUT  
TO SYSTEM LOAD  
DC/DC CONVERTERS  
1980 F01  
REGULATOR  
PWM  
REGULATOR  
Figure 1. Portable Power Systems  
WALL  
ADAPTER  
T1  
T1  
Li-Ion  
BATTERY  
Li-Ion  
BATTERY  
REG-FET  
BAT-FET  
BAT-FET  
REG-FET  
SYSTEM LOAD  
DC/DC  
CONVERTERS  
SYSTEM LOAD  
DC/DC  
CONVERTERS  
R
R
S
S
I
I
SENSE  
SENSE  
LTC1980  
LTC1980  
1980 F02a  
1980 F02a  
(a) Battery Charger Mode  
(b) DC/DC Converter Mode (Wall Adapter Removed)  
Figure 2. LTC1980 Bidirectional Power Conversion  
1980f  
9
LTC1980  
U
OPERATIO  
Lithium-Ion Battery Charger Operation  
will maintain the programmed preset float voltage across  
the battery until the timer terminates the charge cycle.  
During trickle charging, if the battery voltage remains  
below 2.7V for 1/4 of the total programmed charge time,  
the battery may be defective and the charge cycle ends.  
Also, if a battery open circuit is detected, the charge cycle  
ends immediately. The charger can be shut down by  
pulling the REG pin low, although the timer will continue  
until it times out.  
With the wall adapter power applied, the LTC1980 oper-  
ates as a constant-current/constant-voltage PWM battery  
charger, with a portion of the adapter current used for  
charging and the rest flowing to the system load through  
an optional low dropout regulator.  
A charge cycle begins when the voltage at VREG exceeds  
the undervoltage lockout threshold level and the IC is  
enabled via the MODE pin. If the battery has been deeply  
discharged and the battery voltage is less than 2.7V, the  
charger will begin with the programmed trickle charge  
current.  
Power Converter Operation from Battery  
WhentheACadapterisremoved,theLTC1980operatesas  
a DC/DC PWM converter using the battery for input power  
to provide a regulated output voltage for the system load.  
The LTC1980 is a current mode switcher. This means that  
the switch duty cycle is directly controlled by switch  
current rather than by output voltage or current. Battery  
charger operation will be described for the simplified  
diagram(Figure3). Atthestartoftheoscillatorcycle, latch  
U9 is set causing M2 to turn on. When switch current  
reaches a predetermined level M2 turns off and M1 turns  
on. This level is set by the control voltage at the output of  
error amplifier U10.  
When the battery exceeds 2.7V, the charger begins the  
constant-current portion of the charge cycle with the  
charge current equal to the programmed level. As the  
battery accepts charge, the voltage increases. When the  
battery voltage reaches the recharge threshold, the pro-  
grammable timer begins. Constant-current charging con-  
tinuesuntilthebatteryapproachestheprogrammedcharge  
voltage of 4.1V or 4.2V/cell at which time the charge  
current will begin to drop, signaling the beginning of the  
constant-voltage portion of the charge cycle. The charger  
U1 VOLTAGE  
SELECTION  
V
V
BAT  
REG  
T1  
WALL  
ADAPTER  
+
C2  
B1  
C1  
SN1 SNUBBER  
SN2 SNUBBER  
R1  
R2  
NETWORK  
NETWORK  
+
U2  
TO SYSTEM  
LOAD  
BDRIVE  
RDRIVE  
U4  
DRIVERS  
M1 M2  
+
C6  
R12  
R13  
DIRECTION  
SENSE  
V
V
REF  
REF  
CURRENT  
TYPICAL  
U7  
AMPLIFIER  
WAVEFORM  
OSC  
R5  
S
R
+
Q
U9  
+
+
+
U6  
U5  
ZC  
R4  
U8  
R6  
PWM  
C3  
C4  
SW1  
R7  
+
R9  
SW3  
R8  
SW2  
U10  
R10  
R11  
EA  
U12  
+
C5  
U11  
REFERENCE  
V
REF  
1980 F03  
Figure 3. Simplified Diagram—Power Converter  
1980f  
10  
LTC1980  
U
OPERATIO  
TransformercurrentissensedacrossRS,gainedupviaU6  
and sampled through switch SW1. The current in R7 is a  
