LTC1992-10HMS8#TRPBF [Linear]

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LTC1992-10HMS8#TRPBF
型号: LTC1992-10HMS8#TRPBF
厂家: Linear    Linear
描述:

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

放大器 光电二极管
文件: 总42页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1992 Family  
Low Power, Fully Differential  
Input/Output  
Amplifier/Driver Family  
FEATURES  
DESCRIPTION  
TheLTC®1992productfamilyconsistsoffivefullydifferen-  
tial,lowpoweramplifiers.TheLTC1992isanunconstrained  
fully differential amplifier. The LTC1992-1, LTC1992-2,  
LTC1992-5 and LTC1992-10 are fixed gain blocks (with  
gains of 1, 2, 5 and 10 respectively) featuring precision  
on-chip resistors for accurate and ultrastable gain. All of  
theLTC1992partshaveaseparateinternalcommonmode  
feedback path for outstanding output phase balancing  
n
Available with Adjustable Gain or Fixed Gain of 1,  
2, 5 or 10  
n
0ꢀ.3 ꢁ(axꢂ Gain Error froꢃ ꢄ–0ꢅC to ꢆ5ꢅC  
n
.ꢀ5ppꢃ/ꢅC Gain Teꢃperature Coefficient  
n
5ppꢃ Gain Long Terꢃ Stability  
Fully Differential Input and Output  
n
n
C
Stable up to 10,000pF  
LOAD  
n
n
n
n
n
n
n
Adjustable Output Coꢃꢃon (ode Voltage  
Rail-to-Rail Output Swing  
and reduced second order harmonics. The V  
pin sets  
OCM  
Low Supply Current: 1mA (Max)  
High Output Current: 10mA (Min)  
Specified on a Single 2.7V to 5V Supply  
DC Offset Voltage <2.5mV (Max)  
Available in 8-Lead MSOP Package  
the output common mode level independent of the input  
common mode level. This feature makes level shifting of  
signals easy.  
The amplifiers’ differential inputs operate with signals  
ranging from rail-to-rail with a common mode level from  
the negative supply up to 1.3V from the positive supply.  
The differential input DC offset is typically 250μV. The  
rail-to-rail outputs sink and source 10mA. The LTC1992  
is stable for all capacitive loads up to 10,000pF.  
APPLICATIONS  
n
Differential Driver/Receiver  
n
Differential Amplification  
n
Single-Ended to Differential Conversion  
Level Shifting  
Trimmed Phase Response for Multichannel Systems  
The LTC1992 can be used in single supply applications  
with supply voltages as low as 2.7V. It can also be used  
with dual supplies up to 5V. The LTC1992 is available in  
an 8-pin MSOP package.  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Single-Supply, Single-Ended to Differential Conversion  
10k  
5V  
5V  
0V  
–5V  
5V  
3
5V  
2.5V  
0V  
10k  
V
4
IN  
1
0V  
V
+
MID  
IN  
(5V/DIV)  
7
V
V
–5V  
5V  
LTC1992  
2
8
+OUT  
(2V/DIV)  
–OUT  
OCM  
5V  
2.5V  
0V  
10k  
+
6
5
0.01μF  
OUTPUT SIGNAL  
FRO( A  
SINGLE-SUPPLSꢇSTE(  
INPUT SIGNAL  
FRO( A  
5V SꢇSTE(  
0V  
10k  
1992 TA01a  
1992 TA01b  
1992fb  
1
LTC1992 Family  
ABSOLUTE MAXIMUM RATINGS  
ꢁNote 1ꢂ  
Total Supply Voltage (+V to –V ).............................12V  
Specified Temperature Range (Note 6)  
S
S
Maximum Voltage  
on any Pin................ (–V – 0.3V) ≤ V ≤ (+V + 0.3V)  
LTC1992CMS8/LTC1992-XCMS8............. 0°C to 70°C  
LTC1992IMS8/LTC1992-XIMS8 ...........–40°C to 85°C  
LTC1992HMS8/LTC1992-XHMS8 ...... –40°C to 125°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
S
PIN  
S
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 5)  
LTC1992CMS8/LTC1992-XCMS8/  
LTC1992IMS8/LTC1992-XIMS8 ...........–40°C to 85°C  
LTC1992HMS8/LTC1992-XHMS8 ...... –40°C to 125°C  
PIN CONFIGURATION  
LTC1992  
LTC1992-X  
TOP VIEW  
TOP VIEW  
–IN 1  
8 +IN  
7 V  
–IN 1  
8 +IN  
7 V  
V
2
3
V
2
3
OCM  
S
MID  
OCM  
S
MID  
+
+
6 –V  
6 –V  
+V  
+V  
S
S
+
+
5 –OUT  
5 –OUT  
+OUT 4  
+OUT 4  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 250°C/W  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
T = 150°C, θ = 250°C/W  
JMAX  
T
JMAX  
JA  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART (ARKING*  
LTYU  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
SPECIFIED TE(PERATURE RANGE  
LTC1992CMS8#PBF  
LTC1992IMS8#PBF  
LTC1992CMS8#TRPBF  
LTC1992IMS8#TRPBF  
LTC1992HMS8#TRPBF  
LTC1992-1CMS8#TRPBF  
LTC1992-1IMS8#TRPBF  
LTC1992-1HMS8#TRPBF  
LTC1992-2CMS8#TRPBF  
LTC1992-2IMS8#TRPBF  
LTC1992-2HMS8#TRPBF  
LTC1992-5CMS8#TRPBF  
LTC1992-5IMS8#TRPBF  
LTC1992-5HMS8#TRPBF  
LTC1992-10CMS8#TRPBF  
LTC1992-10IMS8#TRPBF  
LTC1992-10HMS8#TRPBF  
0°C to 70°C  
LTYU  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC1992HMS8#PBF  
LTC1992-1CMS8#PBF  
LTC1992-1IMS8#PBF  
LTC1992-1HMS8#PBF  
LTC1992-2CMS8#PBF  
LTC1992-2IMS8#PBF  
LTC1992-2HMS8#PBF  
LTC1992-5CMS8#PBF  
LTC1992-5IMS8#PBF  
LTC1992-5HMS8#PBF  
LTC1992-10CMS8#PBF  
LTC1992-10IMS8#PBF  
LTC1992-10HMS8#PBF  
LTYU  
LTACJ  
LTACJ  
LTACJ  
LTYV  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTYV  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTYV  
LTACK  
LTACK  
LTACK  
LTACL  
LTACL  
LTACL  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1992fb  
2
LTC1992 Family  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ +VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise  
notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is  
defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ Specifications applicable to all parts in the LTC1992 faꢃilyꢀ  
ALL C AND I GRADE  
ALL H GRADE  
TꢇP  
Sꢇ(BOL  
PARA(ETER  
CONDITIONS  
(IN  
2.7  
TꢇP  
(AX  
(IN  
(AX  
UNITS  
l
l
V
Supply Voltage Range  
Supply Current  
11  
2.7  
11  
V
S
I
V = 2.7V to 5V  
0.65  
0.75  
0.7  
1.0  
1.2  
1.2  
1.5  
0.65  
0.8  
0.7  
0.9  
1.0  
1.5  
1.2  
1.8  
mA  
mA  
mA  
mA  
S
S
V = 5V  
S
l
0.8  
l
l
l
V
Differential Offset Voltage  
(Input Referred) (Note 7)  
V = 2.7V  
0.25  
0.25  
0.25  
2.5  
2.5  
2.5  
0.25  
0.25  
0.25  
4
4
4
mV  
mV  
mV  
OSDIFF  
S
V = 5V  
S
V = 5V  
S
l
l
l
ΔV /ΔT Differential Offset Voltage Drift  
OSDIFF  
(Input Referred) (Note 7)  
V = 2.7V  
10  
10  
10  
10  
10  
10  
μV/°C  
μV/°C  
μV/°C  
S
V = 5V  
S
V = 5V  
S
l
PSRR  
GCM  
Power Supply Rejection Ratio  
(Input Referred) (Note 7)  
V = 2.7V to 5V  
75  
80  
72  
80  
dB  
S
l
l
l
Common Mode Gain(V  
/V  
)
1
0.1  
–85  
1
0.1  
–85  
OUTCM OCM  
Common Mode Gain Error  
Output Balance (ΔV /(ΔV  
0.3  
–60  
0.35  
–60  
%
dB  
) V = –2V to +2V  
OUTDIFF  
OUTCM  
OUTDIFF  
l
l
l
V
Common Mode Offset Voltage  
(V – V  
V = 2.7V  
0.5  
1
2
12  
15  
18  
0.5  
1
2
15  
17  
20  
mV  
mV  
mV  
OSCM  
S
)
V = 5V  
OUTCM  
OCM  
S
V = 5V  
S
l
l
l
ΔV  
/ΔT Common Mode Offset Voltage Drift  
OSCM  
V = 2.7V  
10  
10  
10  
10  
10  
10  
μV/°C  
μV/°C  
μV/°C  
S
V = 5V  
S
V = 5V  
S
l
V
Output Signal Common Mode Range  
(Voltage Range for the V Pin)  
(–V ) + 0.5V  
(+V ) – 1.3V (–V ) + 0.5V  
(+V ) – 1.3V  
V
OUTCMR  
S
S
S
S
OCM  
l
l
l
R
Input Resistance, V  
Pin  
500  
2
500  
2
MΩ  
pA  
V
INVOCM  
OCM  
I
Input Bias Current, V  
Pin  
V = 2.7V to 5V  
S
BVOCM  
OCM  
V
V
Voltage at the V  
Pin  
2.44  
2.50  
2.56  
2.43  
2.50  
2.57  
MID  
OUT  
MID  
l
l
l
Output Voltage, High  
(Note 2)  
V = 2.7V, Load = 10k  
2.60  
2.50  
2.29  
2.69  
2.61  
2.52  
2.60  
2.50  
2.29  
2.69  
2.61  
2.52  
V
V
V
S
V = 2.7V, Load = 5mA  
S
V = 2.7V, Load = 10mA  
S
l
l
l
Output Voltage, Low  
(Note 2)  
V = 2.7V, Load = 10k  
0.02  
0.10  
0.20  
0.10  
0.25  
0.35  
0.02  
0.10  
0.20  
0.10  
0.25  
0.41  
V
V
V
S
V = 2.7V, Load = 5mA  
S
V = 2.7V, Load = 10mA  
S
l
l
l
Output Voltage, High  
(Note 2)  
V = 5V, Load = 10k  
4.90  
4.85  
4.75  
4.99  
4.90  
4.81  
4.90  
4.80  
4.70  
4.99  
4.90  
4.81  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
l
l
l
Output Voltage, Low  
(Note 2)  
V = 5V, Load = 10k  
0.02  
0.10  
0.20  
0.10  
0.25  
0.35  
0.02  
0.10  
0.20  
0.10  
0.30  
0.42  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
l
l
l
Output Voltage, High  
(Note 2)  
V = 5V, Load = 10k  
4.90  
4.85  
4.65  
4.99  
4.89  
4.80  
4.85  
4.80  
4.60  
4.99  
4.89  
4.80  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
l
l
l
Output Voltage, Low  
(Note 2)  
V = 5V, Load = 10k  
–4.99  
–4.90  
–4.80  
–4.90  
–4.75  
–4.65  
–4.98  
–4.90  
–4.80  
–4.85  
–4.75  
–4.55  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
1992fb  
3
LTC1992 Family  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ +VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise  
notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is  
defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ Specifications applicable to all parts in the LTC1992 faꢃilyꢀ  
ALL C AND I GRADE  
ALL H GRADE  
TꢇP  
Sꢇ(BOL  
PARA(ETER  
CONDITIONS  
(IN  
TꢇP  
(AX  
(IN  
(AX  
UNITS  
l
l
l
I
SC  
Output Short-Circuit Current  
Sourcing (Notes 2,3)  
V = 2.7V, V  
=1.35V  
20  
20  
20  
30  
30  
30  
20  
20  
20  
30  
30  
30  
mA  
mA  
mA  
S
OUT  
V = 5V, V  
= 2.5V  
S
OUT  
V = 5V, V  
= 0V  
S
OUT  
l
l
l
Output Short-Circuit Current Sinking V = 2.7V, V  
=1.35V  
13  
13  
13  
30  
30  
30  
13  
13  
13  
30  
30  
30  
mA  
mA  
mA  
S
OUT  
(Notes 2,3)  
V = 5V, V  
= 2.5V  
S
OUT  
V = 5V, V  
= 0V  
S
OUT  
l
A
Large-Signal Voltage Gain  
80  
80  
dB  
VOL  
The l denotes the specifications which apply over the full operating teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ  
+VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined  
as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ  
Specifications applicable to the LTC1992 onlyꢀ  
LTC1992C(Sꢆ  
LTC1992IS(ꢆ  
LTC1992H(Sꢆ  
Sꢇ(BOL PARA(ETER  
CONDITIONS  
V = 2.7V to 5V  
(IN  
TꢇP  
2
(AX  
250  
100  
(IN  
TꢇP  
2
(AX  
400  
150  
UNITS  
pA  
l
l
l
l
I
I
Input Bias Current  
Input Offset Current  
Input Resistance  
Input Capacitance  
B
S
V = 2.7V to 5V  
S
0.1  
500  
3
0.1  
500  
3
pA  
OS  
R
MΩ  
pF  
IN  
IN  
C
e
Input Referred Noise Voltage Density f = 1kHz  
35  
1
35  
1
nV/√Hz  
fA/√Hz  
V
n
i
Input Noise Current Density  
f = 1kHz  
n
l
l
V
Input Signal Common Mode Range  
(–V ) – 0.1V  
(+V ) – 1.3V (–V ) – 0.1V  
(+V ) – 1.3V  
INCMR  
S
S
S
S
CMRR  
Common Mode Rejection Ratio  
(Input Referred)  
V
INCM  
= –0.1V to 3.7V  
69  
90  
69  
90  
dB  
l
SR  
Slew Rate (Note 4)  
0.5  
1.5  
0.5  
3.0  
1.5  
3.2  
V/μs  
GBW  
Gain-Bandwidth Product  
T = 25°C  
3.0  
2.5  
1.9  
3.2  
3.0  
3.5  
4.0  
4.0  
3.5  
4.0  
MHz  
MHz  
MHz  
A
l
l
(f  
TEST  
= 100kHz)  
LTC1992CMS8  
LTC1992IMS8/  
LTC1992HMS8  
1.9  
1992fb  
4
LTC1992 Family  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ +VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise  
notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is  
defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ Typical values are at TA = 25ꢅCꢀ Specifications apply to the  
LTC1992-1 onlyꢀ  
LTC1992-1C(Sꢆ  
LTC1992-1IS(ꢆ  
LTC1992-1H(Sꢆ  
Sꢇ(BOL PARA(ETER  
CONDITIONS  
(IN  
TꢇP  
(AX  
(IN  
TꢇP  
(AX  
UNITS  
G
DIFF  
Differential Gain  
1
1
V/V  
%
l
l
Differential Gain Error  
0.1  
50  
3.5  
0.3  
0.1  
50  
3.5  
0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
ppm  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
45  
nV/√Hz  
kΩ  
n
l
R
22.5  
30  
–0.1V to 4.9V  
60  
37.5  
22  
30  
–0.1V to 4.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
V
INCMR  
l
l
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.5  
1.5  
3
0.5  
1.5  
3
V/μs  
MHz  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
TEST  
The l denotes the specifications which apply over the full operating teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ  
+VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined  
as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ  
Typical values are at TA = 25ꢅCꢀ Specifications apply to the LTC1992-2 onlyꢀ  
LTC1992-2C(Sꢆ  
LTC1992-2IS(ꢆ  
LTC1992-2H(Sꢆ  
Sꢇ(BOL PARA(ETER  
CONDITIONS  
(IN  
TꢇP  
(AX  
(IN  
TꢇP  
(AX  
UNITS  
G
DIFF  
Differential Gain  
2
2
V/V  
%
l
l
Differential Gain Error  
0.1  
50  
3.5  
0.3  
0.1  
50  
3.5  
0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
ppm  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
45  
nV/√Hz  
kΩ  
n
l
R
22.5  
30  
–0.1V to 4.9V  
60  
37.5  
22  
30  
–0.1V to 4.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
V
INCMR  
l
l
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/μs  
MHz  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
TEST  
1992fb  
5
LTC1992 Family  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ +VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise  
notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is  
defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ Typical values are at TA = 25ꢅCꢀ Specifications apply to the  
LTC1992-5 onlyꢀ  
LTC1992-5C(Sꢆ  
LTC1992-5IS(ꢆ  
LTC1992-5H(Sꢆ  
Sꢇ(BOL PARA(ETER  
CONDITIONS  
(IN  
TꢇP  
(AX  
(IN  
TꢇP  
(AX  
UNITS  
G
DIFF  
Differential Gain  
5
5
V/V  
%
l
l
Differential Gain Error  
0.1  
50  
3.5  
0.3  
0.1  
50  
3.5  
0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
ppm  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
45  
nV/√Hz  
kΩ  
n
l
R
22.5  
30  
–0.1V to 3.9V  
60  
37.5  
22  
30  
–0.1V to 3.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
V
INCMR  
l
l
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/μs  
MHz  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
TEST  
The l denotes the specifications which apply over the full operating teꢃperature range, otherwise specifications are at TA = 25ꢅCꢀ  
+VS = 5V, VS = 0V, VINC( = VOUTC( = VOC( = 2ꢀ5V, unless otherwise notedꢀ VOC( is the voltage on the VOC( pinꢀ VOUTC( is defined  
as ꢁ+VOUT + ꢄVOUTꢂ/2ꢀ VINC( is defined as ꢁ+VIN + ꢄVINꢂ/2ꢀ VINDIFF is defined as ꢁ+VIN ꢄ ꢄVINꢂꢀ VOUTDIFF is defined as ꢁ+VOUT ꢄ ꢄVOUTꢂꢀ  
Typical values are at TA = 25ꢅCꢀ Specifications apply to the LTC1992-10 onlyꢀ  
LTC1992-10C(Sꢆ  
LTC1992-10IS(ꢆ  
LTC1992-10H(Sꢆ  
Sꢇ(BOL PARA(ETER  
CONDITIONS  
(IN  
TꢇP  
(AX  
(IN  
TꢇP  
(AX  
UNITS  
G
Differential Gain  
10  
0.1  
50  
10  
0.1  
50  
V/V  
%
DIFF  
l
l
Differential Gain Error  
0.3  
0.35  
19  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
ppm  
3.5  
3.5  
ppm/°C  
e
n
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
45  
nV/√Hz  
kΩ  
l
R
11.3  
15  
–0.1V to 3.8V  
60  
18.8  
11  
15  
–0.1V to 3.8V  
60  
IN  
V
Input Signal Common Mode Range  
V = 5V  
V
INCMR  
S
l
l
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/μs  
MHz  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
TEST  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
LTC1992H/LTC1992-XH are guaranteed functional over the extended  
operating temperature of –40°C to 125°C.  
Note 6: The LTC1992C/LTC1992-XC are guaranteed to meet the specified  
performance limits over the 0°C to 70°C temperature range and are  
designed, characterized and expected to meet the specified performance  
limits over the –40°C to 85°C temperature range but are not tested or QA  
sampled at these temperatures. The LTC1992I/LTC1992-XI are guaranteed  
to meet the specified performance limits over the –40°C to 85°C  
temperature range. The LTC1992H/LTC1992-XH are guaranteed to meet the  
specified performance limits over the –40°C to 125°C temperature range.  
Note 7: Differential offset voltage, differential offset voltage drift, CMRR,  
noise voltage density and PSRR are referred to the internal amplifier’s  
input to allow for direct comparison of gain blocks with discrete amplifiers.  
Note 2: Output load is connected to the midpoint of the +V and –V  
S
S
potentials. Measurement is taken single-ended, one output loaded at a  
time.  
Note .: A heat sink may be required to keep the junction temperature  
below the absolute maximum when the output is shorted indefinitely.  
Note –: Differential output slew rate. Slew rate is measured single ended  
and doubled to get the listed numbers.  
Note 5: The LTC1992C/LTC1992-XC/LTC1992I/LTC1992-XI are guaranteed  
functional over an operating temperature of –40°C to 85°C. The  
1992fb  
6
LTC1992 Family  
Applicable to all parts in the LTC1992 faꢃilyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Offset Voltage  
Coꢃꢃon (ode Offset Voltage  
Supply Current vs Supply Voltage  
vs Teꢃperature ꢁNote 7ꢂ  
vs Teꢃperature  
0.6  
0.4  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4
V
INCM  
V
OCM  
= 0V  
= 0V  
V
INCM  
V
OCM  
= 0V  
= 0V  
125°C  
85°C  
3
2
V
= 5V  
S
0.2  
25°C  
1
V
= 2.5V  
S
0
0
–40°C  
V
= 1.35V  
V
= 1.35V  
S
S
–1  
–2  
–3  
–4  
–0.2  
–0.4  
–0.6  
–0.8  
V
= 2.5V  
S
V
= 5V  
S
–5  
85  
TEMPERATURE (°C)  
125  
–40  
25  
0
1
2
3
4
5
6
7
8
9
10  
–40  
25  
TEMPERATURE (°C)  
125  
85  
TOTAL SUPPLY VOLTAGE (V)  
1992 G02  
1992 G01  
1992 G03  
Coꢃꢃon (ode Offset Voltage  
vs VOC( Voltage  
Coꢃꢃon (ode Offset Voltage  
vs VOC( Voltage  
Coꢃꢃon (ode Offset Voltage  
vs VOC( Voltage  
5
0
5
0
5
0
125°C  
125°C  
125°C  
85°C  
25°C  
85°C  
25°C  
85°C  
25°C  
–40°C  
–5  
–5  
–5  
–40°C  
–40°C  
–10  
–15  
–20  
–10  
–15  
–20  
–10  
–15  
–20  
+V = 2.7V  
+V = 5V  
+V = 5V  
S
S
S
–V = 0V  
–V = 0V  
–V = –5V  
S
S
INCM  
S
INCM  
V
= 1.35V  
V
= 2.5V  
V
= 0V  
INCM  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
VOLTAGE (V)  
V
VOLTAGE (V)  
V
VOLTAGE (V)  
OCM  
OCM  
OCM  
1992 G04  
1992 G05  
1992 G06  
Output Voltage Swing  
vs Output Load, VS = 2ꢀ7V  
Output Voltage Swing  
vs Output Load, VS = 5V  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
1.0  
0.9  
0.8  
0.7  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
125°C  
125°C  
85°C  
25°C  
–40°C  
25°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C  
25°C  
–40°C  
85°C  
125°C  
25°C  
85°C  
125°C  
–40°C  
–40°C  
0
5
–20 –15 –10 –5  
10 15 20  
–20  
–5  
0
5
10 15 20  
–15 –10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1992 G07  
1992 G08  
1992fb  
7
LTC1992 Family  
Applicable to all parts in the LTC1992 faꢃilyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
VOC( Input Bias Current  
vs VOC( Voltage  
Differential Input Offset Voltage  
vs Tiꢃe ꢁNorꢃalized to t = 0ꢂ  
vs Output Load, VS = 5V  
10E-9  
1E-9  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
–3.8  
–4.0  
–4.2  
–4.4  
–4.6  
–4.8  
–5.0  
100  
TEMP = 35°C  
80  
60  
40  
20  
0
125°C  
–40°C  
25°C  
100E-12  
10E-12  
1E-12  
85°C  
125°C  
85°C  
25°C  
85°C  
–20  
–40  
125°C  
–40°C  
25°C  
–60  
–80  
+V = 5V  
S
–40°C  
–V = 0V  
S
V
= 2.5V  
INCM  
100E-15  
–100  
5
10  
–20 –15 –10 –5  
0
15 20  
800  
TIME (HOURS)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
400  
1200  
1600  
2000  
LOAD CURRENT (mA)  
V
VOLTAGE (V)  
OCM  
1992 G09  
1992 G10  
1992 G11  
Differential Gain vs Tiꢃe  
ꢁNorꢃalized to t = 0ꢂ  
Input Coꢃꢃon (ode Overdrive  
Recovery ꢁExpanded Viewꢂ  
Input Coꢃꢃon (ode Overdrive  
Recovery ꢁDetailed Viewꢂ  
10  
8
TEMP = 35°C  
BOTH INPUTS  
(INPUTS TIED TOGETHER)  
BOTH INPUTS  
(INPUTS TIED  
TOGETHER)  
6
4
2
OUTPUTS  
0
OUTPUTS  
–2  
–4  
–6  
–8  
–10  
+V = 2.5V  
+V = 2.5V  
S
S
–V = –2.5V  
–V = –2.5V  
S
S
OCM  
V
= 0V  
V
= 0V  
OCM  
LTC1992-10 SHOWN  
FOR REFERENCE  
LTC1992-10 SHOWN  
FOR REFERENCE  
1992 G13  
1992 G14  
800  
TIME (HOURS)  
0
400  
1200  
1600  
2000  
50μs/DIV  
1μs/DIV  
1992 G12  
Output Overdrive Recovery  
ꢁExpanded Viewꢂ  
Output Overdrive Recovery  
ꢁDetailed Viewꢂ  
+V = 2.5V, V = –2.5V, V  
= 0V  
S
S
OCM  
INPUTS  
OUTPUTS  
INPUTS OUTPUTS  
+V = 2.5V  
S
–V = –2.5V  
S
OCM  
V
= 0V  
LTC1992-2 SHOWN  
FOR REFERENCE  
LTC1992-2 SHOWN FOR REFERENCE  
50μs/DIV  
1992 G15  
1992 G16  
5μs/DIV  
1992fb  
8
LTC1992 Family  
Applicable to the LTC1992 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Differential Phase Response  
vs Frequency  
12  
6
0
12  
6
0
0
–20  
R
= R = 10k  
FB  
R
= R = 10k  
IN FB  
IN  
R
= R = 10k  
FB  
IN  
–40  
–6  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–60  
–80  
C
=
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
10pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
FREQUENCY (kHz)  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G37  
1992 G17  
1992 G18  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = –5V  
S
–V = 0V  
S
1.5  
1.0  
V
= 1.35V  
V
= 0V  
OCM  
V
= 2.5V  
OCM  
OCM  
1.0  
1.0  
0.5  
0.5  