scaled-downreplicaofthebatterychargingcurrentpulses  
from the transformer. During battery charging, switch  
SW2isinthedownpositionconnectingR7, R8, R9andC4  
to the inverting input of amplifier U10 forming an integra-  
tor which closes the outer loop of the converter and  
establishes constant current charging. U12 is a gm ampli-  
fierthatclampsU10asthebatteryfloatvoltageisreached.  
R10andR11setthefloatvoltageandC5compensatesthis  
loop and provides a soft-start function.  
DC/DC Converter Operation  
When the LTC1980 is operating as a DC/DC converter, M1  
turns on at the start of the oscillator cycle. When trans-  
former current reaches a predetermined level set by U10’s  
outputvoltage,M1turnsoffandM2turnson.SW2isinthe  
up position forming an integrator with zero, which com-  
pares the output voltage (via R1 and R2 to reference U11  
establishing the output voltage.  
W U U  
U
APPLICATIO S I FOR ATIO  
Setting Battery Charge Current  
where AV = 2.44 and VREF = 1.225V. The suggested value  
for R7 is 10k.  
Referring to the simplified schematic in Figure 4, the  
averagecurrentthroughR7mustequalthecurrentthrough  
RTRKL with switch SW3 open. This leads to the equation  
for setting the trickle charge current:  
Setting the Float Voltage  
Pin selectable 4.1V, 4.2V, 8.2V, and 8.4V Li-Ion float  
voltages are available. Other float voltages may be set via  
external resistors. The following combinations of logic  
inputs BATT1 and BATT2 determine the float voltage.  
VREF R7  
ITRICKLE RS AV  
RTRKL  
=
BATT2  
BATT1  
FLOAT VOLTAGE  
Normal charge current is set via the parallel combination  
of RTRKL and RCHRG which leads to the following equation  
for RCHRG  
0
0
1
4.1V  
0
4.2V  
1
1
0
8.2V  
8.4V  
1
VREF R7  
RCHRG  
=
Don’t Care  
Open  
Externally Set via OVP  
INORMAL – ITRICKLE RS AV  
(
)
where logic 0 = GND and logic 1 = V  
(Pin 19)  
BIAS2  
C4  
V
REF  
+
1.225V  
I
V
C
SENSE  
R7  
21  
+
U10  
4
SW1  
PROGT  
10k  
U6  
= 2.44  
I
R
22  
CAOUT  
2
S
A
V
20  
GND  
R
R
CHRG  
TRKL  
PROG  
1
SW3  
1980 F04  
20  
Figure 4. Battery Charger Current Control Loop  
1980f  
11  
LTC1980  
W U U  
U
APPLICATIO S I FOR ATIO  
An external resistor divider (Figure 3) can be used to  
program other float voltages. Resistor values are found  
using the following equation:  
where VIH1= 1.226V, suggested value for R7 is 100k. Use  
1% resistors.  
MODE Pin Operation  
R10 = R11 • (VFLOAT – VREF)/VREF  
The following truth table describes MODE pin operation.  
Burst Mode operation is disabled during battery charging  
to reduce broadband noise inherent in Burst Mode opera-  
tion. (Refer to the LT1307 data sheet for details).  
where VREF = 1.225V. The suggested value for R11 is  
100k. Use 1% or better resistors.  
Setting DC/DC Converter Output Voltage  
POWER FLOW  
Battery Charger  
Battery Charger  
Battery Charger  
DC/DC converter  
DC/DC converter  
DC/DC converter  
MODE PIN  
OPERATING MODE  
Disabled  
From Figure 5, select the following resistors based on  
0
output voltage VREG  
:
Open  
Enabled Continuous  
Enabled Continuous  
Disabled  
R8 = R14 • (VREG – VREF)/VREF  
1
whereVREF =1.225V,suggestedvalueforR14is100k, 1%.  
0
Open  
Enabled Burst Mode Operation  
Enabled Continuous  
LDO Operation  
1
Logic 1 = V  
(Pin 13) Logic 0 = GND  
The LTC1980 provides an uninterrupted power supply for  
the system load. When a wall adapter is connected and  
operating, power is taken from the wall adapter to charge  
the batteries and supply power to the system. In applica-  