0.5  
–40°C  
–40°C  
–40°C  
0
0
0
125°C  
125°C  
125°C  
25°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
85°C  
25°C  
85°C  
25°C  
85°C  
0.6  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1922 G20  
1922 G22  
1922 G21  
Coꢃꢃon (ode Rejection Ratio  
vs Frequency ꢁNote 7ꢂ  
Power Supply Rejection Ratio  
vs Frequency ꢁNote 7ꢂ  
Output Balance vs Frequency  
120  
100  
90  
0
–20  
ΔV  
ΔV  
OUTCM  
ΔV  
ΔV  
AMPCM  
S
ΔV  
ΔV  
OUTDIFF  
AMPDIFF  
AMPDIFF  
100  
80  
80  
–V  
S
70  
+V  
S
–40  
60  
50  
60  
40  
–60  
40  
30  
20  
10  
0
–80  
20  
0
–100  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k 100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1992 G23  
1992 G25  
1992 G24  
1992fb  
9
LTC1992 Family  
Applicable to the LTC1992 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
+V = 2.5V  
+V = 2.5V  
S
S
–V = –2.5V  
–V = –2.5V  
S
S
OCM  
V
= 0V  
V
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
1.5V  
1.5V  
+V  
–V  
=
1.5V  
1.5V  
IN  
IN  
=
=
C
= 0pF  
GAIN = 1  
LOAD  
GAIN = 1  
0V  
2.5V  
0V  
0V  
2.5V  
0V  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
1992 G26  
1992 G27  
2μs/DIV  
20μs/DIV  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
+V = 5V  
+V = 5V  
S
S
–V = 0V  
–V = 0V  
S
S
OCM  
V
= 2.5V  
+V = 0V TO 4V  
V
= 2.5V  
OCM  
+V = 0V TO 4V  
IN  
IN  
–V = 2V  
–V = 2V  
IN  
GAIN = 1  
IN  
C
= 0pF  
LOAD  
GAIN = 1  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
1992 G28  
1992 G29  
2μs/DIV  
20μs/DIV  
Differential Input Sꢃall-Signal  
Step Response  
Differential Input Sꢃall-Signal  
Step Response  
+V = 2.5V  
+V = 2.5V  
S
S
–V = –2.5V  
–V = –2.5V  
S
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
=
50mV  
50mV  
=
50mV  
IN  
IN  
= 50mV  
C
= 0pF  
GAIN = 1  
LOAD  
GAIN = 1  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
1992 G30  
1992 G31  
1μs/DIV  
10μs/DIV  
1992fb  
10  
LTC1992 Family  
Applicable to the LTC1992 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Input Sꢃall-Signal  
Step Response  
Single-Ended Input Sꢃall-Signal  
Step Response  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 200mV  
IN  
OCM  
+V = 0V TO 200mV  
IN  
–V = 100mV  
IN  
C
–V = 100mV  
IN  
= 0pF  
LOAD  
GAIN = 1  
GAIN = 1  
1992 G32  
1992 G33  
1μs/DIV  
10μs/DIV  
THD + Noise vs Frequency  
THD + Noise vs Aꢃplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
+V = 5V  
S
S
–V = –5V  
S
–V = –5V  
S
–50  
–60  
V
= 0V  
V
= 0V  
OCM  
OCM  
V
= 10V  
OUT  
P-PDIFF  
= 5V  
P-PDIFF  
50kHz  
V
20kHz  
OUT  
–70  
V
V
= 1V  
OUT  
OUT  
P-PDIFF  
P-PDIFF  
10kHz  
5kHz  
–80  
= 2V  
–90  
2kHz  
1kHz  
–100  
100  
1k  
10k  
50k  
0.1  
1
10 20  
FREQUENCY (Hz)  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G34  
1992 G35  
Differential Noise Voltage Density  
vs Frequency  
VOC( Gain vs Frequency,  
VS = 2ꢀ5V  
1000  
100  
10  
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
1922 G36  
1992 G19  
1992fb  
11  
LTC1992 Family  
Applicable to the LTC1992-1 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Differential Phase Response  
vs Frequency  
12  
6
0
12  
6
0
0
–20  
–40  
–6  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–60  
–80  
C
=
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
10pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G40  
1992 G39  
1992 G38  
Differential Gain Error  
vs Teꢃperature  
V
OC( Gain vs Frequency  
0.025  
0.020  
0.015  
0.010  
0.005  
0
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
10  
100  
1000  
10000  
–50  
0
25 50  
75 100 125  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G41  
1992 G42  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
5
4
5
4
5
4
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = –5V  
S
V
= 1.35V  
V
= 2.5V  
V
= 0V  
OCM  
OCM  
OCM  
3
3
3
2
2
2
1
1
1
125°C  
85°C  
–40°C  
–40°C  
0
0
0
125°C  
–40°C  
125°C  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
25°C  
85°C  
25°C  
25°C  
85°C  
0.6  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
–3  
1.0  
–5 –4  
–2 –1  
0
1
2
3
4
5
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1922 G43  
1922 G45  
1922 G44  
1992fb  
12  
LTC1992 Family  
Applicable to the LTC1992-1 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Coꢃꢃon (ode Rejection Ratio  
vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
OCM  
IN  
IN  
+V  
–V  
=
1.5V  
1.5V  
= 0pF  
=
1.5V  
1.5V  
IN  
IN  
=
=
C
LOAD  
0V  
0V  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
ΔV  
AMPCM  
ΔV  
AMPDIFF  
1992 G46  
1992 G47  
2μs/DIV  
20μs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G48  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency  
100  
90  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
V
= 2.5V  
OCM  
OCM  
IN  
IN  
80  
+V = 0V TO 4V  
+V = 0V TO 4V  
IN  
–V = 2V  
C
–V = 2V  
IN  
70  
= 0pF  
–V  
S
LOAD  
60  
50  
+V  
S
2.5V  
2.5V  
40  
30  
20  
10  
0
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
ΔV  
S
ΔV  
AMPDIFF  
1992 G49  
1992 G50  
2μs/DIV  
20μs/DIV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G51  
Differential Input Sꢃall-Signal  
Step Response  
Differential Input Sꢃall-Signal  
Step Response  
Output Balance vs Frequency  
0
–20  
–40  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
50mV  
50mV  
=
50mV  
IN  
IN  
=
= 50mV  
C
= 0pF  
LOAD  
0V  
0V  
–60  
–80  
C
C
= 10000pF  
= 1000pF  
ΔV  
LOAD  
LOAD  
OUTCM  
ΔV  
OUTDIFF  
–100  
1992 G52  
1992 G53  
1μs/DIV  
10μs/DIV  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
1992 G54  
1992fb  
13  
LTC1992 Family  
Applicable to the LTC1992-1 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Input Sꢃall-Signal  
Step Response  
Single-Ended Input Sꢃall-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 200mV  
IN  
OCM  
+V = 0V TO 200mV  
IN  
–V = 100mV  
IN  
C
–V = 100mV  
IN  
= 0pF  
LOAD  
1992 G56  
1992 G55  
10μs/DIV  
10  
100  
1000  
10000  
1μs/DIV  
FREQUENCY (Hz)  
1922 G57  
THD + Noise vs Frequency  
THD + Noise vs Aꢃplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
+V = 5V  
S
S
–V = –5V  
S
–V = –5V  
S
–50  
–60  
V
= 0V  
V
= 0V  
OCM  
OCM  
V
= 10V  
OUT  
P-PDIFF  
= 5V  
P-PDIFF  
50kHz  
20kHz  
V
OUT  
–70  
V
= 1V  
10kHz  
5kHz  
OUT  
P-PDIFF  
P-PDIFF  
–80  
V
= 2V  
OUT  
–90  
2kHz  
1kHz  
–100  
0.1  
1
10 20  
)
100  
1k  
10k  
50k  
INPUT SIGNAL AMPLITUDE (V  
FREQUENCY (Hz)  
P-PDIFF  
1992 G58  
1992 G59  
1992fb  
14  
LTC1992 Family  
Applicable to the LTC1992-2 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Differential Phase Response  
vs Frequency  
18  
12  
6
18  
12  
6
0
–20  
0
0
–40  
–6  
–6  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–80  
C
=
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
10pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G62  
1992 G60  
1992 G61  
Differential Gain Error  
vs Teꢃperature  
VOC( Gain vs Frequency,  
VS = 2ꢀ5V  
0.05  
0.04  
0.03  
0.02  
0.01  
0
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–10  
–15  
–20  
–25  
–30  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–50  
0
25  
50  
75 100 125  
10  
100  
1000  
10000  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G63  
1992 G64  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
(Note 7)  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
(Note 7)  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
(Note 7)  
2.0  
2.0  
1.5  
2.0  
1.5  
+V = 5V  
S
+V = 5V  
S
+V = 2.7V  
S
–V = 0V  
S
–V = –5V  
S
–V = 0V  
S
1.5  
1.0  
V
= 2.5V  
V
= 0V  
OCM  
V
= 1.35V  
OCM  
OCM  
1.0  
1.0  
–40°C  
25°C  
–40°C  
25°C  
–40°C  
25°C  
0.5  
0.5  
0.5  
85°C  
0
0
0
85°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
125°C  
125°C  
125°C  
85°C  
1.2 1.5  
0
0.3 0.6 0.9  
1.8 2.1 2.4 2.7  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1992 G65  
1992 G67  
1992 G66  
1992fb  
15  
LTC1992 Family  
Applicable to the LTC1992-2 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Coꢃꢃon (ode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
750mV  
750mV  
=
750mV  
IN  
IN  
=
= 750mV  
C
= 0pF  
LOAD  
0V  
0V  
2.5V  
0V  
ΔV  
C
C
= 10000pF  
= 1000pF  
AMPCM  
LOAD  
LOAD  
ΔV  
AMPDIFF  
1992 G68  
1992 G69  
2μs/DIV  
20μs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G70  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
+V = 5V  
+V = 5V  
S
–V = 0V  
S
S
–V  
+V  
S
S
–V = 0V  
S
OCM  
V
= 2.5V  
V
= 2.5V  
OCM  
80  
+V = 0V TO 2V  
+V = 0V TO 2V  
IN  
IN  
–V = 1V  
–V = 1V  
IN  
IN  
70  
C
= 0pF  
LOAD  
60  
50  
2.5V  
40  
30  
20  
10  
0
C
C
= 10000pF  
= 1000pF  
ΔV  
LOAD  
LOAD  
S
ΔV  
AMPDIFF  
1992 G71  
1992 G72  
2μs/DIV  
20μs/DIV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G73  
Differential Input Sꢃall-Signal  
Step Response  
Differential Input Sꢃall-Signal  
Step Response  
Output Balance vs Frequency  
0
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
–20  
+V  
IN  
–V  
IN  
=
25mV  
25mV  
=
25mV  
IN  
IN  
=
= 25mV  
C
= 0pF  
LOAD  
–40  
–60  
0V  
–80  
C
C
= 10000pF  
= 1000pF  
ΔV  
LOAD  
LOAD  
OUTCM  
ΔV  
OUTDIFF  
–100  
1992 G74  
1992 G75  
2μs/DIV  
20μs/DIV  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
1992 G76  
1992fb  
16  
LTC1992 Family  
Applicable to the LTC1992-2 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Input Sꢃall-Signal  
Step Response  
Single-Ended Input Sꢃall-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 100mV  
IN  
OCM  
+V = 0V TO 100mV  
IN  
–V = 50mV  
IN  
C
–V = 50mV  
IN  
= 0pF  
LOAD  
1992 G77  
1992 G78  
2μs/DIV  
20μs/DIV  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
1922 G79  
THD + Noise vs Frequency  
THD + Noise vs Aꢃplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
–V = –5V  
S
OCM  
–50  
–60  
V
= 0V  
50kHz  
20kHz  
V
= 1V  
OUT  
P-PDIFF  
–70  
10kHz  
5kHz  
V
= 2V  
OUT  
P-PDIFF  
–80  
V
= 5V  
P-PDIFF  
OUT  
2kHz  
1kHz  
–90  
V
= 10V  
P-PDIFF  
OUT  
–100  
100  
1k  
FREQUENCY (Hz)  
10k  
50k  
0.1  
1
10  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G81  
1992 G80  
1992fb  
17  
LTC1992 Family  
Applicable to the LTC1992-5 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Differential Phase Response  
vs Frequency  
30  
24  
18  
30  
24  
18  
0
–20  
12  
6
12  
6
–40  
0
0
–60  
–6  
–6  
–80  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
C
=
10pF  
50pF  
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G82  
1992 G84  
1992 G83  
Differential Gain Error  
vs Teꢃperature  
VOC( Gain vs Frequency  
0.050  
0.025  
0
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–0.025  
–0.050  
–0.075  
–0.100  
–0.125  
–01.50  
–10  
–15  
–20  
–25  
–30  
10  
100  
1000  
10000  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G86  
1992 G85  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+V = 5V  
S
+V = 2.7V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = –5V  
S
V
= 2.5V  
V
= 1.35V  
V
= 0V  
OCM  
OCM  
OCM  
1.0  
1.0  
1.0  
–40°C  
0.5  
0.5  
0.5  
–40°C  
–40°C  
0
0
0
125°C  
85°C  
125°C  
25°C  
25°C  
125°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
85°C  
25°C  
85°C  
1.0  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.6  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
–3  
–5 –4  
–2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1922 G88  
1922 G87  
1922 G89  
1992fb  
18  
LTC1992 Family  
Applicable to the LTC1992-5 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Coꢃꢃon (ode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
+V  
–V  
= 0V  
V
= 0V  
OCM  
IN  
IN  
OCM  
IN  
IN  
=
300mV  
300mV  
+V  
–V  
=
300mV  
300mV  
= 0pF  
=
=
C
LOAD  
0V  
2.5V  
0V  
0V  
2.5V  
0V  
C
C
= 10000pF  
= 1000pF  
ΔV  
LOAD  
LOAD  
AMPCM  
ΔV  
AMPDIFF  
1992 G90  
1992 G91  
2μs/DIV  
20μs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G92  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
80  
70  
+V  
S
60  
50  
–V  
S
40  
30  
20  
10  
0
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 800mV  
IN  
OCM  
ΔV  
+V = 0V TO 800mV  
IN  
S
–V = 400mV  
IN  
C
ΔV  
–V = 400mV  
IN  
= 0pF  
AMPDIFF  
LOAD  
1992 G93  
1992 G94  
2μs/DIV  
20μs/DIV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G95  
Differential Input Sꢃall-Signal  
Step Response  
Differential Input Sꢃall-Signal  
Step Response  
Output Balance vs Frequency  
0
–20  
–40  
–60  
–80  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
10mV  
10mV  
=
10mV  
IN  
IN  
=
= 10mV  
C
= 0pF  
LOAD  
ΔV  
C
C
= 10000pF  
= 1000pF  
OUTCM  
LOAD  
LOAD  
ΔV  
OUTDIFF  
–100  
1992 G96  
1992 G97  
5μs/DIV  
50μs/DIV  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
1992 G98  
1992fb  
19  
LTC1992 Family  
Applicable to the LTC1992-5 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Input Sꢃall-Signal  
Step Response  
Single-Ended Input Sꢃall-Signal  
Differential Noise Voltage Density  
vs Frequency  
Step Response  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 40mV  
IN  
OCM  
+V = 0V TO 40mV  
IN  
–V = 20mV  
IN  
C
–V = 20mV  
IN  
= 0pF  
LOAD  
1992 G99  
1992 G100  
10  
100  
1000  
10000  
5μs/DIV  
50μs/DIV  
FREQUENCY (Hz)  
1922 G101  
THD + Noise vs Frequency  
THD + Noise vs Aꢃplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
+V = 5V  
S
S
–V = –5V  
S
–50 –V = –5V  
S
OCM  
V
= 0V  
V
= 0V  
OCM  
50kHz  
–60  
–70  
V
= 1V  
= 2V  
20kHz  
10kHz  
OUT  
P-PDIFF  
V
OUT  
P-PDIFF  
V
V
= 5V  
P-PDIFF  
OUT  
5kHz  
2kHz  
–80  
= 10V  
OUT  
P-PDIFF  
–90  
1kHz  
–100  
100  
1k  
FREQUENCY (Hz)  
10k  
50k  
0.1  
1
5
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G102  
1992 G103  
1992fb  
20  
LTC1992 Family  
Applicable to the LTC1992-10 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = 2ꢀ5V  
Differential Phase Response  
vs Frequency  
40  
30  
40  
30  
0
–20  
20  
20  
–40  
10  
10  
–60  
0
0
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
C
=
10pF  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10pF  
= 10pF  
10  
100  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G106  
1992 G104  
1992 G105  
Differential Gain Error  
vs Teꢃperature  
V
OC( Gain vs Frequency  
0.050  
0.025  
5
0
C
= 10pF TO 10000pF  
LOAD  
0
–5  
–0.025  
–0.050  
–0.075  
–0.100  
–0.125  
–0.150  
–0.175  
–0.200  
–10  
–15  
–20  
–25  
–30  
10  
100  
1000  
10000  
–50  
0
25 50  
75 100 125  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G108  
1992 G107  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
Differential Input Offset Voltage  
vs Input Coꢃꢃon (ode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = –5V  
S
V
= 1.35V  
V
= 2.5V  
V
= 0V  
OCM  
OCM  
OCM  
1.0  
1.0  
1.0  
0.5  
0.5  
0.5  
–40°C  
–40°C  
–40°C  
0
0
0
125°C  
125°C  
85°C  
25°C  
125°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
25°C  
85°C  
25°C  
85°C  
1.0  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.6  
–3  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
–5 –4  
–2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1922 G111  
1922 G110  
1922 G109  
1992fb  
21  
LTC1992 Family  
Applicable to the LTC1992-10 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Coꢃꢃon (ode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
IN  
IN  
OCM  
IN  
IN  
+V  
–V  
=
150mV  
150mV  
= 0pF  
=
150mV  
150mV  
=
=
C
LOAD  
0V  
0V  
2.5V  
0V  
ΔV  
C
C
= 10000pF  
= 1000pF  
AMPCM  
LOAD  
LOAD  
ΔV  
AMPDIFF  
1992 G112  
1992 G113  
2μs/DIV  
20μs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G114  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
80  
+V  
S
70  
–V  
S
60  
50  
2.5V  
40  
30  
20  
10  
0
+V = 5V  
S
–V = 0V  
S
OCM  
+V = 5V  
S
V
= 2.5V  
–V = 0V  
S
OCM  
+V = 0V TO 400mV  
IN  
V
= 2.5V  
–V = 200mV  
IN  
+V = 0V TO 400mV  
IN  
ΔV  
S
C
= 0pF  
LOAD  
–V = 200mV  
IN  
ΔV  
AMPDIFF  
1992 G115  
1992 G116  
2μs/DIV  
20μs/DIV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G117  
Differential Input Sꢃall-Signal  
Step Response  
Differential Input Sꢃall-Signal  
Step Response  
Output Balance vs Frequency  
0
–20  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
+V  
–V  
= 0V  
OCM  
+V  
IN  
–V  
IN  
=
5mV  
5mV  
=
5mV  
5mV  
IN  
IN  
=
=
–40  
C
= 0pF  
LOAD  
0V  
–60  
–80  
–100  
C
C
= 10000pF  
= 1000pF  
ΔV  
LOAD  
LOAD  
OUTCM  
ΔV  
OUTDIFF  
–120  
1992 G118  
1992 G119  
10μs/DIV  
100μs/DIV  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
1992 G120  
1992fb  
22  
LTC1992 Family  
Applicable to the LTC1992-10 onlyꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Input Sꢃall-Signal  
Step Response  
Single-Ended Input Sꢃall-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 20mV  
IN  
OCM  
+V = 0V TO 20mV  
IN  
–V = 10mV  
IN  
C
–V = 10mV  
IN  
= 0pF  
LOAD  
1992 G121  
1992 G122  
10  
100  
1000  
10000  
10μs/DIV  
100μs/DIV  
FREQUENCY (Hz)  
1922 G123  
THD + Noise vs Frequency  
THD + Noise vs Aꢃplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
50kHz  
20kHz  
10kHz  
–50 –V = –5V  
S
OCM  
V
= 0V  
–60  
–70  
V
V
= 1V  
= 2V  
= 5V  
OUT  
P-PDIFF  
P-PDIFF  
P-PDIFF  
OUT  
V
OUT  
5kHz  
2kHz  
1kHz  
–80  
–90  
–100  
100  
1k  
10k  
50k  
0.1  
1
2
FREQUENCY (Hz)  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G124  
1992 G125  
1992fb  
23  
LTC1992 Family  
PIN FUNCTIONS  
ꢄIN, +IN ꢁPins 1, ꢆꢂ: Inverting and Noninverting Inputs  
of the Amplifier. For the LTC1992 part, these pins are  
connected directly to the amplifier’s P-channel MOSFET  
input devices. The fixed gain LTC1992-X parts have preci-  
sion, on-chip gain setting resistors. The input resistors  
are nominally 30k for the LTC1992-1, LTC1992-2 and  
LTC1992-5 parts. The input resistors are nominally 15k  
for the LTC1992-10 part.  
+V , ꢄV ꢁPins ., 6ꢂ: The +V and –V power supply pins  
S S S S  
shouldbebypassedwith0.1μFcapacitorstoanadequateana-  
log ground or ground plane. The bypass capacitors should  
be located as closely as possible to the supply pins.  
+OUT, OUT ꢁPins –, 5ꢂ: The Positive and Negative  
Outputs of the Amplifier. These rail-to-rail outputs are  
designed to drive capacitive loads as high as 10,000pF.  
V
ꢁPin7:Mid-SupplyReference.Thispinisconnected  
(ID  
V
ꢁPin 2ꢂ: Output Common Mode Voltage Set Pin.  
OC(  
to an on-chip resistive voltage divider to provide a mid-  
supply reference. This provides a convenient way to set  
the output common mode level at half-supply. If used for  
this purpose, Pin 2 will be shorted to Pin 7, Pin 7 should  
be bypassed with a 0.1μF capacitor to ground. If this refer-  
ence voltage is not used, leave the pin floating.  
The voltage on this pin sets the output signal’s common  
mode voltage level. The output common mode level is set  
independent of the input common mode level. This is a  
high impedance input and must be connected to a known  
and controlled voltage. It must never be left floating.  
ꢁ1992ꢂ  
BLOCK DIAGRAMS  
+V  
S
3
+V  
S
–IN  
MID  
1
7
2
+
V
V
+
+OUT  
4
–V  
S
200k  
200k  
+
30k  
30k  
V
+
+
A1  
A2  
V
OCM  
+IN  
+
+V  
–V  
–OUT  
S
5
1992 BD  
8
S
6
–V  
S
1992fb  
24  
LTC1992 Family  
ꢁ1992-Xꢂ  
BLOCK DIAGRAMS  
+V  
S
3
+V  
–V  
S
R
R
FB  
IN  
–IN  
1
7
200k  
200k  
S
4
5
+OUT  
–OUT  
+
+
V
MID  
+IN  
+V  
S
R
R
FB  
IN  
8
PART  
R
IN  
R
FB  
LTC1992-1 30k 30k  
LTC1992-2 30k 60k  
LTC1992-5 30k 150k  
LTC1992-10 15k 150k  
–V  
S
6
–V  
2
1992-X BD  
V
S
OCM  
APPLICATIONS INFORMATION  
Theory of Operation  
allows the output signal’s common mode voltage to be  
set completely independent of the input signal’s common  
mode voltage. Uncoupling the input and output coꢃꢃon  
ꢃode voltages ꢃakes signal level shifting easyꢀ  
The LTC1992 family consists of five fully differential, low  
power amplifiers. The LTC1992 is an unconstrained fully  
differentialamplifier.TheLTC1992-1,LTC1992-2,LTC1992-  
5 and LTC1992-10 are fixed gain blocks (with gains of  
1, 2, 5 and 10 respectively) featuring precision on-chip  
resistors for accurate and ultra stable gain.  