tions where an unregulated wall adapter is used but a  
regulated voltage is needed by the system, an external P-  
channel MOSFET pass transistor may be added to the  
LTC1980 to create a low dropout linear regulator.  
BIAS1  
The MODE pin should be decoupled with 200pF to ground  
when left open.  
Snubber Design  
The values given in the applications schematics have been  
found to work quite well for most applications. Care  
should be taken in selecting other values for your applica-  
tionsinceefficiencymaybeimpactedbyapoorchoice.For  
a detailed look at snubber design, Application Note 19 is  
very helpful.  
From Figure 5, select the following resistors based on the  
output voltage VLDO  
:
R5 = R6 • (VLDO – VREF)/VREF  
whereVREF =1.225V, suggestedvalueforR6is100k, 1%.  
Frequency Compensation  
This is the voltage that will be seen when operating from  
a higher voltage wall adapter. When operating from the  
batteries (as a regulator), the load will see either this  
voltage or the voltage set by the PWM regulator, which-  
ever is less, minus any drops in the pass transistor.  
Load step testing can be used to empirically determine  
compensation. Application Note 25 provides information  
on the technique. To adjust the compensation for the DC/  
DC converter, adjust C12 and R13 (in Figure 5). Battery  
charger current loop compensation is set by C11 and  
battery charger float voltage compensation is set by C8.  
Placing a large-valued capacitor from the drain of this  
MOSFET to ground creates output compensation.  
Component Selection Basics  
Wall Adapter Comparator Threshold  
The application circuits work well for most 1- and 2-cell  
Li-Ion, 0.5Ato1Aoutputcurrentdesigns. Thenextsection  
highlights the component selection process. More infor-  
mation is available in Application Note 19.  
From Figure 5, select the following resistors based on the  
wall adapter comparator threshold VWATH  
:
R15 = R7(VWATH – VIH1)/VIH1  
1980f  
12  
LTC1980  
U
W
U U  
APPLICATIO S I FOR ATIO  
Current Sense Resistor  
the transformer which can reduce the leakage inductance,  
reducetheneedforaggressivesnubberdesignandforthis  
reason improve efficiency.  
Voltage drop in the current sense resistor should be  
limited to approximately ±100mV with respect to ground  
at max load currents in all modes. This value strikes a  
reasonable balance between providing an adequate low  
current signal, while keeping the losses from this resistor  
low. Forapplicationswheretheinputsandoutputvoltages  
may be low, a somewhat lower drop can be used (in order  
to reduce conduction losses slightly).  
Avoid transformer saturation under all operating condi-  
tions and combinations (usually the biggest problems  
occur at high output currents and extreme duty cycles.  
Also check these conditions for battery charging and  
regulation modes.  
Finally, in low voltage applications, select a transformer  
withlowwindingresistance.Thiswillimproveefficiencyat  
heavier loads.  
The LTC1980 has several features, such as leading-edge  
blanking, whichmakeapplicationofthisparteasiertouse.  
However for best charge current accuracy, the current  
sense resistor should be Kelvin sensed.  
Capacitors  
Check the RMS current rating on your capacitors on both  
sides of your circuit. Low ESR and ESL is recommended  
for lowest ripple. OS-CON capacitors (from Sanyo) work  
very well in this application.  
MOSFETs  
The LTC1980 uses low side MOSFET switches. There are  
twoveryimportantadvantages.First,N-channelMOSFETs  