For a better understanding of the operation of a fully dif-  
ferential amplifier, refer to Figure 2. Here, the LTC1992  
functional block diagram adds external resistors to real-  
ize a basic gain block. Note that the LTC1992 functional  
block diagram is not an exact replica of the LTC1992  
circuitry. However, the Block Diagram is correct and is  
a very good tool for understanding the operation of fully  
differential amplifier circuits. Basic op amp fundamentals  
together with this block diagram provide all of the tools  
neededforunderstandingfullydifferentialamplifiercircuit  
applications.  
In many ways, a fully differential amplifier functions much  
like the familiar, ubiquitous op amp. However, there are  
severalkeyareaswherethetwodiffer.ReferringtoFigure 1,  
an op amp has a differential input, a high open-loop gain  
and utilizes negative feedback (through resistors) to set  
the closed-loop gain and thus control the amplifier’s gain  
with great precision. A fully differential amplifier has all of  
these features plus an additional input and a complemen-  
tary output. The complementary output reacts to the input  
signal in the same manner as the other output, but in the  
opposite direction. Two outputs changing in an equal but  
opposite manner require a common reference point (i.e.,  
The LTC1992 Block Diagram has two op amps, two sum-  
mingblocks(paycloseattentionthesigns)andfourresis-  
tors. Two resistors, R  
and R  
, connect directly to  
MID1  
MID2  
the V  
pin and simply provide a convenient mid-supply  
MID  
opposite relative to what?). The additional input, the V  
reference. Its use is optional and it is not involved in the  
operationoftheLTC1992’samplifier.TheLTC1992functions  
through the use of two servo networks each employing  
OCM  
input  
pin,setsthisreferencepoint.ThevoltageontheV  
OCM  
directlysetstheoutputsignal’scommonmodevoltageand  
1992fb  
25  
LTC1992 Family  
APPLICATIONS INFORMATION  
Op Aꢃp  
Fully Differential Aꢃplifier  
–IN  
–IN  
+OUT  
+
LTC1992  
LTC1992  
V
OCM  
OUT  
A
A
O
O
+IN  
+IN  
–OUT  
+
+
• DIFFERENTIAL INPUT  
• HIGH OPEN-LOOP GAIN  
• SINGLE-ENDED OUTPUT  
• DIFFERENTIAL INPUT  
• HIGH OPEN-LOOP GAIN  
• DIFFERENTIAL OUTPUT  
INPUT SETS OUTPUT  
OCM  
COMMON MODE LEVEL  
• V  
Op Aꢃp with Negative Feedback  
Fully Differential Aꢃplifier with Negative Feedback  
R
FB  
R
FB  
R
R
R
IN  
IN  
IN  
V
–V  
+V  
+V  
V
V
+
+
IN  
IN  
IN  
OUT  
OCM  
OCM  
+
LTC1992  
V
OUT  
LTC1992  
–V  
OUT  
R
R
FB  
GAIN = –  
IN  
R
R
FB  
GAIN = –  
V
R
FB  
OCM  
IN  
1992 F01  
Figure 1ꢀ Coꢃparison of an Op Aꢃp and a Fully Differential Aꢃplifier  
R
FB  
+V  
S
3
LTC1992  
R
IN  
INM  
–IN  
MID  
+V  
IN  
1
7
2
+
S
P
V
+
+OUT  
+V  
4
R
OUT  
MID1  
200k  
+
R
CMP  
30k  
V
R
MID2  
200k  
+
+
A1  
A2  
R
CMM  
30k  
V
V
OCM  
+IN  
+
–OUT  
–V  
5
OUT  
S
M
R
IN  
INP  
–V  
IN  
8
6
–V  
S
R
FB  
1992 F02  
Figure 2ꢀ LTC1992 Functional Block Diagraꢃ with External Gain Setting Resistors  
1992fb  
26  
LTC1992 Family  
APPLICATIONS INFORMATION  
negative feedback and using an op amp’s differential input  
to create the servo’s summing junction.  
the V  
voltage. If either of these servos is taken out of  
OCM  
the specified areas of operation (e.g., inputs taken beyond  
thecommonmoderangespecifications,outputshittingthe  
supply rails or input signals varying faster than the part  
can track), the circuit will not function properly.  
One servo controls the signal gain path. The differential  
input of op amp A1 creates the summing junction of this  
servo.AnyvoltagepresentattheinputofA1isamplified(by  
the op amp’s large open-loop gain), sent to the summing  
blocksandthenontotheoutputs.Takingnoteofthesignson  
thesummingblocks,opampA1’soutputmoves+OUTand  
–OUT in opposite directions. Applying a voltage step at  
the INM node increases the +OUT voltage while the –OUT  
voltage decreases. The RFB resistors connect the outputs  
totheappropriateinputsestablishingnegativefeedbackand  
closing the servo’s loop. Any servo loop always attempts  
to drive its error voltage to zero. In this servo, the error  
voltage is the voltage between the INM and INP nodes,  
thus A1 will force the voltages on the INP and INM nodes  
to be equal (within the part’s DC offset, open loop gain  
and bandwidth limits). The “virtual short” between the  
two inputs is conceptually the same as that for op amps  
and is critical to understanding fully differential amplifier  
applications.  
Fully Differential Aꢃplifier Signal Conventions  
Fully differential amplifiers have a multitude of signals and  
signal ranges to consider. To maintain proper operation  
with conventional op amps, the op amp’s inputs and its  
output must not hit the supply rails and the input signal’s  
common mode level must also be within the part’s speci-  
fied limits. These considerations also apply to fully dif-  
ferential amplifiers, but here there is an additional output  
to consider and common mode level shifting complicates  
matters. Figure 3 provides a list of the many signals and  
specifications as well as the naming convention. The  
phrasecommonmodeappearsinmanyplacesandoften  
leads to confusion. The fully differential amplifier’s ability  
to uncouple input and output common mode levels yields  
greatdesignflexibility,butalsocomplicatesmatterssome.  
For simplicity, the equations in Figure 3 also assume an  
idealamplifierandperfectresistormatching.Foradetailed  
analysis,consultthefullydifferentialamplifierapplications  
circuit analysis section.  
The other servo controls the output common mode level.  
The differential input of op amp A2 creates the summing  
junction of this servo. Similar to the signal gain servo  
above, any voltage present at the input of A2 is amplified,  
sent to the summing blocks and then onto the outputs.  
However,inthiscase,bothoutputsmoveinthesaꢃedirec-  
Basic Applications Circuits  
Mostfullydifferentialamplifierapplicationscircuitsemploy  
symmetrical feedback networks and are familiar territory  
foropampusers. Symmetricalfeedbacknetworksrequire  
that the –V /+V  
the+V /–V  
cally just a standard inverting gain op amp circuit. Figure 4  
shows three basic inverting gain op amp circuits and their  
correspondingfullydifferentialamplifiercousins.Thevast  
majority of fully differential amplifier circuits derive from  
old tried and true inverting op amp circuits. To create a  
fully differential amplifier circuit from an inverting op amp  
circuit,firstsimplytransfertheopamp’sV /V  
tothefullydifferentialamplifier’sV /+V  
take a mirror image duplicate of the network and apply it  
to the fully differential amplifier’s +V /–V  
amp users can comfortably transfer any inverting op amp  
circuit to a fully differential amplifier in this manner.  
1992fb  
tion. The resistors R  
and R  
connect the +OUT and  
CMP  
CMM  
–OUToutputstoA2’sinvertinginputestablishingnegative  
feedback and closing the servo’s loop. The midpoint of  
network is a mirror image duplicate of  
IN  
OUT  
OUT  
resistors R  
and R  
derives the output’s common  
CMP  
CMM  
network. Eachofthesehalfcircuitsisbasi-  
IN  
mode level (i.e., its average). This measure of the output’s  
commonmodelevelconnectstoA2’sinvertinginputwhile  
A2’s noninverting input connects directly to the V  
pin.  
OCM  
A2 forces the voltages on its inverting and noninverting  
inputs to be equal. In other words, it forces the output  
common mode voltage to be equal to the voltage on the  
V
OCM  
input pin.  
network  
IN OUT  
For any fully differential amplifier application to function  
properly both the signal gain servo and the common mode  
level servo must be satisfied. When analyzing an applica-  
tionscircuit,theINPnodevoltagemustequaltheINMnode  
voltage and the output common mode voltage must equal  
nodes. Then,  
IN  
OUT  
nodes. Op  
IN  
OUT  
27  
LTC1992 Family  
APPLICATIONS INFORMATION  
R
FB  
R
R
IN  
A
B
INM  
INP  
2AV  
V
2BV  
2BV  
+
–V  
+V  
OUT  
P-P  
P-P  
P-P  
IN  
IN  
–A  
A
–B  
B
V
V
INDIFF  
OUTDIFF  
4BV  
LTC1992  
V
V
V
OCM  
OCM  
INCM  
OUTCM  
4AV  
P-PDIFF  
P-PDIFF  
IN  
+V  
2AV  
+
–V  
OUT  
P-P  
–B  
–A  
R
FB  
1992 F03  
DIFFERENTIAL  
INPUT VOLTAGE  
DIFFERENTIAL  
OUTPUT VOLTAGE  
= V  
= +V – –V  
IN  
= V  
OUTDIFF  
= +V  
– –V  
INDIFF  
IN  
OUT  
OUT  
+V + –V  
IN  
+V  
OUT  
+ –V  
2
INPUT COMMON  
MODE VOLTAGE  
IN  
OUTPUT COMMON  
MODE VOLTAGE  
OUT  
= V  
=
= V  
=
OUTCM  
INCM  
2
R
R
1
2
FB  
IN  
+V  
–V  
=
=
+V – –V  
IN  
+ V  
; V  
; V  
= 0V  
= 0V  
OUT  
OUT  
IN  
IN  
OCM  
OCM  
OSCM  
OSCM  
(
(
)
)
R
R
1
2
FB  
IN  
–V – +V  
IN  
+ V  
R
R
FB  
IN  
V
V
V
V
= V  
INDIFF  
OUTDIFF  
= V – V  
INP  
AMPDIFF  
INM  
V
+ V  
INM  
2
INP  
=
AMPCM  
OUTCM  
= V  
OCM  
ΔV  
AMPCM  
CMRR =  
; +V = –V  
IN  
IN  
ΔV  
AMPDIFF  
ΔV  
OUTCM  
OUTDIFF  
OUTPUT BALANCE =  
ΔV  
R
R
FB  
IN  
2
2
e
=
+ 1  
WHERE: e  
= OUTPUT REFERRED NOISE VOLTAGE DENSITY  
NOUT  
NIN  
e  
+ r  
N
NOUT  
(
)
NIN  
e
= INPUT REFERRED NOISE VOLTAGE DENSITY  
R
R
• R  
FB  
+ R  
FB  
IN  
IN  
r
≈ (0.13nV/√Hz)  
N
(
)
(RESISTIVE NOISE IS ALREADY INCLUDED IN THE  
SPECIFICATIONS FOR THE FIXED GAIN LTC1992-X PARTS)  
R
R
FB  
IN  
V
V
= V  
+ 1  
OSDIFFOUT  
OSDIFFIN  
(
)
= V  
– V  
OSCM  
OUTCM  
OCM  
Figure .ꢀ Fully Differential Aꢃplifier Signal Conventions ꢁIdeal Aꢃplifier and Perfect Resistor (atching is Assuꢃedꢂ  
Single-Ended to Differential Conversion  
input signals. Which input is used for the signal path only  
affects the polarity of the differential output signal.  
One of the most important applications of fully differential  
amplifiersissingle-endedsignalingtodifferentialsignaling  
conversion.Manysystemshaveasingle-endedsignalthat  
must connect to an ADC with a differential input. The ADC  
could be run in a single-ended manner, but performance  
usually degrades. Fortunately, all of basic applications  
circuits shown in Figure 4, as well as all of the fixed gain  
LTC1992-X parts, are equally suitable for both differential  
and single-ended input signals. For single-ended input  
signals, connect one of the inputs to a reference voltage  
(e.g., ground or mid-supply) and connect the other to  
the signal path. There are no tradeoffs here as the part’s  
performance is the same with single-ended or differential  
Signal Level Shifting  
Another important application of fully differential ampli-  
fier is signal level shifting. Single-ended to differential  
conversion accompanied by a signal level shift is very  
commonplacewhendrivingADCs.Asnotedinthetheoryof  
operation section, fully differential amplifiers have a com-  
monmodelevelservothatdeterminestheoutputcommon  
mode level independent of the input common mode level.  
To set the output common mode level, simply apply the  
desired voltage to the V  
input pin. The voltage range  
OCM  
on the V  
pin is from (–V + 0.5V) to (+V – 1.3V).  
OCM  
S S  
1992fb  
28  
LTC1992 Family  
APPLICATIONS INFORMATION  
Gain Block  
R
FB  
R
FB  
R
IN  
R
R
IN  
V
IN  
–V  
+V  
+
+V  
–V  
+
IN  
IN  
OUT  
OUT  
V
OUT  
LTC1992  
V
OCM  
IN  
+
R
R
FB  
R
R
FB  
GAIN =  
IN  
AC Coupled Gain Block  
R
FB  
FB  
C
IN  
C
C
IN  
R
IN  
R
IN  
V
IN  
–V  
IN  
+
+V  
–V  
+
OUT  
OUT  
V
LTC1992  
V
OUT  
OCM  
IN  
R
IN  
+V  
IN  
+
S
H
= H •  
O
(S)  
S + W  
R
FB  
P
R
R
1
• C  
FB  
IN  
H
O
=
; W  
P
=
R
IN  
IN  
Single Pole Lowpass Filter  
C
C
R
FB  
R
FB  
R
IN  
R
IN  
V
IN  
–V  
IN  
+
+V  
–V  
+
OUT  
OUT  
V
LTC1992  
V
OUT  
OCM  
R
IN  
+V  
IN  
+
W
S + W  
R
FB  
P
H
(S)  
= H •  
O
P
C
R
R
1
FB  
FB  
IN  
WHERE H  
=
; W  
P
=
O
R
• C  
.-Pole Lowpass Filter  
R2  
C1  
R2  
C1  
R1  
R3  
R1  
R1  
R3  
C2  
R4  
R4  
V
–V  
IN  
+
+V  
–V  
+
IN  
OUT  
OUT  
R4  
C2  
C3  
2
V
OUT  
LTC1992  
V
OCM  
2
C3  
R3  
+V  
+
IN  
C1  
2
W
S + W  
W
O
O
Q
P
H
= H  
O
(S)  
W
(
)(  
1
)
2
2
P
W
S
+ S  
+
O
R2  
1992 F04  
1
R2  
R1  
WHERE H  
=
; W  
=
; W =  
O
O
P
R4C3  
R1 • √R2R3  
R1 R2 + R1 R2 + R2 R3  
R2R3C1C2  
C2  
C1  
Q =  
Figure –ꢀ Basic Fully Differential Aꢃplifier Application Circuits ꢁNote: Single-Ended to Differential Conversion is  
Easily Accoꢃplished by Connecting One of the Input Nodes, +VIN or ꢄVIN, to a DC Reference Level ꢁeꢀgꢀ, Groundꢂꢂ  
1992fb  
29  
LTC1992 Family  
APPLICATIONS INFORMATION  
The V  
input pin has a very high input impedance and  
low frequency CMRR performance. The specifications for  
thefixedgainLTC1992-Xpartsincludetheon-chipresistor  
matching effects. Also, note that an input common mode  
signalappearsasadifferentialoutputsignalreducedbythe  
CMRR. As with op amps, at higher frequencies the CMRR  
degrades. Refer to the Typical Performance plots for the  
details of the CMRR performance over frequency.  
OCM  
is easily driven by even the weakest of sources. Many  
ADCs provide a voltage reference output that defines  
either its common mode level or its full-scale level. Apply  
the ADC’s reference potential either directly to the V  
OCM  
pin or through a resistive voltage divider depending on  
the reference voltage’s definition. When controlling the  
V
OCM  
pin by a high impedance source, connect a bypass  
At low frequencies, the output balance specification is  
capacitor (1000pF to 0.1μF) from the V  
pin to ground  
OCM  
determined by the matching of the on-chip R  
CMP  
and  
CMM  
to lower the high frequency impedance and limit external  
noise coupling. Other applications will want the output  
biased at a midpoint of the power supplies for maximum  
output voltage swing. For these applications, the LTC1992  
R
resistors. At higher frequencies, the output bal-  
ance degrades. Refer to the typical performance plots  
for the details of the output balance performance over  
frequency.  
provides a mid-supply potential at the V  
pin. The V  
MID  
MID  
pin connects to a simple resistive voltage divider with  
Input Iꢃpedance  
two 200k resistors connected between the supply pins.  
The input impedance for a fully differential amplifier ap-  
plication circuit is similar to that of a standard op amp  
inverting amplifier. One major difference is that the input  
impedance is different for differential input signals and  
single-ended signals. Referring to Figure 3, for differential  
input signals the input impedance is expressed by the  
following expression:  
To use this feature, connect the V  
and bypass this node with a capacitor.  
pin to the V  
pin  
MID  
OCM  
One undesired effect of utilizing the level shifting function  
isanincreaseinthedifferentialoutputoffsetvoltagedueto  
gainsettingresistormismatch.Theoffsetisapproximately  
theamountoflevelshift(V  
–V )multipliedbythe  
INCM  
OUTCM  
amount of resistor mismatch. For example, a 2V level shift  
with 0.1% resistors will give around 2mV of output offset  
(2 • 0.1% = 2mV). The exact amount of offset is dependent  
on the application’s gain and the resistor mismatch. For a  
detail description, consult the Fully Differential Amplifier  
Applications Circuit Analysis section.  
R
= 2 • R  
IN  
INDIFF  
Forsingle-endedsignals,theinputimpedanceisexpressed  
by the following expression:  
RIN  
RFB  
RINS-E  
=
1–  
2 • R + R  
(
)
C(RR and Output Balance  
IN  
FB  
Onecommonmisconceptionoffullydifferentialamplifiers  
isthatthecommonmodelevelservoguaranteesaninfinite  
commonmoderejectionratio(CMRR).Thisisnottrue.The  
common mode level servo does, however, force the two  
outputs to be truly complementary (i.e., exactly opposite  
or 180 degrees out of phase). Output balance is a measure  
of how complementary the two outputs are.  
The input impedance for single-ended signals is slightly  
higher than the R value since some of the input signal  
IN  
is fed back and appears as the amplifier’s input common  
mode level. This small amount of positive feedback in-  
creases the input impedance.  
Driving Capacitive Loads  
At low frequencies, CMRR is primarily determined by the  
matchingofthegainsettingresistors.Likeanyopamp,the  
LTC1992 does not have infinite CMRR, however resistor  
mismatching of only 0.018%, halves the circuit’s CMRR.  
Standard 1% tolerance resistors yield a CMRR of about  
40dB.Formostapplications,resistormatchingdominates  
TheLTC1992familyofpartsisstableforallcapacitiveloads  
up to at least 10,000pF. While stability is guaranteed, the  
part’s performance is not unaffected by capacitive load-  
ing. Large capacitive loads increase output step response  
ringing and settling time, decrease the bandwidth and  
increase the frequency response peaking. Refer to the  
1992fb  
30  
LTC1992 Family  
APPLICATIONS INFORMATION  
Typical Performance plots for small-signal step response,  
large-signal step response and gain over frequency to  
appraise the effects of capacitive loading. While the con-  
sequences are minor in most instances, consider these  
effects when designing application circuits with large  
capacitive loads.  
random. Once the input returns to the specified input  
common mode range, there is a small recovery time then  
normal operation proceeds.  
)
TheLTC1992’sinputsignalcommonmoderange(V  
INCMR  
is from (–V – 0.1V) to (+V – 1.3V). This specification  
S
S
applies to the voltage at the aꢃplifiers input, the INP and  
INMnodesofFigure2.Thespecificationsforthefixedgain  
LTC1992-X parts reflect a higher maximum limit as this  
specification is for the entire gain block and references  
the signal at the input resistors. Differential input signals  
and single-ended signals require a slightly different set  
of formulae. Differential signals separate very nicely into  
common mode and differential components while single  
ended signals do not. Refer to Figure 5 for the formulae  
for calculating the available signal range. Additionally,  
Table 1 lists some common configurations and their ap-  
propriate signal levels.  
Input Signal Aꢃplitude Considerations  
For application circuits to operate correctly, the amplifier  
must be in its linear operating range. To be in the linear  
operating range, the input signal’s common mode voltage  
mustbewithinthepart’sspecifiedlimitsandtherail-to-rail  
outputsmuststaywithinthesupplyvoltagerails.Addition-  
ally, the fixed gain LTC1992-X parts have input protection  
diodes that limit the input signal to be within the supply  
voltage rails. The unconstrained LTC1992 uses external  
resistors allowing the source signals to go beyond the  
supply voltage rails.  
TheLTC1992’soutputsallowrail-to-railsignalswings.The  
output voltage on either output is a function of the input  
signal’s amplitude, the gain configured and the output  
When taken outside of the linear operating range, the  
circuit does not perform as expected, however nothing  
extreme occurs. Outputs driven into the supply voltage  
rails are simply clipped. There is no phase reversal or  
oscillation. Once the outputs return to the linear operating  
range, there is a small recovery time, then normal opera-  
tion proceeds. When the input common mode voltage is  
below the specified lower limit, on-chip protection diodes  
conduct and clamp the signal. Once the signal returns to  
thespecifiedoperatingrange, normaloperationproceeds.  
If the input common mode voltage goes slightly above the  
specified upper limit (by no more than about 500mV),  
the amplifier’s open-loop gain reduces and DC offset and  
closed-loop gain errors increase. Return the input back to  
thespecifiedrangeandnormalperformancecommences.  
If taken well above the upper limit, the amplifier’s input  
stage is cut off. The gain servo is now open loop; however,  
the common mode servo is still functional. Output bal-  
ance is maintained and the outputs go to opposite supply  
rails. However, which output goes to which supply rail is  
signal’s common mode level set by the V  
pin. For  
OCM  
maximumsignalswing, theV  
pinissetatthemidpoint  
OCM  
of the supply voltages. For other applications, such as an  
ADC driver, the required level must fall within the V  
OCM  
range of (–V + 0.5V) to (+V – 1.3V). For single-ended  
S
S
input signals, it is not always obvious which output will  
clipfirstthusbothoutputsarecalculatedandtheminimum  
value determines the signal limit. Refer to Figure 5 for the  
formula and Table 1 for examples.  
To ensure proper linear operation both the input common  
mode level and the output signal level must be within  
the specified limits. These same criteria are also present  
with standard op amps. However, with a fully differential  
amplifier, it is a bit more complex and old familiar op amp  
intuition often leads to the wrong result. This is especially  
true for single-ended to differential conversion with level  
shifting. The required calculations are a bit tedious, but  
are necessary to guarantee proper linear operation.  
1992fb  
31  
LTC1992 Family  
APPLICATIONS INFORMATION  
Differential Input Signals  
R
FB  
INM  
NODE  
R
IN  
IN  
A
B
2AV  
V
2BV  
2BV  
+
–V  
+V  
+V  
OUT  
P-P  
P-P  
P-P  
IN  
–A  
A
–B  
B
V
V
4BV  
INDIFF  
OUTDIFF  
P-PDIFF  
LTC1992  
V
V
V
OCM  
OCM  
INCM  
OUTCM  
4AV  
P-PDIFF  
R
2AV  
+
–V  
IN  
P-P  
OUT  
–B  
–A  
INP  
NODE  
R
R
FB  
IN  
R
G =  
FB  
INPUT CO((ON (ODE LI(ITS  
A. CALCULATE V  
MINIMUM AND MAXIMUM GIVEN R , R AND V  
IN FB  
INCM  
OCM  
1
V
= (+V – 1.3V) +  
(+V – 1.3V – V  
S
)
OCM  
INCM(MAX)  
S
G
1
G
V
= (–V – 0.1V) +  
(–V – 0.1V – V  
S
)
OCM  
INCM(MIN)  
S
B. WITH A KNOWN V  
, R , R AND V  
, CALCULATE COMMON MODE  
OCM  
OR  
INCM IN FB  
VOLTAGE AT INP AND INM NODES (V  
) AND CHECK THAT IT IS  
INCM(AMP)  
WITHIN THE SPECIFIED LIMITS.  