are used—this generally means that efficiency will be  
higher than a comparable on-resistance P-channel device  
(because less gate charge is required). Second, low VT  
(‘logic-level’) MOSFETs with relatively low absolute maxi-  
mum VGS ratings can be used, even in higher voltage  
applications. Refer to Application Note 19 for information  
on determining MOSFET voltage and current ratings.  
Diodes  
In low voltage applications, Schottky diodes should be  
placedinparallelwiththedrainandsourceoftheMOSFETs  
in the PWM supply. This prevents body diode turn on and  
improves efficiency by eliminating loss from reverse re-  
covery in these diodes. It also reduces conduction loss  
during the RGTDR/BGTDR break interval.  
Transformer  
The LTC1980 can operate to voltages as low as 2.8V.  
Suitable Schottky diodes include the ZHCS1000 (VF =  
420mV at IF = 1A) and SL22/23 (VF = 440mV at IF = 2A) for  
most 500mA to 1A output current applications.  
Turns ratio affects the duty factor of the power converter  
which impacts current and voltage stress on the power  
MOSFETs, input and output capacitor RMS currents and  
transformer utilization (size vs power). Using a 50% duty  
factor under nominal operating conditions usually gives  
reasonable results. For a 50% duty factor, the turns ratio  
is:  
Vendor List  
VENDOR  
COMPONENTS  
Transformers  
Transformers  
TELEPHONE  
BH Electronics  
952-894-9590  
561-752-5000  
Coiltronics/Cooper Electronic  
Fairchild Semiconductor  
N = VREG/VBAT  
MOSFETs  
Schottky Rectifiers  
800-341-0392  
NshouldbecalculatedforthedesignoperatingasaDC/DC  
converter and as a battery charger. The final turns ratio  
should be chosen so that it is approximately equal to the  
average of the two calculated values for N. In addition  
choose a turns ratio which can be made from the ratio of  
small integers. This allows bifilar windings to be used in  
Vishay (General Semiconductor) MOSFETs  
Schottky Rectifiers  
631-847-3000  
Sanyo  
OS-CON Capacitors 408-749-9714  
Sumida Electric USA  
Vishay (Siliconix)  
Transformers  
MOSFETs  
847-956-0666  
408-988-8000  
1980f  
13  
LTC1980  
U
TYPICAL APPLICATIO  
D1*  
IN5819  
BH511-1014  
V
3.3V  
V
DC  
OUT  
REG  
BAT  
WALL  
ADAPTER  
AC  
IN  
4.1V  
+
+
+
C1 5.1  
68µF  
5.1Ω  
C4  
68µF  
Li-Ion  
BATTERY  
OPTIONAL  
PASS TRANSISTOR  
FOR LDO FDC636P  
1nF  
1nF  
V
3.1V  
LDO  
1/2 FDC6401N  
1/2 FDC6401N  
SYSTEM LOAD  
DC/DC  
CONVERTERS  
V
C6  
470µF  
OUT  
50mΩ  
SENSE  
R5  
154k  
R
R6  
100k  
14  
12  
20  
GND  
21  
11  
RGTDR  
7
6
5
8
WA  
R15  
300k  
BGTDR PGND  
I
V
LDODRV LDQFB  
SENSE  
REG  
18  
23  
3
15  
16  
9
REG  
MODE  
BATT1  
BATT2  
V
OVP  
REGFB  
CAOUT  
BAT  
R7  
100k  
LTC1980  
200pF  
22  
10  
R8  
169k  
PROG  
PROGT  
2
V
TIMER  
17  
SS  
24  
V
V
C
4
BIAS1  
13  
BIAS2  
19  
1
R10  
110k  
C9  
1µF  
C7  
0.27µF  
C11  
1nF  
R9  
10k  
R12  
100k  
R14  
100k  
C8  
0.1µF  
C10  
1µF  
C12  
82pF  
*OPTIONAL DIODE FOR  
SHORTED WALL ADAPTER  
TERMINAL PROTECTION  
R11  
1M  
R13  
806k  
1980 F05  
Figure 5. 4.1V/1A Li-Ion Battery Charger and 3.3V DC/DC Converter  
1980f  
14  
LTC1980  
U
PACKAGE DESCRIPTIO  
GN Package  
24-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
.045 ±.005  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.254 MIN  
.150 – .165  
1
2
3
4
5
6
7
8
9 10 11 12  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.053 – .068  
(1.351 – 1.727)  
× 45°  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
(0.203 – 0.305)  
.0250  
(0.635)  