V
+ V  
2
G
G + 1  
1
INP  
INM  
V
=
=
V
+
V
4
INCM(AMP)  
INCM  
OCM  
G + 1  
OUTPUT SIGNAL CLIPPING LI(IT  
V (V  
4
G
) = THE LESSER VALUE OF (+V – V  
) OR  
(V  
– –V )  
OCM S  
INDIFF(MAX) P-PDIFF  
S
OCM  
G
Single-Ended Input Signals  
R
FB  
INM  
NODE  
R
R
IN  
B
2BV  
2BV  
+
V
+V  
OUT  
P-P  
P-P  
INREF  
–B  
B
V
4BV  
OUTDIFF  
P-PDIFF  
LTC1992  
V
V
V
OCM  
OCM  
OUTCM  
IN  
A
V
+
2AV  
–V  
V
INSIG  
P-P  
OUT  
REF  
–B  
–A  
INP  
NODE  
R
R
FB  
IN  
R
G =  
FB  
INPUT CO((ON (ODE LI(ITS (NOTE: FOR THE FIXED GAIN LTC1992-X PARTS, V  
AND V  
CANNOT EXCEED THE SUPPLIES)  
INREF  
INSIG  
V
1
G
INREF  
2
V
V
V
= 2 +V – 1.3V –  
+
+
+V – 1.3V – V  
S
INSIG(MAX)  
INSIG(MIN)  
S
OCM  
OCM  
V
1
G
INREF  
2
= 2 –V – 0.1V –  
–V – 0.1V – V  
S
S
OR  
1
= 2 (+V – –V ) – 1.2V +  
(+V – –V ) – 1.2V  
INSIGP-P  
S
S
S
S
G
OUTPUT SIGNAL CLIPPING LI(IT  
2
G
2
G
V
= THE LESSER VALUE OF V  
+
(+V – V  
) OR V  
+
(V  
– –V )  
OCM S  
INSIG(MAX)  
INSIG(MIN)  
INREF  
S
OCM  
INREF  
2
G
2
V
= THE GREATER VALUE OF V  
+
(–V – V  
S
) OR V  
+
(V  
– +V ) 1992 F05  
OCM S  
INREF  
OCM  
INREF  
G
Figure 5ꢀ Input Signal Liꢃitations  
1992fb  
32  
LTC1992 Family  
APPLICATIONS INFORMATION  
Table 1ꢀ Input Signal Liꢃitations for Soꢃe Coꢃꢃon Applications  
Differential Input Signal, VOC( at (id-Supply(VINCM must be within the Min and Max table values and  
VINDIFF must be less than the table value)  
+V  
ꢄV  
ꢁVꢂ  
GAIN  
ꢁV/Vꢂ  
V
V
V
V
ꢁV  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INC(ꢁ(AXꢂ  
ꢁVꢂ  
INC(ꢁ(INꢂ  
ꢁVꢂ  
INDIFFꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁVꢂ  
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
ꢁV  
P-PDIFF  
P-PDIFF  
0
1
2
1.450  
1.425  
1.410  
1.405  
4.900  
4.300  
3.940  
3.820  
7.400  
5.550  
4.440  
4.070  
–1.550  
–0.825  
–0.390  
–0.245  
–2.700  
–1.400  
–0.620  
–0.360  
5.40  
5.40  
0
2.70  
1.08  
0.54  
5.40  
5.40  
5.40  
0
5
0
10  
1
0
10.00  
5.00  
10.00  
10.00  
10.00  
10.00  
20.00  
20.00  
20.00  
20.00  
5
0
2
5
0
5
2.00  
5
0
10  
1
1.00  
5
–5  
–5  
–5  
–5  
–10.200  
–7.650  
–6.120  
–5.610  
20.00  
10.00  
4.00  
5
2
0
5
5
0
5
10  
0
2.00  
Differential Input Signal, VOC( at Typical ADC Levelsꢀ (VINCM must be within the Min and Max table values and  
VINDIFF must be less than the table value)  
+V  
ꢄV  
ꢁVꢂ  
GAIN  
ꢁV/Vꢂ  
V
ꢁVꢂ  
V
V
V
ꢁV  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INC(ꢁ(AXꢂ  
ꢁVꢂ  
INC(ꢁ(INꢂ  
ꢁVꢂ  
INDIFFꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁV  
P-PDIFF  
P-PDIFF  
0
1
2
1
1.800  
1.600  
1.480  
1.440  
5.400  
4.550  
4.040  
3.870  
5.400  
4.550  
4.040  
3.870  
–1.200  
–0.650  
–0.320  
–0.210  
–2.200  
–1.150  
–0.520  
–0.310  
4.00  
4.00  
0
1
2.00  
0.80  
0.40  
8.00  
4.00  
1.60  
0.80  
4.00  
4.00  
4.00  
8.00  
8.00  
8.00  
8.00  
0
5
1
0
10  
1
1
0
2
5
0
2
2
5
0
5
2
5
0
10  
1
2
5
–5  
–5  
–5  
–5  
2
–12.200  
–8.650  
–6.520  
–5.810  
12.00  
6.00  
2.40  
1.20  
12.00  
12.00  
12.00  
12.00  
5
2
2
5
5
2
5
10  
2
1992fb  
33  
LTC1992 Family  
APPLICATIONS INFORMATION  
Table 1ꢀ Input Signal Liꢃitations for Soꢃe Coꢃꢃon Applications  
(id-Supply Referenced Single-Ended Input Signal, VOC( at (id-Supply(The VINSIG Min and Max values listed account for both the input  
common mode limits and the output clipping)  
+V  
ꢄV  
GAIN  
ꢁV/Vꢂ  
V
V
V
V
V
P-P  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INREF  
INSIGꢁ(AXꢂ  
INSIGꢁ(INꢂ  
INSIGP-Pꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁVꢂ  
ꢁVꢂ  
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁV AROUND V  
ꢁV  
P-PDIFF  
INREF  
0
1
2
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
1.550  
1.500  
1.470  
1.460  
7.300  
5.000  
3.500  
3.000  
10.000  
5.000  
2.000  
1.000  
–1.350  
0.000  
0.810  
1.080  
–2.500  
0.000  
1.500  
2.000  
0.40  
0.30  
0.24  
0.22  
9.60  
5.00  
2.00  
1.00  
20.00  
10.00  
4.00  
2.00  
0.40  
0
0.60  
1.20  
2.20  
9.60  
0
5
0
10  
1
0
5
0
2
10.00  
10.00  
10.00  
20.00  
20.00  
20.00  
20.00  
5
0
5
5
0
10  
1
5
–5  
–5  
–5  
–5  
–10.000  
–5.000  
–2.000  
–1.000  
5
2
0
0
5
5
0
0
5
10  
0
0
(id-Supply Referenced Single-Ended Input Signal, VOC( at Typical ADC Levelsꢀ (The VINSIG Min and Max values listed account for both  
the input common mode limits and the output clipping)  
+V  
ꢄV  
GAIN  
ꢁV/Vꢂ  
V
V
V
V
V
P-P  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INREF  
INSIGꢁ(AXꢂ  
INSIGꢁ(INꢂ  
INSIGP-Pꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁV AROUND V  
ꢁV  
P-PDIFF  
INREF  
0
1
2
1
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
2.250  
1.850  
1.610  
1.530  
6.500  
4.500  
3.300  
2.900  
6.000  
3.000  
1.200  
0.600  
–0.650  
0.350  
1.80  
1.00  
0.52  
0.36  
8.00  
4.00  
1.60  
0.80  
12.00  
6.00  
2.40  
1.20  
1.80  
0
1
2.00  
2.60  
3.60  
8.00  
8.00  
8.00  
8.00  
0
5
1
0.950  
0
10  
1
1
1.150  
0
2
–1.500  
0.500  
5
0
2
2
5
0
5
2
1.700  
5
0
10  
1
2
2.100  
5
–5  
–5  
–5  
–5  
2
–6.000  
–3.000  
–1.200  
–0.600  
12.00  
12.00  
12.00  
12.00  
5
2
2
0
5
5
2
0
5
10  
2
0
1992fb  
34  
LTC1992 Family  
APPLICATIONS INFORMATION  
Table 1ꢀ Input Signal Liꢃitations for Soꢃe Coꢃꢃon Applications  
Single Supply Ground Referenced Single-Ended Input Signal, VOC( at (id-Supply(The VINSIG Min and Max values listed account for  
both the input common mode limits and the output clipping)  
+V  
ꢄV  
GAIN  
ꢁV/Vꢂ  
V
V
V
V
V
P-P  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INREF  
INSIGꢁ(AXꢂ  
INSIGꢁ(INꢂ  
INSIGP-Pꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁVꢂ  
ꢁVꢂ  
1.35  
1.35  
1.35  
1.35  
2.5  
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁV AROUND V  
ꢁV  
P-PDIFF  
INREF  
0
1
2
0
0
0
0
0
0
0
0
2.700  
1.350  
0.540  
0.270  
5.000  
2.500  
1.000  
0.500  
–2.700  
–1.350  
–0.540  
–0.270  
–5.000  
–2.500  
–1.000  
–0.500  
5.40  
2.70  
1.08  
0.54  
10.00  
5.00  
2.00  
1.00  
5.40  
0
5.40  
5.40  
5.40  
0
5
0
10  
1
0
10.00  
10.00  
10.00  
10.00  
5
0
2
2.5  
5
0
5
2.5  
5
0
10  
2.5  
Single Supply Ground Referenced Single-Ended Input Signal, VOC( at Typical ADC Reference Levelsꢀ (The VINSIG Min and Max values  
listed account for both the input common mode limits and the output clipping)  
+V  
ꢄV  
GAIN  
ꢁV/Vꢂ  
V
V
V
V
V
P-P  
V
OUTDIFFꢁ(AXꢂ  
S
S
OC(  
INREF  
INSIGꢁ(AXꢂ  
INSIGꢁ(INꢂ  
INSIGP-Pꢁ(AXꢂ  
ꢁVꢂ  
2.7  
2.7  
2.7  
2.7  
5
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁVꢂ  
ꢁV AROUND V  
ꢁV  
P-PDIFF  
INREF  
0
1
2
1
0
0
0
0
0
0
0
0
2.000  
1.000  
0.400  
0.200  
4.000  
2.000  
0.800  
0.400  
–2.000  
–1.000  
–0.400  
–0.200  
–4.000  
–2.000  
–0.800  
–0.400  
4.00  
2.00  
0.80  
0.40  
8.00  
4.00  
1.60  
0.80  
4.00  
0
1
4.00  
4.00  
4.00  
8.00  
8.00  
8.00  
8.00  
0
5
1
0
10  
1
1
0
2
5
0
2
2
5
0
5
2
5
0
10  
2
Fully Differential Aꢃplifier Applications  
Circuit Analysis  
While mathematically correct, the basic signal equation  
does not immediately yield any intuitive feel for fully  
differential amplifier application operation. However, by  
nulling out specific terms, some basic observations and  
Allofthepreviousapplicationscircuitdiscussionshaveas-  
sumedperfectlymatchedsymmetricalfeedbacknetworks.  
To consider the effects of mismatched or asymmetrical  
feedback networks, the equations get a bit messier.  
sensitivities come forth. Setting β1 equal to β2, V  
OSDIFF  
to zero and V  
to V  
gives the old gain equation  
OUTCM  
OCM  
from Figure 3. The ground referenced, single-ended input  
signal equation yields the interesting result that the driven  
side feedback factor (β1) has a very different sensitivity  
than the grounded side (β2). The CMRR is twice the  
feedback factor difference divided by the feedback fac-  
tor sum. The differential output offset voltage has two  
terms. The first term is determined by the input offset  
Figure 6 lists the basic gain equation for the differential  
output voltage in terms of +V , –V , V  
, V  
IN  
IN OSDIFF OUTCM  
and the feedback factors β1 and β2. The feedback factors  
are simply the portion of the output that is fed back to the  
input summing junction by the R -R resistive voltage  
FB IN  
divider. β1 and β2 have the range of zero to one. The  
V
term also includes its offset voltage, V  
, and  
term, V  
, and the application’s gain. Note that this  
OSDIFF  
OUTCM  
OSCM  
its gain mismatch term, K . The K term is determined  
term equates to the formula in Figure 3 when β1 equals  
β2. The amount of signal level shifting and the feedback  
factor mismatch determines the second term. This term  
CM  
CM  
by the matching of the on-chip R  
in the common mode level servo (see Figure 2).  
and R  
resistors  
CMP  
CMM  
1992fb  
35  
LTC1992 Family  
APPLICATIONS INFORMATION  
R
FB2  
R
R
IN2  
IN1  
+
–V  
+V  
+V  
–V  
IN  
IN  
OUT  
OUT  
V
V
+V  
INDIFF  
OUTDIFF  
OUT  
LTC1992  
V
V
OCM  
OCM  
+V – –V  
IN  
– –V  
IN  
OUT  
+
R
FB1  
2[+V • (1 – B1) – (–V ) • (1 – B2)] + 2V  
+ 2V  
(B1 – B2)  
OUTCM  
IN  
IN  
OSDIFF  
V
=
OUTDIFF  
B1 + B2  
WHERE:  
R
R
IN2  
IN1  
B1 =  
; B2 =  
; V  
V
= AMPLIFIER INPUT REFERRED OFFSET VOLTAGE  
OSDIFF  
R
+ R  
R
+ R  
IN1  
FB1  
IN2  
FB2  
= K • V  
+ V  
OUTCM  
CM  
OCM  
OSCM  
0.999 < K < 1.001  
CM  
• FOR GROUND REFERENCED, SINGLE-ENDED INPUT SIGNAL, LET +V = V  
AND –V = 0V  
IN  
IN  
INSIG  
2 • V  
• (1 – B1) + 2V  
+ 2V  
(B1 – B2)  
OUTCM  
INSIG  
OSDIFF  
V
=
OUTDIFF  
B1 + B2  
• COMMON MODE REJECTION: SET +V = –V = V  
, V  
= 0V, V  
= 0V  
OUTCM  
IN  
IN  
INCM OSDIFF  
ΔV  
B1 + B2  
B2 – B1  
INCM  
CMRR =  
= 2  
; OUTPUT REFERRED  
ΔV  
OUTDIFF  
• OUTPUT DC OFFSET VOLTAGE: SET +V = –V = V  
IN  
IN  
INCM  
B2 – B1  
B1 + B2  
2
V
= V  
+ (V  
– V  
) 2  
INCM  
OSDIFFOUT  
OSDIFF  
OUTCM  
B1 + B2  
1992 F06  
Figure 6ꢀ Basic Equations for (isꢃatched or Asyꢃꢃetrical Feedback Applications Circuits  
quantifies the undesired effect of signal level shifting  
discussed earlier in the Signal Level Shifting section.  
split supply voltage applications with a ground referenced  
input signal and a grounded V pin.  