BSC  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN24 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1980f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1980  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1170/LT1171/LT1172 5A/3A/1.25A Flyback Regulators  
Isolated Flyback Mode  
LT1571  
200kHz/500kHz Switching Battery Charger  
Up to 1.5A Charge Current; Preset and Adjustable Battery Voltages  
LTC1729  
LTC1731  
Lithium-Ion Battery Charger Termination Controllers Time or Charge Current Termination, Preconditioning 8-Lead MSOP  
Lithium-Ion Linear Battery Charger Controller  
Simple Charger uses External FET, Features Preset Voltages, C/10  
Charger Detection and Programmable Timer  
LTC1732  
Lithium-Ion Linear Battery Charger Controller  
Simple Charger uses External FET, Features Preset Voltages, C/10  
Charger Detection and Programmable Timer, Input Power Good Indication  
LTC1733  
LTC1734  
LTC1734L  
LTC1760  
LTC1960  
Monolithic Lithium-Ion Linear Battery Charger  
Lithium-Ion Linear Battery Charger in ThinSOTTM  
Lithium-Ion Linear Battery Charger Controller  
Standalone Charger with Programmable Timer, Up to 1.5A Charge Current  
Simple ThinSOT Charger, No Blocking Diode, No Sense Resistor Needed  
50mA to 180mA, No Blocking Diode, No Sense Resistor Needed  
Dual Battery Charger/Selector with SMBus Interface Complete SMBus Charger/Selector for Two Smart Batteries  
Dual Battery Charger/Selector with SPI  
Complete Dual-Battery Charger/Selector System, Easy Interface with  
Microcontroller, Extends Run Time by 10%, reduces Charge Time by 50%  
LTC4002  
Wide V Range Li-Ion Battery Charger  
1-, 2-Cell Batteries, Switch Mode Charger, Up to µA Charge Current,  
IN  
4.7V V 22V  
IN  
LTC4007  
LTC4050  
4A Standalone Multiple Cell Li-Ion Battery Charger  
Lithium-Ion Linear Battery Charger Controller  
6V V 28V, 3- or 4-Cell, Up to 96% Efficiency  
IN  
Simple Charger uses External FET, Thermistor Input for  
Battery Temperature Sensing  
LTC4052  
LTC4411  
LTC4412  
Lithium-Ion Linear Battery Pulse Charger  
2.6A Low Loss Ideal Diode in ThinSOT  
Ideal Diode or PowerPathTM  
Fully Integrated, Standalone Pulse Charger, Minimal Heat Dissipation,  
Overcurrent Protection  
Very Low Loss Replacement for Power Supply ORing Diodes,  
2.6V to 5.5V Supply Voltage, ThinSOTPackage  
Very Low Loss Replacement for Power Supply ORing Diodes,  
Enternal Pass Element, 3V to 28V Supply Voltage,ThinSOTPackage  
ThinSOT and PowerPath are trademarks of Linear Technology Corporation.  
1980f  
LT/TP 0604 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1981

Single and Dual Micropower High Side Switch Controllers in SOT-23
Linear

LTC1981ES5

Single and Dual Micropower High Side Switch Controllers in SOT-23
Linear

LTC1981ES5#PBF

LTC1981 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LTC1981ES5#TR

LTC1981 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LTC1981ES5#TRM

LTC1981 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LTC1981ES5#TRPBF

LTC1981 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LTC1981_15

Single and Dual Micropower High Side Switch Controllers in SOT-23
Linear

LTC1982

Single and Dual Micropower High Side Switch Controllers in SOT-23
Linear

LTC1982ES6

Single and Dual Micropower High Side Switch Controllers in SOT-23
Linear

LTC1982ES6#PBF

LTC1982 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC1982ES6#TR

LTC1982 - Single and Dual Micropower High Side Switch Controllers in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LTC1982ES6#TRM

暂无描述
Linear