OCM  
The top application circuit in Figure 7 yields a high input  
impedance, precision gain of 2 block without any external  
resistors. The on-chip common mode feedback servo  
resistors determine the gain precision (better than 0.1  
Asyꢃꢃetrical Feedback Application Circuits  
The basic signal equation in Figure 6 also gives insight  
to another piece of intuition. The feedback factors may  
be deliberately set to different values. One interesting  
class of these application circuits sets one or both of the  
feedback factors to the extreme values of either zero or  
one. Figure 7 shows three such circuits.  
percent). By using the –V  
output alone, this circuit is  
OUT  
also useful to get a precision, single-ended output, high  
input impedance inverter. To intuitively understand this  
circuit, consider it as a standard op amp voltage follower  
(delivered through the signal gain servo) with a comple-  
mentaryoutput(deliveredthroughthecommonmodelevel  
servo).Asusual,theamplifier’sinputcommonmoderange  
must not be exceeded. As with a standard op amp voltage  
follower, the common mode signal seen at the amplifier’s  
input is the input signal itself. This condition limits the  
input signal swing, as well as the output signal swing, to  
be the input signal common mode range specification.  
At first these application circuits may look to be unstable  
or open loop. It is the common mode feedback loop that  
enables these circuits to function. While they are useful  
circuits, they have some shortcomings that must be con-  
sidered.First,duetotheseverefeedbackfactorasymmetry,  
the V  
level influences the differential output voltage  
OCM  
with about the same strength as the input signal. With  
this much gain in the V path, differential output offset  
OCM  
and noise increase. The large V  
to V  
gain also  
The middle circuit is largely the same as the first except  
OCM  
OUTDIFF  
necessitates that these circuits are largely limited to dual,  
that the noninverting amplifier path has gain. Note that  
1992fb  
36  
LTC1992 Family  
APPLICATIONS INFORMATION  
+V  
V
= 2(+V – V  
)
OCM  
+
OUT  
OUTDIFF  
IN  
V
V
LTC1992  
OCM  
OCM  
V
–V  
+
IN  
OUT  
SETTING V  
= 0V  
OCM  
V
V
= 2V  
IN  
OUTDIFF  
R
R
IN  
FB  
R
1
IN  
+V  
= 2 +V  
(
– V  
OCM  
; B =  
+
OUT  
OUTDIFF  
IN  
)
B
R
+ R  
IN  
FB  
V
V
LTC1992  
OCM  
OCM  
SETTING V  
= 0V  
OCM  
V
–V  
OUT  
+
IN  
R
1
FB  
= 2V 1 +  
V
= 2V  
IN  
IN  
(
OUTDIFF  
(
)
)
R
B
IN  
1 – B  
B
R
IN  
+V  
V
= 2 +V  
(
+ V  
OCM  
; B =  
+
OUT  
OUTDIFF  
IN  
)
R
+ R  
IN  
FB  
V
V
LTC1992  
OCM  
OCM  
R
IN  
SETTING V  
= 0V  
OCM  
V
–V  
OUT  
+
IN  
R
R
1 – B  
FB  
= 2V  
IN  
V
= 2V  
IN  
(
)
(
)
OUTDIFF  
B
IN  
R
FB  
1992 F07  
Figure 7ꢀ Asyꢃꢃetrical Feedback Application Circuits ꢁ(ost Suitable in Applications with Dual,  
Split Supplies ꢁeꢀgꢀ, 5Vꢂ, Ground Referenced Single-Ended Input Signals and VOC( Connected to Groundꢂ  
oncetheV  
voltageissettozero, thegainformulaisthe  
Thebottomcircuitisanothercircuitthatutilizesastandard  
opampconfigurationwithacomplementaryoutput.Inthis  
case, the standard op amp circuit has an inverting con-  
OCM  
same as a standard noninverting op amp circuit multiplied  
by two to account for the complementary output. Taking  
R
FB  
to zero (i.e., taking β to one) gives the same formula  
figuration. With V  
at zero volts, the gain formula is the  
OCM  
as the top circuit. As in the top circuit, this circuit is also  
useful as a single-ended output, high input impedance  
inverting gain block (this time with gain). The input com-  
mon mode considerations are similar to the top circuit’s,  
but are not nearly as constrained since there is now gain  
same as a standard inverting op amp circuit multiplied by  
two to account for the complementary output. This circuit  
does not have any common mode level constraints as the  
inverting input voltage sets the input common mode level.  
This circuit also delivers rail-to-rail output voltage swing  
without any concerns.  
in the noninverting amplifier path. This circuit, with V  
OCM  
at ground, also permits a rail-to-rail output swing in most  
applications.  
1992fb  
37  
LTC1992 Family  
TYPICAL APPLICATIONS  
Interfacing a Bipolar, Ground Referenced, Single-Ended Signal to a Unipolar Single Supply,  
Differential Input ADC ꢁVIN = 0V Gives a Digital (id-Scale Codeꢂ  
5V  
1μF  
0.1μF  
40k  
10k  
13.3k  
1
8
3
100Ω  
100Ω  
10k  
4
2
3
V
V
1
7
REF  
CC  
7
6
5
+IN  
–IN  
+
MID  
SCK  
SERIAL  
DATA  
V
V
100pF  
LTC1864 SDO  
LTC1992  
2
8
OCM  
LINK  
2.5V  
10k  
CONV  
GND  
+
V
0V  
6
IN  
5
–2.5V  
5V  
4
1992 TA02a  
13.3k  
10k  
0.1μF  
40k  
Coꢃpact, Unipolar Serial Data Conversion  
5V  
1μF  
1
8
3
0.1μF  
100Ω  
100Ω  
4
2
3
V
V
1
7
REF  
CC  
7
6
5
+IN  
–IN  
+
SCK  
SERIAL  
DATA  
LINK  
V
V
MID  
100pF  
LTC1864 SDO  
LTC1992-2  
2
8
OCM  
2.5V  
CONV  
GND  
+
V
6
IN  
5
0V  
4
1992 TA03a  
0.1μF  
Zero Coꢃponents, Single-Ended Adder/Subtracter  
+V  
S
0.1μF  
3
1
2
8
4
V
V
V1 = V + V – V  
B C  
+
A
A
C
V
LTC1992-2  
B
OCM  
V
C
+
V2 = V + V – V  
B
A
5
6
0.1μF  
–V  
S
1992 TA04  
1992fb  
38  
LTC1992 Family  
TYPICAL APPLICATIONS  
Single-Ended to Differential Conversion Driving an ADC  
2.2μF  
10μF  
5V 10μF  
5V 10μF  
10Ω  
+
+
+
3
10  
36  
35  
9
V
AV  
AV  
DD  
DV  
DD  
DGND  
REF  
DD  
SHDN  
CS  
33  
32  
31  
30  
27  
LTC1603  
CONTROL  
LOGIC  
μP  
CONTROL  
LINES  
CONVST  
RD  
REFCOMP  
4.375V  
7.5k  
AND  
4
1
2.5V  
REF  
1.75X  
5V  
TIMING  
+
BUSY  
47μF  
0.1μF  
OV  
DD  
29  
28  
5V OR  
+
3
3V  
+
100Ω  
A
IN  
4
10μF  
1
7
OGND  
+
MID  
+
V
V
16-BIT  
SAMPLING  
ADC  
OUTPUT  
BUFFERS  
B15 TO B0  
16-BIT  
PARALLEL  
BUS  
100pF  
LTC1992-1  
2
8
OCM  
D15 TO D0  
2
A
IN  
+
V
6
IN  
5
100Ω  
0.1μF  
11 TO 26  
1992 TA06a  
AGND AGND AGND AGND  
V
SS  
5
6
7
8
34  
10μF  
–5V  
+
–5V  
FFT of the Output Data  
0
–10  
–20  
f
f
= 10.0099kHz  
= 333kHz  
SNR =85.3dB  
THD = –72.1dB  
SINAD = –72dB  
IN  
SAMPLE  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1992 TA06b  
1992fb  
39  
LTC1992 Family  
PACKAGE DESCRIPTION  
(Sꢆ Package  
ꢆ-Lead Plastic (SOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6  
5
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.889 p 0.127  
(.035 p .005)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
5.23  
1
2
3
4
3.20 – 3.45  
(.206)  
0.53 p 0.152  
(.021 p .006)  
(.126 – .136)  
MIN  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 p 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1992fb  
40  
LTC1992 Family  
REVISION HISTORY  
REV  
DATE  
7/10  
6/11  
DESCRIPTION  
PAGE NU(BER  
A
Updated Part Markings  
2
B
Revised Features  
1
2
Updated to Specified Temperature Range in Absolute Maximum Ratings and Order Information  
Revised Block Diagram  
24  
32  
Revised subtitle in Figure 5 of Applications Information section  
1992fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
41  
LTC1992 Family  
TYPICAL APPLICATION  
Balanced Frequency Converter ꢁSuitable for Frequencies up to 50kHzꢂ  
60kHz LOW PASS FILTER  
SAMPLER  
2kHz LOWPASS FILTER  
5V  
0.1μF  
9.53k  
0.1μF  
0.1μF  
37.4k  
75k  
120pF  
1
4
+
390pF  
V
3
9.53k  
9.53k  
8.87k  
4
7
8
BNC  
BNC  
3
+
60.4k  
1
7
2
8
4
11  
7
V
+
OUTP  
V
MID  
330pF  
8.87k  
LTC1992  
2
8
V
MID  
BNC  
V
180pF  
60.4k  
OCM  
LTC1992  
1/2 LTC1043  
13  
V
OCM  
V
INP  
+
37.4k  
12  
5
6
V
+
OUTM  
14  
16  
5
6
CLK  
120pF  
9.53k  
V
390pF  
75k  
17  
0.1μF  
0.1μF  
0.1μF  
10k  
0.1μF  
V
OCM  
1992 TA05a  
CLK  
–5V  
V
= 24kHz  
INP  
0V  
(1V/DIV)  
CLK = 25kHz  
(LOGIC SQUARE WAVE)  
(5V/DIV)  
0V  
0V  
0V  
V
= 1kHz  
OUTP  
(0.5V/DIV)  
= 1kHz  
V
OUTM  
(0.5V/DIV)  
1992 TA05b  
200μs/DIV  
RELATED PARTS  
PART NU(BER  
LT1167  
DESCRIPTION  
Precision Instrumentation Amplifier  
CO((ENTS  
Single Resistor Sets the Gain  
LT1990  
High Voltage, Gain Selectable Difference Amplifier  
Precision Gain Selectable Difference Amplifier  
High Speed Gain Selectable Difference Amplifier  
Differential In/Out Amplifier Lowpass Filter  
250V Common Mode, Micropower, Selectable Gain = 1, 10  
Micropower, Pin Selectable Gain = –13 to 14  
LT1991  
LT1995  
30MHz, 1000V/μs, Pin Selectable Gain = –7 to 8  
Very Low Noise, Standard Differential Amplifier Pinout  
LT6600-X  
1992fb  
LT 0611 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
42  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY