LTC1992-10IMS8#PBF [Linear]

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C;
LTC1992-10IMS8#PBF
型号: LTC1992-10IMS8#PBF
厂家: Linear    Linear
描述:

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总40页 (文件大小:505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1992 Family  
Low Power, Fully Differential  
Input/Output  
Amplifier/Driver Family  
U
FEATURES  
DESCRIPTIO  
The LTC®1992 product family consists of five fully differ-  
ential, low power amplifiers. The LTC1992 is an uncon-  
strained fully differential amplifier. The LTC1992-1,  
LTC1992-2, LTC1992-5 and LTC1992-10 are fixed gain  
blocks (with gains of 1, 2, 5 and 10 respectively) featuring  
precision on-chip resistors for accurate and ultrastable  
gain. All of the LTC1992 parts have a separate internal  
common mode feedback path for outstanding output  
phase balancing and reduced second order harmonics.  
The VOCM pin sets the output common mode level inde-  
pendent of the input common mode level. This feature  
makes level shifting of signals easy.  
Adjustable Gain and Fixed Gain Blocks of 1, 2, 5  
and 10  
±0.3% (Max) Gain Error from –40°C to 85°C  
3.5ppm/°C Gain Temperature Coefficient  
5ppm Gain Long Term Stability  
Fully Differential Input and Output  
CLOAD Stable up to 10,000pF  
Adjustable Output Common Mode Voltage  
Rail-to-Rail Output Swing  
Low Supply Current: 1mA (Max)  
High Output Current: 10mA (Min)  
Specified on a Single 2.7V to ±5V Supply  
DC Offset Voltage <2.5mV (Max)  
Available in 8-Lead MSOP Package  
The amplifiers’ differential inputs operate with signals  
ranging from rail-to-rail with a common mode level from  
the negative supply up to 1.3V from the positive supply.  
The differential input DC offset is typically 250µV. The rail-  
to-rail outputs sink and source 10mA. The LTC1992 is  
stable for all capacitive loads up to 10,000pF.  
U
APPLICATIO S  
Differential Driver/Receiver  
Differential Amplification  
The LTC1992 can be used in single supply applications  
with supply voltages as low as 2.7V. It can also be used  
with dual supplies up to ±5V. The LTC1992 is available in  
an 8-pin MSOP package.  
Single-Ended to Differential Conversion  
Level Shifting  
Trimmed Phase Response for Multichannel Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Single-Supply, Single-Ended to Differential Conversion  
10k  
5V  
5V  
5V  
V
3
IN  
0V  
5V  
2.5V  
0V  
(5V/DIV)  
10k  
4
1
7
V
IN  
+
MID  
0V  
–5V  
5V  
V
+OUT  
(2V/DIV)  
–OUT  
LTC1992  
–5V  
2
8
V
OCM  
5V  
2.5V  
0V  
10k  
+
6
5
0.01µF  
0V  
OUTPUT SIGNAL  
FROM A  
SINGLE-SUPPLY SYSTEM  
INPUT SIGNAL  
FROM A  
±5V SYSTEM  
10k  
1992 TA01b  
1992 TA01a  
1992f  
1
LTC1992 Family  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (+VS to –VS) .......................... 12V  
Maximum Voltage  
Specified Temperature Range (Note 6)  
LTC1992CMS8/LTC1992-XCMS8/  
on any Pin .......... (–VS – 0.3V) VPIN (+VS + 0.3V)  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 5)  
LTC1992IMS8/LTC1992-XIMS8 ..........–40°C to 85°C  
LTC1992HMS8/LTC1992-XHMS8 .....–40°C to 125°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LTC1992CMS8/LTC1992-XCMS8/  
LTC1992IMS8/LTC1992-XIMS8 ..........–40°C to 85°C  
LTC1992HMS8/LTC1992-XHMS8 .....–40°C to 125°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
–IN  
1
2
3
4
8 +IN  
7 V  
–IN  
1
2
3
4
8 +IN  
7 V  
V
V
OCM  
MID  
OCM  
MID  
+
+
6 –V  
+V  
S
6 –V  
+V  
S
S
S
+
+
5 –OUT  
+OUT  
5 –OUT  
+OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 250°C/W  
TJMAX = 150°C, θJA = 250°C/W  
ORDER PART  
NUMBER  
MS8 PART  
MARKING  
ORDER PART  
NUMBER  
MS8 PART  
MARKING  
LTYU  
LTZC  
LTAGR  
LTC1992CMS8  
LTC1992IMS8  
LTC1992HMS8  
LTC1992-1CMS8  
LTC1992-1IMS8  
LTC1992-1HMS8  
LTC1992-2CMS8  
LTC1992-2IMS8  
LTC1992-2HMS8  
LTC1992-5CMS8  
LTC1992-5IMS8  
LTC1992-5HMS8  
LTC1992-10CMS8  
LTC1992-10IMS8  
LTC1992-10HMS8  
LTACJ  
LTACM  
LTAFZ  
LTYV  
LTZD  
LTAGA  
LTACK  
LTACN  
LTAJH  
LTACL  
LTACP  
LTAJJ  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1992f  
2
LTC1992 Family  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. +VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise  
noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as (+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is  
defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT). Specifications applicable to all parts in the LTC1992 family.  
ALL C AND I GRADE  
ALL H GRADE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Range  
Supply Current  
2.7  
11  
2.7  
11  
V
S
I
V = 2.7V to 5V  
0.65  
0.75  
0.7  
1.0  
1.2  
1.2  
1.5  
0.65  
0.8  
0.7  
0.9  
1.0  
1.5  
1.2  
1.8  
mA  
mA  
mA  
mA  
S
S
V = ±5V  
S
0.8  
V
Differential Offset Voltage  
(Input Referred) (Note 7)  
V = 2.7V  
±0.25 ±2.5  
±0.25 ±2.5  
±0.25 ±2.5  
±0.25  
±0.25  
±0.25  
±4  
±4  
±4  
mV  
mV  
mV  
OSDIFF  
S
V = 5V  
S
V = ±5V  
S
V  
OSDIFF  
/T Differential Offset Voltage Drift  
V = 2.7V  
10  
10  
10  
10  
10  
10  
µV/°C  
µV/°C  
µV/°C  
S
(Input Referred) (Note 7)  
V = 5V  
S
V = ±5V  
S
PSRR  
Power Supply Rejection Ratio  
(Input Referred) (Note 7)  
V = 2.7V to ±5V  
S
75  
80  
72  
80  
dB  
G
CM  
Common Mode Gain(V  
/V  
)
1
±0.1  
–85  
1
OUTCM OCM  
Common Mode Gain Error  
Output Balance (V /(V  
±0.3  
–60  
±0.1 ±0.35  
–85  
%
dB  
) V = –2V to +2V  
OUTDIFF  
–60  
OUTCM  
OUTDIFF  
V
Common Mode Offset Voltage  
(V – V  
V = 2.7V  
±0.5  
±1  
±2  
±12  
±15  
±18  
±0.5  
±1  
±2  
±15  
±17  
±20  
mV  
mV  
mV  
OSCM  
S
)
V = 5V  
OUTCM  
OCM  
S
V = ±5V  
S
V  
OSCM  
/T  
Common Mode Offset Voltage Drift  
V = 2.7V  
10  
10  
10  
10  
10  
10  
µV/°C  
µV/°C  
µV/°C  
S
V = 5V  
S
V = ±5V  
S
V
Output Signal Common Mode Range  
(–V )+0.5V  
(+V )–1.3V (–V )+0.5V  
(+V )–1.3V  
V
OUTCMR  
S
S
S
S
(Voltage Range for the V  
Pin)  
OCM  
R
Input Resistance, V  
Pin  
500  
500  
±2  
MΩ  
pA  
V
INVOCM  
OCM  
I
Input Bias Current, V  
Pin  
V = 2.7V to ±5V  
±2  
BVOCM  
OCM  
S
V
V
Voltage at the V  
Pin  
2.44  
2.50  
2.56  
2.43  
2.50  
2.57  
MID  
OUT  
MID  
Output Voltage, High  
(Note 2)  
V = 2.7V, Load = 10k  
2.60  
2.50  
2.29  
2.69  
2.61  
2.52  
2.60  
2.50  
2.29  
2.69  
2.61  
2.52  
V
V
V
S
V = 2.7V, Load = 5mA  
S
V = 2.7V,Load = 10mA  
S
Output Voltage, Low  
(Note 2)  
V = 2.7V, Load = 10k  
0.02  
0.10  
0.20  
0.10  
0.25  
0.35  
0.02  
0.10  
0.20  
0.10  
0.25  
0.41  
V
V
V
S
V = 2.7V, Load = 5mA  
S
V = 2.7V, Load = 10mA  
S
Output Voltage, High  
(Note 2)  
V = 5V, Load = 10k  
4.90  
4.85  
4.75  
4.99  
4.90  
4.81  
4.90  
4.80  
4.70  
4.99  
4.90  
4.81  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
Output Voltage, Low  
(Note 2)  
V = 5V, Load = 10k  
0.02  
0.10  
0.20  
0.10  
0.25  
0.35  
0.02  
0.10  
0.20  
0.10  
0.30  
0.42  
V
V
V
S
V = 5V, Load = 5mA  
S
V = 5V, Load = 10mA  
S
Output Voltage, High  
(Note 2)  
V = ±5V, Load = 10k  
4.90  
4.85  
4.65  
4.99  
4.89  
4.80  
4.85  
4.80  
4.60  
4.99  
4.89  
4.80  
V
V
V
S
V = ±5V, Load = 5mA  
S
V = ±5V, Load = 10mA  
S
Output Voltage, Low  
(Note 2)  
V = ±5V, Load = 10k  
4.99 –4.90  
4.90 –4.75  
4.80 –4.65  
–4.98 –4.85  
–4.90 –4.75  
–4.80 –4.55  
V
V
V
S
V = ±5V, Load = 5mA  
S
V = ±5V, Load = 10mA  
S
1992f  
3
LTC1992 Family  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. +VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise  
noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as (+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is  
defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT). Specifications applicable to all parts in the LTC1992 family.  
ALL C AND I GRADE  
ALL H GRADE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
I
Output Short-Circuit Current  
Sourcing (Notes 2,3)  
V = 2.7V, V  
= 1.35V  
= 2.5V  
= 0V  
20  
20  
20  
30  
30  
30  
20  
20  
20  
30  
30  
30  
mA  
mA  
mA  
SC  
S
OUT  
V = 5V, V  
S
OUT  
V = ±5V, V  
S
OUT  
Output Short-Circuit Current Sinking V = 2.7V, V  
=1.35V  
OUT  
= 2.5V  
13  
13  
13  
30  
30  
30  
13  
13  
13  
30  
30  
30  
mA  
mA  
mA  
S
(Notes 2,3)  
V = 5V, V  
V = ±5V, V  
S
OUT  
= 0V  
OUT  
S
A
Large-Signal Voltage Gain  
80  
80  
dB  
VOL  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
+VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as  
(+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT).  
Specifications applicable to the LTC1992 only.  
LTC1992CMS8  
LTC1992ISM8  
LTC1992HMS8  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 2.7V to ±5V  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
pA  
I
I
Input Bias Current  
Input Offset Current  
Input Resistance  
Input Capacitance  
2
250  
100  
2
400  
150  
B
S
V = 2.7V to ±5V  
S
0.1  
500  
3
0.1  
500  
3
pA  
OS  
R
IN  
MΩ  
pF  
C
IN  
e
Input Referred Noise Voltage Density f = 1kHz  
35  
1
35  
1
nV/Hz  
fA/Hz  
V
n
i
Input Noise Current Density  
f = 1kHz  
n
V
Input Signal Common Mode Range  
(–V )– 0.1V (+V )– 1.3V (–V )– 0.1V (+V )– 1.3V  
INCMR  
S
S
S
S
CMRR  
Common Mode Rejection Ratio  
(Input Referred)  
V
= –0.1V to 3.7V  
69  
90  
69  
90  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.5  
1.5  
0.5  
3.0  
1.5  
3.2  
V/µs  
GBW  
Gain-Bandwidth Product  
T = 25°C  
3.0  
2.5  
1.9  
3.2  
3.0  
3.5  
4.0  
4.0  
3.5  
4.0  
MHz  
MHz  
MHz  
A
(f  
TEST  
= 100kHz)  
LTC1992CMS8  
LTC1992IMS8/  
LTC1992HMS8  
1.9  
1992f  
4
LTC1992 Family  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. +VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise  
noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as (+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is  
defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT). Typical values are at TA = 25°C. Specifications apply to the  
LTC1992-1 only.  
LTC1992-1CMS8  
LTC1992-1IMS8  
LTC1992-1HMS8  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
DIFF  
Differential Gain  
1
1
V/V  
%
Differential Gain Error  
±0.1  
50  
±0.3  
±0.1 ±0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
50  
3.5  
ppm  
3.5  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
30  
45  
nV/Hz  
kΩ  
n
R
22.5  
37.5  
22  
30  
– 0.1V to 4.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
– 0.1V to 4.9V  
60  
V
INCMR  
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.5  
1.5  
3
0.5  
1.5  
3
V/µs  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
MHz  
TEST  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
+VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as  
(+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT).  
Typical values are at TA = 25°C. Specifications apply to the LTC1992-2 only.  
LTC1992-2CMS8  
LTC1992-2IMS8  
LTC1992-2HMS8  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
DIFF  
Differential Gain  
2
2
V/V  
%
Differential Gain Error  
±0.1  
50  
±0.3  
±0.1 ±0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
50  
3.5  
ppm  
3.5  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
30  
45  
nV/Hz  
kΩ  
n
R
22.5  
37.5  
22  
30  
– 0.1V to 4.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
– 0.1V to 4.9V  
60  
V
INCMR  
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/µs  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
MHz  
TEST  
1992f  
5
LTC1992 Family  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. +VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise  
noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as (+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is  
defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT). Typical values are at TA = 25°C. Specifications apply to the  
LTC1992-5 only.  
LTC1992-5CMS8  
LTC1992-5IMS8  
LTC1992-5HMS8  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
DIFF  
Differential Gain  
5
5
V/V  
%
Differential Gain Error  
±0.1  
50  
±0.3  
±0.1 ±0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
50  
3.5  
ppm  
3.5  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
30  
45  
nV/Hz  
kΩ  
n
R
22.5  
37.5  
22  
30  
– 0.1V to 3.9V  
60  
38  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
– 0.1V to 3.9V  
60  
V
INCMR  
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/µs  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
MHz  
TEST  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
+VS = 5V, –VS = 0V, VINCM = VOUTCM = VOCM = 2.5V, unless otherwise noted. VOCM is the voltage on the VOCM pin. VOUTCM is defined as  
(+VOUT + –VOUT)/2. VINCM is defined as (+VIN + –VIN)/2. VINDIFF is defined as (+VIN – –VIN). VOUTDIFF is defined as (+VOUT – –VOUT).  
Typical values are at TA = 25°C. Specifications apply to the LTC1992-10 only.  
LTC1992-10CMS8  
LTC1992-10IMS8  
LTC1992-10HMS8  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
DIFF  
Differential Gain  
10  
±0.1  
50  
10  
V/V  
%
Differential Gain Error  
±0.3  
±0.1 ±0.35  
Differential Gain Nonlinearity  
Differential Gain Temperature Coefficient  
50  
3.5  
ppm  
3.5  
ppm/°C  
e
Input Referred Noise Voltage Density (Note 7) f = 1kHz  
Input Resistance, Single-Ended +IN, –IN Pins  
45  
15  
45  
nV/Hz  
kΩ  
n
R
11.3  
18.8  
11  
15  
– 0.1V to 3.8V  
60  
19  
IN  
V
Input Signal Common Mode Range  
V = 5V  
S
– 0.1V to 3.8V  
60  
V
INCMR  
CMRR  
Common Mode Rejection Ratio  
(Amplifier Input Referred) (Note 7)  
V
= –0.1V to 3.7V  
55  
55  
dB  
INCM  
SR  
Slew Rate (Note 4)  
0.7  
2
4
0.7  
2
4
V/µs  
GBW  
Gain-Bandwidth Product  
f
= 180kHz  
MHz  
TEST  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: The LTC1992C/LTC1992-XC are guaranteed to meet the specified  
performance limits over the 0°C to 70°C temperature range and are  
designed, characterized and expected to meet the specified performance  
limits over the –40°C to 85°C temperature range but are not tested or QA  
sampled at these temperatures. The LTC1992I/LTC1992-XI are guaranteed  
to meet the specified performance limits over the –40°C to 85°C  
temperature range. The LTC1992H/LTC1992-XH are guaranteed to meet  
the specified performance limits over the –40°C to 125°C temperature  
range.  
Note 7: Differential offset voltage, differential offset voltage drift, CMRR,  
noise voltage density and PSRR are referred to the internal amplifier’s  
input to allow for direct comparison of gain blocks with discrete  
amplifiers.  
Note 2: Output load is connected to the midpoint of the +V and –V  
S
S
potentials. Measurement is taken single-ended, one output loaded at a  
time.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum when the output is shorted indefinitely.  
Note 4: Differential output slew rate. Slew rate is measured single ended  
and doubled to get the listed numbers.  
Note 5: The LTC1992C/LTC1992-XC/LTC1992I/LTC1992-XI are guaranteed  
functional over an operating temperature of –40°C to 85°C. The  
LTC1992H/LTC1992-XH are guaranteed functional over the extended  
operating temperature of 40°C to 125°C.  
1992f  
6
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to all parts in the LTC1992 family.  
Differential Input Offset Voltage  
Common Mode Offset Voltage  
Supply Current vs Supply Voltage  
vs Temperature (Note 7)  
vs Temperature  
4
0.6  
0.4  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 0V  
= 0V  
V
V
= 0V  
= 0V  
INCM  
OCM  
125°C  
85°C  
INCM  
OCM  
3
2
V
S
= ±5V  
0.2  
25°C  
1
V
= ±2.5V  
S
0
0
–40°C  
V
= ±1.35V  
V
= ±1.35V  
S
S
–1  
–2  
–3  
–4  
–0.2  
–0.4  
–0.6  
–0.8  
V
= ±2.5V  
S
V
= ±5V  
S
–5  
0
1
2
3
4
5
6
7
8
9
10  
–40  
25  
85  
TEMPERATURE (°C)  
125  
–40  
25  
125  
85  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
1992 G01  
1992 G02  
1992 G03  
Common Mode Offset Voltage  
vs VOCM Voltage  
Common Mode Offset Voltage  
vs VOCM Voltage  
Common Mode Offset Voltage  
vs VOCM Voltage  
5
0
5
5
0
125°C  
125°C  
125°C  
85°C  
25°C  
85°C  
25°C  
0
85°C  
25°C  
–40°C  
–5  
–5  
–5  
–40°C  
–40°C  
–10  
–15  
–20  
–10  
–15  
–20  
–10  
–15  
–20  
+V = 5V  
S
+V = 5V  
S
+V = 2.7V  
S
–V = 0V  
S
–V = –5V  
S
–V = 0V  
S
V
INCM  
= 2.5V  
V
= 0V  
INCM  
V
INCM  
= 1.35V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
VOLTAGE (V)  
V
V
VOLTAGE (V)  
V VOLTAGE (V)  
OCM  
OCM  
OCM  
1992 G05  
1992 G06  
1992 G04  
Output Voltage Swing  
vs Output Load, VS = 2.7V  
Output Voltage Swing  
vs Output Load, VS = 5V  
5.00  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
125°C  
125°C  
85°C  
25°C  
–40°C  
25°C  
85°C  
25°C  
–40°C  
85°C  
125°C  
25°C  
85°C  
125°C  
–40°C  
–40°C  
–20  
–5  
0
5
10 15 20  
–15 –10  
0
5
–20 –15 –10 –5  
10 15 20  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1992 G08  
1992 G07  
1992f  
7
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to all parts in the LTC1992 family.  
Output Voltage Swing  
vs Output Load, VS = ±5V  
V
OCM Input Bias Current  
Differential Input Offset Voltage  
vs Time (Normalized to t = 0)  
vs VOCM Voltage  
10E-9  
1E-9  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
–3.8  
–4.0  
–4.2  
–4.4  
–4.6  
–4.8  
–5.0  
100  
TEMP = 35°C  
80  
60  
40  
20  
0
125°C  
–40°C  
25°C  
100E-12  
10E-12  
1E-12  
85°C  
125°C  
85°C  
25°C  
85°C  
–20  
–40  
125°C  
–40°C  
25°C  
–60  
–80  
+V = 5V  
S
–40°C  
–V = 0V  
S
INCM  
V
= 2.5V  
100E-15  
–100  
5
10  
–20 –15 –10 –5  
0
15 20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
800  
TIME (HOURS)  
0
400  
1200  
1600  
2000  
LOAD CURRENT (mA)  
V
VOLTAGE (V)  
OCM  
1992 G10  
1992 G09  
1992 G11  
Differential Gain vs Time  
(Normalized to t = 0)  
Input Common Mode Overdrive  
Recovery (Expanded View)  
Input Common Mode Overdrive  
Recovery (Detailed View)  
10  
8
TEMP = 35°C  
BOTH INPUTS  
(INPUTS TIED TOGETHER)  
BOTH INPUTS  
(INPUTS TIED  
TOGETHER)  
6
4
2
0
OUTPUTS  
OUTPUTS  
–2  
–4  
–6  
–8  
–10  
+V = 2.5V  
+V = 2.5V  
S
S
–V = –2.5V  
–V = –2.5V  
S
S
OCM  
V
= 0V  
V
OCM  
= 0V  
LTC1992-10 SHOWN  
FOR REFERENCE  
LTC1992-10 SHOWN  
FOR REFERENCE  
1992 G13  
1992 G14  
800  
TIME (HOURS)  
0
400  
1200  
1600  
2000  
50µs/DIV  
1µs/DIV  
1992 G12  
Output Overdrive Recovery  
(Detailed View)  
Output Overdrive Recovery  
(Expanded View)  
+V = 2.5V, –V = –2.5V, V  
= 0V  
S
S
OCM  
INPUTS  
OUTPUTS  
INPUTS OUTPUTS  
+V = 2.5V  
S
–V = –2.5V  
S
OCM  
V
= 0V  
LTC1992-2 SHOWN  
FOR REFERENCE  
LTC1992-2 SHOWN FOR REFERENCE  
1992 G16  
1992 G15  
5µs/DIV  
50µs/DIV  
1992f  
8
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992 only.  
Differential Input Differential  
Single-Ended Input Differential  
Differential Phase Response  
vs Frequency  
Gain vs Frequency, VS = ±2.5V  
Gain vs Frequency, VS = ±2.5V  
12  
6
0
12  
6
0
0
20  
R
= R = 10k  
FB  
R
= R = 10k  
IN FB  
IN  
R
= R = 10k  
FB  
IN  
40  
–6  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
60  
80  
C
=
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
10pF  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
10  
100  
FREQUENCY (kHz)  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G17  
1992 G18  
1992 G37  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = –5V  
S
–V = 0V  
S
V
= 1.35V  
V
= 0V  
OCM  
V
OCM  
= 2.5V  
OCM  
1.0  
1.0  
1.0  
0.5  
0.5  
0.5  
–40°C  
–40°C  
–40°C  
0
0
0
125°C  
125°C  
125°C  
25°C  
0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
85°C  
25°C  
85°C  
25°C  
85°C  
0.6  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
1922 G21  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
COMMON MODE VOLTAGE (V)  
1922 G20  
COMMON MODE VOLTAGE (V)  
1922 G22  
Common Mode Rejection Ratio  
vs Frequency (Note 7)  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
Output Balance vs Frequency  
120  
100  
90  
0
20  
40  
60  
80  
–100  
V  
V  
V  
V  
V  
AMPCM  
OUTCM  
S
V  
AMPDIFF  
OUTDIFF  
AMPDIFF  
100  
80  
80  
–V  
S
70  
+V  
S
60  
50  
60  
40  
40  
30  
20  
10  
0
20  
0
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1992 G23  
1992 G24  
1992 G25  
1992f  
9
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992 only.  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
+V = 2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
–V = –2.5V  
S
V
IN  
–V  
= 0V  
V
= 0V  
OCM  
OCM  
IN  
IN  
+V = ±1.5V  
+V = ±1.5V  
±
±
=
1.5V  
–V  
C
=
1.5V  
IN  
GAIN = 1  
= 0pF  
LOAD  
GAIN = 1  
0V  
0V  
2.5V  
0V  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
1992 G27  
1992 G26  
20µs/DIV  
2µs/DIV  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
+V = 5V  
+V = 5V  
S
–V = 0V  
S
S
–V = 0V  
S
OCM  
V
= 2.5V  
+V = 0V TO 4V  
V
= 2.5V  
OCM  
+V = 0V TO 4V  
IN  
IN  
–V = 2V  
–V = 2V  
IN  
GAIN = 1  
IN  
C
= 0pF  
LOAD  
GAIN = 1  
2.5V  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
1992 G28  
1992 G29  
2µs/DIV  
20µs/DIV  
Differential Input Small-Signal  
Step Response  
Differential Input Small-Signal  
Step Response  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
= 0V  
OCM  
IN  
IN  
+V = ±50mV  
+V = ±50mV  
IN  
IN  
±
±
–V  
=
50mV  
= 0pF  
–V  
GAIN = 1  
= 50mV  
C
LOAD  
GAIN = 1  
0V  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
1992 G30  
1992 G31  
1µs/DIV  
10µs/DIV  
1992f  
10  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992 only.  
Single-Ended Input Small-Signal  
Step Response  
Single-Ended Input Small-Signal  
Step Response  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
+V = 5V  
–V = 0V  
S
S
OCM  
–V = 0V  
V
= 2.5V  
S
OCM  
V
= 2.5V  
+V = 0V TO 200mV  
IN  
+V = 0V TO 200mV  
–V = 100mV  
IN  
IN  
–V = 100mV  
IN  
C
= 0pF  
LOAD  
GAIN = 1  
GAIN = 1  
1992 G33  
1992 G32  
10µs/DIV  
1µs/DIV  
THD + Noise vs Frequency  
THD + Noise vs Amplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
+V = 5V  
S
–V = –5V  
S
–50  
–60  
–V = –5V  
S
V
= 0V  
OCM  
V
OCM  
= 0V  
V
= 10V  
OUT  
P-PDIFF  
= 5V  
P-PDIFF  
50kHz  
V
OUT  
20kHz  
–70  
V
V
= 1V  
OUT  
OUT  
P-PDIFF  
P-PDIFF  
10kHz  
5kHz  
–80  
= 2V  
–90  
2kHz  
1kHz  
–100  
100  
1k  
10k  
50k  
0.1  
1
10 20  
FREQUENCY (Hz)  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G35  
1992 G34  
Differential Noise Voltage Density  
vs Frequency  
VOCM Gain vs Frequency,  
VS = ±2.5V  
1000  
100  
10  
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
1922 G36  
1992 G19  
1992f  
11  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-1 only.  
Differential Phase Response  
vs Frequency  
Differential Input Differential  
Gain vs Frequency, VS = ±2.5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = ±2.5V  
12  
6
0
12  
6
0
0
20  
–6  
–6  
40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
60  
80  
C
=
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
10pF  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G38  
1992 G39  
1992 G40  
Differential Gain Error vs  
Temperature  
VOCM Gain vs Frequency  
0.025  
0.020  
0.015  
0.010  
0.005  
0
5
0
C
= 10pF TO 10000pF  
LOAD  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
0.005  
0.010  
0.015  
0.020  
0.025  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1000  
10000  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G42  
1992 G41  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
5
4
5
4
5
4
+V = 5V  
S
+V = 2.7V  
S
+V = 5V  
S
–V = 5V  
S
–V = 0V  
S
–V = 0V  
S
V
= 0V  
V
OCM  
= 1.35V  
V
OCM  
= 2.5V  
OCM  
3
3
3
2
2
2
1
1
1
125°C  
85°C  
–40°C  
–40°C  
0
0
0
–40°C  
125°C  
125°C  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
25°C  
25°C  
85°C  
25°C  
85°C  
0.6  
–3  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
COMMON MODE VOLTAGE (V)  
1922 G43  
–5 –4  
–2 –1  
0
1
2
3
4
5
1.0  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1922 G45  
1922 G44  
1992f  
12  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-1 only.  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Common Mode Rejection Ratio  
vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
IN  
–V  
= 0V  
V
= 0V  
OCM  
OCM  
IN  
IN  
+V = ±1.5V  
+V = ±1.5V  
±
±
=
1.5V  
–V  
C
=
1.5V  
IN  
= 0pF  
LOAD  
0V  
2.5V  
0V  
0V  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
V  
AMPCM  
V  
AMPDIFF  
1992 G47  
1992 G46  
20µs/DIV  
2µs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G48  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency  
100  
90  
+V = 5V  
+V = 5V  
S
–V = 0V  
S
S
–V = 0V  
S
OCM  
V
= 2.5V  
V
= 2.5V  
OCM  
80  
+V = 0V TO 4V  
+V = 0V TO 4V  
IN  
–V = 2V  
IN  
–V = 2V  
IN  
IN  
70  
–V  
S
C
= 0pF  
LOAD  
60  
50  
+V  
S
2.5V  
40  
30  
20  
10  
0
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
V  
S
V  
AMPDIFF  
1992 G49  
1992 G50  
10  
100  
1k  
10k  
100k  
1M  
2µs/DIV  
20µs/DIV  
FREQUENCY (Hz)  
1992 G51  
Differential Input Small-Signal  
Step Response  
Differential Input Small-Signal  
Step Response  
Output Balance vs Frequency  
0
20  
40  
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
= 0V  
V
= 0V  
OCM  
IN  
IN  
OCM  
IN  
IN  
+V = ±50mV  
+V = ±50mV  
±
±
–V  
C
=
50mV  
= 0pF  
–V  
=
50mV  
LOAD  
0V  
60  
80  
V  
V  
C
C
= 10000pF  
= 1000pF  
OUTCM  
LOAD  
LOAD  
OUTDIFF  
–100  
1992 G52  
1992 G53  
1
10  
100  
1k  
10k 100k  
1M  
1µs/DIV  
10µs/DIV  
FREQUENCY (Hz)  
1992 G54  
1992f  
13  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-1 only.  
Single-Ended Input Small-Signal  
Step Response  
Single-Ended Input Small-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
+V = 5V  
–V = 0V  
S
S
–V = 0V  
V
= 2.5V  
S
OCM  
OCM  
+V = 0V TO 200mV  
V
= 2.5V  
IN  
–V = 100mV  
+V = 0V TO 200mV  
IN  
IN  
–V = 100mV  
C
= 0pF  
IN  
LOAD  
1992 G56  
1992 G55  
10µs/DIV  
1µs/DIV  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
1922 G57  
THD + Noise vs Frequency  
THD + Noise vs Amplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
+V = 5V  
S
–V = –5V  
S
–50  
–60  
–V = –5V  
S
V
= 0V  
OCM  
V
OCM  
= 0V  
V
= 10V  
P-PDIFF  
OUT  
50kHz  
V
= 5V  
OUT  
P-PDIFF  
20kHz  
–70  
V
V
= 1V  
OUT  
OUT  
P-PDIFF  
P-PDIFF  
10kHz  
5kHz  
–80  
= 2V  
–90  
2kHz  
1kHz  
–100  
100  
1k  
10k  
50k  
0.1  
1
10 20  
FREQUENCY (Hz)  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G59  
1992 G58  
1992f  
14  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-2 only.  
Differential Input Differential  
Gain vs Frequency, VS = ±2.5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = ±2.5V  
Differential Phase Response  
vs Frequency  
18  
12  
6
18  
12  
6
0
20  
0
–6  
0
–6  
40  
60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
80  
C
=
LOAD  
100  
120  
140  
160  
180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
10pF  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G60  
1992 G61  
1992 G62  
Differential Gain Error vs  
Temperature  
VOCM Gain vs Frequency,  
VS = ±2.5V  
0.05  
0.04  
5
0
C
= 10pF TO 10000pF  
LOAD  
0.03  
–5  
0.02  
0.01  
–10  
–15  
–20  
–25  
–30  
0
0.01  
0.02  
0.03  
0.04  
0.05  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1000  
10000  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G64  
1992 G63  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
(Note 7)  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
(Note 7)  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
(Note 7)  
2.0  
2.0  
1.5  
2.0  
1.5  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = –5V  
S
1.5  
1.0  
V
= 1.35V  
V
OCM  
= 2.5V  
V
OCM  
= 0V  
OCM  
1.0  
1.0  
–40°C  
25°C  
–40°C  
25°C  
–40°C  
25°C  
0.5  
0.5  
0.5  
85°C  
0
0
0
85°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
125°C  
125°C  
125°C  
85°C  
1.2 1.5  
1.8 2.1 2.4 2.7  
COMMON MODE VOLTAGE (V)  
0
0.3 0.6 0.9  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
1992 G66  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
1992 G65  
1992 G67  
1992f  
15  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-2 only.  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Common Mode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
= 0V  
V
= 0V  
OCM  
IN  
IN  
OCM  
IN  
IN  
+V = ±750mV  
+V = ±750mV  
±
±
–V  
C
=
750mV  
= 0pF  
–V  
=
750mV  
LOAD  
0V  
0V  
V  
V  
C
C
= 10000pF  
= 1000pF  
AMPCM  
LOAD  
LOAD  
AMPDIFF  
1992 G68  
1992 G69  
2µs/DIV  
100  
1k  
10k  
100k  
1M  
20µs/DIV  
FREQUENCY (Hz)  
1992 G70  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
+V = 5V  
+V = 5V  
S
–V = 0V  
S
S
–V  
+V  
S
S
–V = 0V  
S
OCM  
V
= 2.5V  
V
= 2.5V  
OCM  
IN  
80  
+V = 0V TO 2V  
+V = 0V TO 2V  
IN  
–V = 1V  
–V = 1V  
IN  
IN  
70  
C
= 0pF  
LOAD  
60  
50  
2.5V  
2.5V  
40  
30  
20  
10  
0
C
C
= 10000pF  
= 1000pF  
V  
S
AMPDIFF  
LOAD  
LOAD  
V  
1992 G71  
1992 G72  
2µs/DIV  
20µs/DIV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1992 G73  
Differential Input Small-Signal  
Step Response  
Differential Input Small-Signal  
Step Response  
Output Balance vs Frequency  
0
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
= 0V  
OCM  
IN  
IN  
20  
+V = ±25mV  
+V = ±25mV  
IN  
±
±
–V  
C
=
25mV  
= 0pF  
–V  
=
25mV  
IN  
LOAD  
40  
60  
0V  
0V  
80  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
V  
OUTCM  
V  
OUTDIFF  
100  
1992 G74  
1992 G75  
1
10  
100  
1k  
10k 100k  
1M  
2µs/DIV  
20µs/DIV  
FREQUENCY (Hz)  
1992 G76  
1992f  
16  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-2 only.  
Single-Ended Input Small-Signal  
Step Response  
Single-Ended Input Small-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 100mV  
IN  
OCM  
+V = 0V TO 100mV  
IN  
–V = 50mV  
IN  
–V = 50mV  
IN  
C
LOAD  
= 0pF  
1992 G77  
1992 G78  
2µs/DIV  
20µs/DIV  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
1922 G79  
THD + Noise vs Frequency  
THD + Noise vs Amplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
–50  
–60  
–V = –5V  
S
OCM  
V
= 0V  
50kHz  
20kHz  
V
= 1V  
OUT  
P-PDIFF  
–70  
10kHz  
5kHz  
V
= 2V  
OUT  
P-PDIFF  
–80  
V
OUT  
= 5V  
P-PDIFF  
2kHz  
1kHz  
–90  
V
= 10V  
P-PDIFF  
OUT  
–100  
100  
1k  
FREQUENCY (Hz)  
10k  
50k  
0.1  
1
10  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G81  
1992 G80  
1992f  
17  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-5 only.  
Differential Phase Response vs  
Frequency  
Differential Input Differential  
Gain vs Frequency, VS = ±2.5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = ±2.5V  
30  
24  
18  
12  
6
30  
24  
18  
12  
6
0
20  
40  
0
–6  
60  
0
–6  
80  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
C
=
10pF  
50pF  
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
= 10pF  
= 10pF  
10  
100  
1000  
10000  
10  
100  
1000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G83  
1992 G82  
1992 G84  
Differential Gain Error vs  
Temperature  
VOCM Gain vs Frequency  
0.050  
0.025  
5
0
C
= 10pF TO 10000pF  
LOAD  
0
–5  
0.025  
0.050  
0.075  
0.100  
0.125  
–01.50  
–10  
–15  
–20  
–25  
–30  
–50  
0
25  
50  
75 100 125  
10  
100  
1000  
10000  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G86  
1992 G85  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = 5V  
S
V
= 1.35V  
V
OCM  
= 2.5V  
V
= 0V  
OCM  
OCM  
1.0  
1.0  
1.0  
–40°C  
0.5  
0.5  
0.5  
–40°C  
–40°C  
0
0
0
125°C  
85°C  
125°C  
25°C  
25°C  
125°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
25°C  
85°C  
–0.5  
–1.0  
–1.5  
–2.0  
85°C  
1.0  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
0.6  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
COMMON MODE VOLTAGE (V)  
1922 G87  
–3  
–5 –4  
–2 –1  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
1922 G88  
1922 G89  
1992f  
18  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-5 only.  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Common Mode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
+V = 2.5V  
S
S
–V = –2.5V  
–V = –2.5V  
S
S
OCM  
V = 0V  
V
= 0V  
OCM  
+V = ± 300mV  
+V = ± 300mV  
IN  
–V =  
IN  
IN  
±
±
300mV  
–V  
C
=
300mV  
= 0pF  
IN  
LOAD  
0V  
0V  
C
C
= 10000pF  
= 1000pF  
V  
LOAD  
LOAD  
AMPCM  
V  
AMPDIFF  
1992 G91  
1992 G90  
20µs/DIV  
100  
1k  
10k  
100k  
1M  
2µs/DIV  
FREQUENCY (Hz)  
1992 G92  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
80  
70  
+V  
S
60  
50  
–V  
S
2.5V  
2.5V  
40  
30  
20  
10  
0
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
OCM  
–V = 0V  
S
OCM  
V
= 2.5V  
V
= 2.5V  
+V = 0V TO 800mV  
IN  
V  
+V = 0V TO 800mV  
IN  
S
–V = 400mV  
IN  
V  
–V = 400mV  
IN  
AMPDIFF  
C
= 0pF  
LOAD  
1992 G94  
1992 G93  
20µs/DIV  
10  
100  
1k  
10k  
100k  
1M  
2µs/DIV  
FREQUENCY (Hz)  
1992 G95  
Differential Input Small-Signal  
Step Response  
Differential Input Small-Signal  
Step Response  
Output Balance vs Frequency  
0
20  
40  
60  
80  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
IN  
–V  
= 0V  
OCM  
+V = ±10mV  
+V = ±10mV  
IN  
IN  
LOAD  
±
±
–V  
=
10mV  
= 0pF  
=
10mV  
IN  
C
0V  
0V  
V  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
OUTCM  
V  
OUTDIFF  
100  
1992 G96  
1992 G97  
1
10  
100  
1k  
10k 100k  
1M  
5µs/DIV  
50µs/DIV  
FREQUENCY (Hz)  
1992 G98  
1992f  
19  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-5 only.  
Single-Ended Input Small-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
Single-Ended Input Small-Signal  
Step Response  
1000  
100  
10  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
2.5V  
2.5V  
+V = 5V  
S
–V = 0V  
S
+V = 5V  
S
V
= 2.5V  
–V = 0V  
S
OCM  
+V = 0V TO 40mV  
IN  
V
= 2.5V  
OCM  
–V = 20mV  
IN  
C
+V = 0V TO 40mV  
IN  
= 0pF  
–V = 20mV  
IN  
LOAD  
1992 G99  
1992 G100  
5µs/DIV  
10  
100  
1000  
10000  
50µs/DIV  
FREQUENCY (Hz)  
1922 G101  
THD + Noise vs Frequency  
THD + Noise vs Amplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
+V = 5V  
S
S
–50 –V = –5V  
–V = –5V  
S
S
OCM  
V
= 0V  
V
OCM  
= 0V  
50kHz  
–60  
–70  
V
= 1V  
= 2V  
OUT  
P-PDIFF  
20kHz  
10kHz  
V
OUT  
P-PDIFF  
V
V
= 5V  
P-PDIFF  
OUT  
5kHz  
2kHz  
–80  
= 10V  
P-PDIFF  
OUT  
–90  
1kHz  
–100  
100  
1k  
FREQUENCY (Hz)  
10k  
50k  
0.1  
1
5
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G103  
1992 G102  
1992f  
20  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-10 only.  
Differential Input Differential  
Gain vs Frequency, VS = ±2.5V  
Single-Ended Input Differential  
Gain vs Frequency, VS = ±2.5V  
Differential Phase Response vs  
Frequency  
40  
30  
40  
30  
0
20  
20  
20  
40  
10  
10  
60  
0
0
80  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
C
=
10pF  
50pF  
100pF  
500pF  
1000pF  
5000pF  
10000pF  
LOAD  
–100  
–120  
–140  
–160  
–180  
C
C
C
C
C
C
C
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 10000pF  
= 5000pF  
= 1000pF  
= 500pF  
= 100pF  
= 50pF  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10pF  
= 10pF  
10  
100  
1000  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1992 G104  
1992 G105  
1992 G106  
Differential Gain Error vs  
Temperature  
VOCM Gain vs Frequency  
0.050  
0.025  
5
0
C
= 10pF TO 10000pF  
LOAD  
0
0.025  
0.050  
0.075  
0.100  
0.125  
0.150  
0.175  
0.200  
–5  
–10  
–15  
–20  
–25  
–30  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1000  
10000  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1992 G107  
1992 G108  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+V = 2.7V  
S
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
–V = 5V  
S
V
= 1.35V  
V
= 2.5V  
V
= 0V  
OCM  
OCM  
OCM  
1.0  
1.0  
1.0  
0.5  
0.5  
0.5  
–40°C  
–40°C  
–40°C  
0
0
0
125°C  
125°C  
85°C  
25°C  
125°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
25°C  
85°C  
25°C  
85°C  
0.6  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COMMON MODE VOLTAGE (V)  
1922 G110  
–3  
–5 –4  
–2 –1  
0
0.3  
0.9 1.2 1.5 1.8 2.1 2.4 2.7  
COMMON MODE VOLTAGE (V)  
0
1
2
3
4
5
COMMON MODE VOLTAGE (V)  
1922 G109  
1922 G111  
1992f  
21  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-10 only.  
Differential Input Large-Signal  
Step Response  
Differential Input Large-Signal  
Step Response  
Common Mode Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = 2.5V  
S
–V = –2.5V  
S
+V = 2.5V  
S
–V = –2.5V  
S
V
IN  
–V  
= 0V  
V
= 0V  
OCM  
OCM  
+V = ±150mV  
IN  
+V = ±150mV  
IN  
±
±
=
150mV  
–V  
C
=
150mV  
= 0pF  
IN  
LOAD  
0V  
0V  
V  
AMPCM  
C
LOAD  
C
LOAD  
= 10000pF  
= 1000pF  
V  
AMPDIFF  
1992 G113  
1992 G112  
100  
1k  
10k  
100k  
1M  
20µs/DIV  
2µs/DIV  
FREQUENCY (Hz)  
1992 G114  
Single-Ended Input Large-Signal  
Step Response  
Single-Ended Input Large-Signal  
Step Response  
Power Supply Rejection Ratio  
vs Frequency (Note 7)  
100  
90  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
80  
+V  
S
70  
–V  
S
60  
50  
2.5V  
2.5V  
40  
30  
20  
10  
0
+V = 5V  
S
–V = 0V  
S
OCM  
+V = 5V  
S
V
= 2.5V  
–V = 0V  
S
OCM  
+V = 0V TO 400mV  
IN  
V
= 2.5V  
–V = 200mV  
IN  
V  
+V = 0V TO 400mV  
IN  
S
C
= 0pF  
LOAD  
–V = 200mV  
IN  
V  
AMPDIFF  
1992 G115  
1992 G116  
2µs/DIV  
10  
100  
1k  
10k  
100k  
1M  
20µs/DIV  
FREQUENCY (Hz)  
1992 G117  
Differential Input Small-Signal  
Step Response  
Differential Input Small-Signal  
Step Response  
Output Balance vs Frequency  
0
20  
40  
60  
80  
100  
+V = 2.5V  
+V = 2.5V  
S
–V = –2.5V  
S
S
–V = –2.5V  
S
OCM  
V
= 0V  
V
= 0V  
OCM  
IN  
IN  
+V = ±5mV  
+V = ±5mV  
IN  
±
±
–V  
C
=
5mV  
–V  
=
5mV  
IN  
LOAD  
= 0pF  
0V  
0V  
V  
C
C
= 10000pF  
= 1000pF  
OUTCM  
LOAD  
LOAD  
V  
OUTDIFF  
120  
1992 G118  
1992 G119  
1
10  
100  
1k  
10k 100k  
1M  
10µs/DIV  
100µs/DIV  
FREQUENCY (Hz)  
1992 G120  
1992f  
22  
LTC1992 Family  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Applicable to the LTC1992-10 only.  
Single-Ended Input Small-Signal  
Step Response  
Single-Ended Input Small-Signal  
Step Response  
Differential Noise Voltage Density  
vs Frequency  
1000  
100  
10  
C
C
= 10000pF  
= 1000pF  
LOAD  
LOAD  
2.5V  
2.5V  
+V = 5V  
S
+V = 5V  
S
–V = 0V  
S
–V = 0V  
S
V
= 2.5V  
OCM  
V
= 2.5V  
+V = 0V TO 20mV  
IN  
OCM  
+V = 0V TO 20mV  
IN  
–V = 10mV  
IN  
C
–V = 10mV  
IN  
= 0pF  
LOAD  
1992 G121  
1992 G122  
10µs/DIV  
100µs/DIV  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
1922 G123  
THD + Noise vs Frequency  
THD + Noise vs Amplitude  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
500kHz MEASUREMENT BANDWIDTH  
+V = 5V  
S
50kHz  
20kHz  
–50 –V = –5V  
S
OCM  
V
= 0V  
–60  
–70  
V
= 1V  
= 2V  
= 5V  
OUT  
P-PDIFF  
P-PDIFF  
P-PDIFF  
V
OUT  
10kHz  
5kHz  
V
OUT  
–80  
2kHz  
1kHz  
–90  
–100  
100  
1k  
10k  
50k  
0.1  
1
2
FREQUENCY (Hz)  
INPUT SIGNAL AMPLITUDE (V  
)
P-PDIFF  
1992 G125  
1992 G124  
1992f  
23  
LTC1992 Family  
U
U
U
PI FU CTIO S  
+VS, –VS (Pins 3, 6): The +VS and –VS power supply pins  
should be bypassed with 0.1µF capacitors to an adequate  
analog ground or ground plane. The bypass capacitors  
shouldbelocatedascloselyaspossibletothesupplypins.  
–IN, +IN (Pins 1, 8): Inverting and Noninverting Inputs of  
the Amplifier. For the LTC1992 part, these pins are con-  
nected directly to the amplifier’s P-channel MOSFET input  
devices. The fixed gain LTC1992-X parts have precision,  
on-chip gain setting resistors. The input resistors are  
nominally 30k for the LTC1992-1, LTC1992-2 and  
LTC1992-5 parts. The input resistors are nominally 15k  
for the LTC1992-10 part.  
+OUT, –OUT (Pins 4, 5): The Positive and Negative  
Outputs of the Amplifier. These rail-to-rail outputs are  
designed to drive capacitive loads as high as 10,000pF.  
V
MID (Pin7):Mid-SupplyReference.Thispinisconnected  
V
OCM (Pin 2): Output Common Mode Voltage Set Pin. The  
to an on-chip resistive voltage divider to provide a mid-  
supply reference. This provides a convenient way to set  
the output common mode level at half-supply. If used for  
this purpose, Pin 2 will be shorted to Pin 7, Pin 7 should  
be bypassed with a 0.1µF capacitor to ground. If this  
reference voltage is not used, leave the pin floating.  
voltage on this pin sets the output signal’s common mode  
voltage level. The output common mode level is set  
independent of the input common mode level. This is a  
high impedance input and must be connected to a known  
and controlled voltage. It must never be left floating.  
W
BLOCK DIAGRA S  
(1992)  
+V  
S
3
+V  
S
–IN  
MID  
1
7
2
+
V
+
+OUT  
4
–V  
S
200k  
+
30k  
30k  
V
200k  
+
+
A1  
A2  
V
V
OCM  
+IN  
+
+V  
–OUT  
5
1992 BD  
S
8
–V  
S
6
–V  
S
1992f  
24  
LTC1992 Family  
W
BLOCK DIAGRA S  
(1992-X)  
+V  
S
3
+V  
S
R
R
FB  
IN  
–IN  
1
7
200k  
200k  
–V  
S
4
5
+OUT  
+
+
V
MID  
+IN  
–OUT  
+V  
S
R
R
FB  
IN  
8
PART  
R
R
FB  
IN  
LTC1992-1 30k 30k  
LTC1992-2 30k 60k  
LTC1992-5 30k 150k  
LTC1992-10 15k 150k  
–V  
S
6
–V  
2
1992-X BD  
V
S
OCM  
W U U  
U
APPLICATIO S I FOR ATIO  
Theory of Operation  
monmodevoltageandallowstheoutputsignal’scommon  
mode voltage to be set completely independent of the  
input signal’s common mode voltage. Uncoupling the  
input and output common mode voltages makes signal  
level shifting easy.  
The LTC1992 family consists of five fully differential, low  
power amplifiers. The LTC1992 is an unconstrained fully  
differential amplifier. The LTC1992-1, LTC1992-2,  
LTC1992-5 and LTC1992-10 are fixed gain blocks (with  
gainsof1,2,5and10respectively)featuringprecisionon-  
chip resistors for accurate and ultra stable gain.  
Forabetterunderstandingoftheoperationofafullydiffer-  
ential amplifier, refer to Figure 2. Here, the LTC1992 func-  
tionalblockdiagramaddsexternalresistorstorealizeabasic  
gainblock.NotethattheLTC1992functionalblockdiagram  
is not an exact replica of the LTC1992 circuitry. However,  
the Block Diagram is correct and is a very good tool for  
understanding the operation of fully differential amplifier  
circuits.Basicopampfundamentalstogetherwiththisblock  
diagram provide all of the tools needed for understanding  
fully differential amplifier circuit applications.  
In many ways, a fully differential amplifier functions much  
like the familiar, ubiquitous op amp. However, there are  
several key areas where the two differ. Referring to Fig-  
ure 1, an op amp has a differential input, a high open-loop  
gain and utilizes negative feedback (through resistors) to  
set the closed-loop gain and thus control the amplifier’s  
gain with great precision. A fully differential amplifier has  
all of these features plus an additional input and a comple-  
mentary output. The complementary output reacts to the  
input signal in the same manner as the other output, but  
in the opposite direction. Two outputs changing in an  
equal but opposite manner require a common reference  
point (i.e., opposite relative to what?). The additional  
input, the VOCM pin, sets this reference point. The voltage  
on the VOCM input directly sets the output signal’s com-  
The LTC1992 Block Diagram has two op amps, two  
summing blocks (pay close attention the signs) and four  
resistors. Two resistors, RMID1 and RMID2, connect di-  
rectly to the VMID pin and simply provide a convenient  
midsupply reference. Its use is optional and it is not  
involved in the operation of the LTC1992’s amplifier. The  
LTC1992functionsthroughtheuseoftwoservonetworks  
1992f  
25  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
Op Amp  
Fully Differential Amplifier  
–IN  
–IN  
+OUT  
+
LTC1992  
LTC1992  
V
OUT  
OCM  
+IN  
A
A
O
O
+IN  
–OUT  
+
+
• DIFFERENTIAL INPUT  
• HIGH OPEN-LOOP GAIN  
• SINGLE-ENDED OUTPUT  
• DIFFERENTIAL INPUT  
• HIGH OPEN-LOOP GAIN  
• DIFFERENTIAL OUTPUT  
OCM  
COMMON MODE LEVEL  
• V  
INPUT SETS OUTPUT  
Op Amp with Negative Feedback  
Fully Differential Amplifier with Negative Feedback  
R
FB  
R
FB  
R
IN  
R
R
IN  
V
IN  
–V  
+V  
+V  
V
V
+
+
IN  
OUT  
OCM  
+
LTC1992  
V
OUT  
LTC1992  
IN  
–V  
OUT  
IN  
OCM  
R
R
FB  
GAIN = –  
IN  
R
R
FB  
GAIN = –  
V
OCM  
R
FB  
IN  
1992 F01  
Figure 1. Comparison of an Op Amp and a Fully Differential Amplifier  
R
FB  
+V  
S
3
LTC1992  
R
IN  
INM  
–IN  
MID  
+V  
1
7
2
IN  
+
S
V
P
+
+OUT  
+V  
4
R
OUT  
MID1  
200k  
+
R
CMP  
30k  
V
R
MID2  
200k  
+
+
A1  
A2  
R
CMM  
30k  
V
V
OCM  
+IN  
+
–OUT  
–V  
5
OUT  
S
M
R
IN  
INP  
–V  
8
IN  
6
–V  
S
R
FB  
1992 F02  
Figure 2. LTC1992 Functional Block Diagram with External Gain Setting Resistors  
1992f  
26  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
each employing negative feedback and using an op amp’s  
differential input to create the servo’s summing junction.  
out of the specified areas of operation (e.g., inputs taken  
beyond the common mode range specifications, outputs  
hitting the supply rails or input signals varying faster than  
the part can track), the circuit will not function properly.  
Oneservocontrolsthesignalgainpath.Thedifferentialinput  
of op amp A1 creates the summing junction of this servo.  
Any voltage present at the input of A1 is amplified (by the  
opamp’slargeopen-loopgain),senttothesummingblocks  
and then onto the outputs. Taking note of the signs on the  
summing blocks, op amp A1’s output moves +OUT and  
–OUTinoppositedirections.Applyingavoltagestepatthe  
INMnodeincreasesthe+OUTvoltagewhiletheOUTvolt-  
agedecreases.TheRFB resistorsconnecttheoutputstothe  
appropriateinputsestablishingnegativefeedbackandclos-  
ingtheservo’sloop.Anyservoloopalwaysattemptstodrive  
its error voltage to zero. In this servo, the error voltage is  
the voltage between the INM and INP nodes, thus A1 will  
force the voltages on the INP and INM nodes to be equal  
(within the part’s DC offset, open loop gain and bandwidth  
limits). The “virtual short” between the two inputs is con-  
ceptually the same as that for op amps and is critical to un-  
derstanding fully differential amplifier applications.  
Fully Differential Amplifier Signal Conventions  
Fully differential amplifiers have a multitude of signals and  
signal ranges to consider. To maintain proper operation  
with conventional op amps, the op amp’s inputs and its  
output must not hit the supply rails and the input signal’s  
common mode level must also be within the part’s speci-  
fied limits. These considerations also apply to fully differ-  
ential amplifiers, but here there is an additional output to  
consider and common mode level shifting complicates  
matters. Figure 3 provides a list of the many signals and  
specifications as well as the naming convention. The  
phrasecommonmodeappearsinmanyplacesandoften  
leads to confusion. The fully differential amplifier’s ability  
to uncouple input and output common mode levels yields  
greatdesignflexibility,butalsocomplicatesmatterssome.  
For simplicity, the equations in Figure 3 also assume an  
ideal amplifier and perfect resistor matching. For a de-  
tailedanalysis, consultthefullydifferentialamplifierappli-  
cations circuit analysis section..  
The other servo controls the output common mode level.  
The differential input of op amp A2 creates the summing  
junction of this servo. Similar to the signal gain servo  
above, any voltage present at the input of A2 is amplified,  
sent to the summing blocks and then onto the outputs.  
However, in this case, both outputs move in the same  
direction. TheresistorsRCMP andRCMM connectthe+OUT  
and –OUT outputs to A2’s inverting input establishing  
negative feedback and closing the servo’s loop. The mid-  
point of resistors RCMP and RCMM derives the output’s  
commonmodelevel(i.e.,itsaverage).Thismeasureofthe  
output’s common mode level connects to A2’s inverting  
input while A2’s noninverting input connects directly to  
the VOCM pin. A2 forces the voltages on its inverting and  
noninverting inputs to be equal. In other words, it forces  
the output common mode voltage to be equal to the  
voltage on the VOCM input pin.  
Basic Applications Circuits  
Most fully differential amplifier applications circuits em-  
ploy symmetrical feedback networks and are familiar  
territory for op amp users. Symmetrical feedback net-  
works require that the –VIN/+VOUT network is a mirror  
image duplicate of the +VIN/–VOUT network. Each of these  
half circuits is basically just a standard inverting gain op  
amp circuit. Figure 4 shows three basic inverting gain op  
amp circuits and their corresponding fully differential  
amplifier cousins. The vast majority of fully differential  
amplifier circuits derive from old tried and true inverting  
op amp circuits. To create a fully differential amplifier  
circuit from an inverting op amp circuit, first simply  
transfer the op amp’s VIN/VOUT network to the fully differ-  
ential amplifier’s –VIN/+VOUT nodes. Then, take a mirror  
image duplicate of the network and apply it to the fully  
differential amplifier’s +VIN/–VOUT nodes. Op amp users  
can comfortably transfer any inverting op amp circuit to a  
For any fully differential amplifier application to function  
properlyboththesignalgainservoandthecommonmode  
level servo must be satisfied. When analyzing an applica-  
tions circuit, the INP node voltage must equal the INM  
node voltage and the output common mode voltage must  
equal the VOCM voltage. If either of these servos is taken  
fully differential amplifier in this manner.  
1992f  
27  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
R
FB  
R
IN  
IN  
A
B
INM  
INP  
2AV  
–V  
2BV  
2BV  
+
+V  
P-P  
P-P  
P-P  
IN  
IN  
OUT  
–A  
A
–B  
B
V
V
INDIFF  
OUTDIFF  
4BV  
LTC1992  
V
OCM  
V
OCM  
V
INCM  
V
OUTCM  
4AV  
P-PDIFF  
P-PDIFF  
R
+V  
2AV  
+
–V  
P-P  
OUT  
–A  
–B  
R
FB  
1992 F03  
DIFFERENTIAL  
INPUT VOLTAGE  
DIFFERENTIAL  
OUTPUT VOLTAGE  
= V  
INDIFF  
= +V – –V  
IN IN  
= V  
OUTDIFF  
= +V  
OUT  
– –V  
OUT  
+V + –V  
IN  
+V  
OUT  
+ –V  
2
INPUT COMMON  
MODE VOLTAGE  
IN  
OUTPUT COMMON  
MODE VOLTAGE  
OUT  
= V  
INCM  
=
= V =  
OUTCM  
2
R
R
1
2
FB  
IN  
+V  
–V  
=
=
+V – –V  
IN  
+ V  
; V  
; V  
= 0V  
= 0V  
OUT  
IN  
IN  
OCM  
OCM  
OSCM  
(
(
)
)
R
R
1
2
FB  
–V – +V  
IN  
+ V  
OUT  
OSCM  
IN  
R
FB  
IN  
V
V
V
V
= V •  
INDIFF  
R
OUTDIFF  
= V – V  
INP  
AMPDIFF  
INM  
V
INP  
+ V  
INM  
2
=
AMPCM  
OUTCM  
= V  
OCM  
V  
AMPCM  
CMRR =  
; +V = –V  
IN IN  
V  
AMPDIFF  
V  
OUTCM  
OUTDIFF  
OUTPUT BALANCE =  
V  
R
R
FB  
IN  
2
2
e
=
+ 1  
WHERE: e  
= OUTPUT REFERRED NOISE VOLTAGE DENSITY  
NOUT  
NIN  
e  
+ r  
N
NOUT  
(
)
NIN  
e
= INPUT REFERRED NOISE VOLTAGE DENSITY  
R
R
• R  
FB  
+ R  
FB  
IN  
IN  
r
N
(0.13nV/Hz)  
(
)
(RESISTIVE NOISE IS ALREADY INCLUDED IN THE  
SPECIFICATIONS FOR THE FIXED GAIN LTC1992-X PARTS)  
R
R
FB  
IN  
V
V
= V  
OSDIFFIN  
+ 1  
OSDIFFOUT  
(
)
= V  
– V  
OCM  
OSCM  
OUTCM  
Figure 3. Fully Differential Amplifier Signal Conventions (Ideal Amplifier and Perfect Resistor Matching is Assumed)  
Single-Ended to Differential Conversion  
for the signal path only affects the polarity of the differ-  
ential output signal.  
One of the most important applications of fully differen-  
tial amplifiers is single-ended signaling to differential  
signalingconversion.Manysystemshaveasingle-ended  
signal that must connect to an ADC with a differential  
input. The ADC could be run in a single-ended manner,  
but performance usually degrades. Fortunately, all of  
basic applications circuits shown in Figure 4, as well as  
all of the fixed gain LTC1992-X parts, are equally suitable  
for both differential and single-ended input signals. For  
single-ended input signals, connect one of the inputs to  
a reference voltage (e.g., ground or midsupply) and  
connecttheothertothesignalpath.Therearenotradeoffs  
here as the part’s performance is the same with single-  
ended or differential input signals. Which input is used  
Signal Level Shifting  
Anotherimportantapplicationoffullydifferentialamplifier  
issignallevelshifting. Single-endedtodifferentialconver-  
sion accompanied by a signal level shift is very common-  
place when driving ADCs. As noted in the theory of  
operation section, fully differential amplifiers have a com-  
monmodelevelservothatdeterminestheoutputcommon  
mode level independent of the input common mode level.  
To set the output common mode level, simply apply the  
desiredvoltagetotheVOCM inputpin.Thevoltagerangeon  
the VOCM pin is from (–VS + 0.5V) to (+VS – 1.3V).  
1992f  
28  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
Gain Block  
R
R
FB  
FB  
R
R
R
IN  
IN  
IN  
V
–V  
+V  
+
+V  
+
IN  
IN  
IN  
OUT  
V
LTC1992  
V
OUT  
OCM  
+
–V  
OUT  
R
R
FB  
R
R
FB  
GAIN =  
IN  
AC Coupled Gain Block  
R
FB  
FB  
C
C
C
IN  
IN  
R
R
IN  
IN  
V
–V  
IN  
+
+V  
OUT  
IN  
+
V
LTC1992  
V
OUT  
OCM  
IN  
R
IN  
+V  
IN  
+
–V  
OUT  
S
H
= H •  
O
(S)  
S + ω  
R
FB  
P
R
R
1
• C  
FB  
IN  
H
O
=
; ω  
P
=
R
IN  
IN  
Single Pole Lowpass Filter  
C
C
R
R
FB  
FB  
R
R
IN  
IN  
IN  
V
–V  
IN  
+
+V  
–V  
+
IN  
OUT  
OUT  
V
LTC1992  
V
OUT  
OCM  
R
+V  
IN  
+
ω
S + ω  
R
P
FB  
H
= H  
R
O
(S)  
P
C
1
FB  
FB  
WHERE H  
=
; ω  
P
=
O
R
R
• C  
IN  
3-Pole Lowpass Filter  
R2  
C1  
R2  
C1  
R1  
R3  
R1  
R1  
R3  
C2  
R4  
R4  
V
–V  
IN  
+
+V  
–V  
+
IN  
OUT  
OUT  
R4  
C2  
C3  
2
V
LTC1992  
V
OUT  
OCM  
2
C3  
R3  
+V  
+
IN  
C1  
2
ω
O
O
Q
ω
S + ω  
P
H
= H  
O
(S)  
ω
(
)(  
)
2
2
P
ω
S
+ S  
+
O
R2  
1992 F04  
1
1
R2  
R1  
WHERE H  
=
; ω  
=
; ω =  
O
O
P
R4C3  
R1 • R2R3  
R1 R2 + R1 R2 + R2 R3  
R2R3C1C2  
C2  
C1  
Q =  
Figure 4. Basic Fully Differential Amplifier Application Circuits (Note: Single-Ended to Differential Conversion is  
Easily Accomplished by Connecting One of the Input Nodes, +VIN or –VIN, to a DC Reference Level (e.g.,  
Ground))  
1992f  
29  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
The VOCM input pin has a very high input impedance and  
is easily driven by even the weakest of sources. Many  
ADCs provide a voltage reference output that defines  
either its common mode level or its full-scale level. Apply  
the ADC’s reference potential either directly to the VOCM  
pin or through a resistive voltage divider depending on the  
reference voltage’s definition. When controlling the VOCM  
pin by a high impedance source, connect a bypass capaci-  
tor(1000pFto0.1µF)fromtheVOCM pintogroundtolower  
the high frequency impedance and limit external noise  
coupling. Other applications will want the output biased at  
a midpoint of the power supplies for maximum output  
voltage swing. For these applications, the LTC1992 pro-  
vides a midsupply potential at the VMID pin. The VMID pin  
connects to a simple resistive voltage divider with two  
200k resistors connected between the supply pins. To use  
this feature, connect the VMID pin to the VOCM pin and  
bypass this node with a capacitor.  
dominates low frequency CMRR performance. The speci-  
fications for the fixed gain LTC1992-X parts include the  
on-chip resistor matching effects. Also, note that an input  
common mode signal appears as a differential output  
signal reduced by the CMRR. As with op amps, at higher  
frequencies the CMRR degrades. Refer to the Typical  
Performance plots for the details of the CMRR perfor-  
mance over frequency.  
At low frequencies, the output balance specification is  
determined by the matching of the on-chip RCMM and  
R
CMP resistors. At higher frequencies, the output balance  
degrades. Refer to the typical performance plots for the  
details of the output balance performance over frequency.  
Input Impedance  
The input impedance for a fully differential amplifier appli-  
cation circuit is similar to that of a standard op amp  
inverting amplifier. One major difference is that the input  
impedance is different for differential input signals and  
single-ended signals. Referring to Figure 3, for differential  
input signals the input impedance is expressed by the  
following expression:  
One undesired effect of utilizing the level shifting function  
is an increase in the differential output offset voltage due  
to gain setting resistor mismatch. The offset is approxi-  
mately the amount of level shift (VOUTCM – VINCM) multi-  
plied by the amount of resistor mismatch. For example, a  
2V level shift with 0.1% resistors will give around 2mV of  
output offset (2 • 0.1% = 2mV). The exact amount of offset  
is dependent on the application’s gain and the resistor  
mismatch.Foradetaildescription,consulttheFullyDiffer-  
ential Amplifier Applications Circuit Analysis section.  
RINDIFF = 2 • RIN  
For single-ended signals, the input impedance is ex-  
pressed by the following expression:  
RIN  
RFB  
RINS-E  
=
1–  
CMRR and Output Balance  
2 • R +R  
(
)
IN  
FB  
Onecommonmisconceptionoffullydifferentialamplifiers  
is that the common mode level servo guarantees an  
infinite common mode rejection ratio (CMRR). This is not  
true. The common mode level servo does, however, force  
the two outputs to be truly complementary (i.e., exactly  
opposite or 180 degrees out of phase). Output balance is  
a measure of how complementary the two outputs are.  
The input impedance for single-ended signals is slightly  
higher than the RIN value since some of the input signal is  
fed back and appears as the amplifier’s input common  
mode level. This small amount of positive feedback in-  
creases the input impedance.  
Driving Capacitive Loads  
At low frequencies, CMRR is primarily determined by the  
matching of the gain setting resistors. Like any op amp,  
the LTC1992 does not have infinite CMRR, however resis-  
tor mismatching of only 0.018%, halves the circuit’s  
CMRR. Standard 1% tolerance resistors yield a CMRR of  
about 40dB. For most applications, resistor matching  
The LTC1992 family of parts is stable for all capacitive  
loadsuptoatleast10,000pF.Whilestabilityisguaranteed,  
the part’s performance is not unaffected by capacitive  
loading. Large capacitive loads increase output step re-  
sponse ringing and settling time, decrease the bandwidth  
1992f  
30  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
and increase the frequency response peaking. Refer to the  
Typical Performance plots for small-signal step response,  
large-signal step response and gain over frequency to  
appraise the effects of capacitive loading. While the con-  
sequences are minor in most instances, consider these  
effects when designing application circuits with large  
capacitive loads.  
random. Once the input returns to the specified input  
common mode range, there is a small recovery time then  
normal operation proceeds.  
TheLTC1992’sinputsignalcommonmoderange(VINCMR  
)
is from (–VS – 0.1V) to (+VS – 1.3V). This specification  
applies to the voltage at the amplifier’s input, the INP and  
INMnodesofFigure2.Thespecificationsforthefixedgain  
LTC1992-X parts reflect a higher maximum limit as this  
specification is for the entire gain block and references the  
signal at the input resistors. Differential input signals and  
single-ended signals require a slightly different set of  
formulae. Differential signals separate very nicely into  
common mode and differential components while single  
endedsignalsdonot. RefertoFigure5fortheformulaefor  
calculatingtheavailablesignalrange. Additionally, Table1  
lists some common configurations and their appropriate  
signal levels.  
Input Signal Amplitude Considerations  
For application circuits to operate correctly, the amplifier  
must be in its linear operating range. To be in the linear  
operating range, the input signal’s common mode voltage  
must be within the part’s specified limits and the rail-to-  
rail outputs must stay within the supply voltage rails.  
Additionally, the fixed gain LTC1992-X parts have input  
protectiondiodesthatlimittheinputsignaltobewithinthe  
supply voltage rails. The unconstrained LTC1992 uses  
external resistors allowing the source signals to go be-  
yond the supply voltage rails.  
The LTC1992’s outputs allow rail-to-rail signal swings.  
The output voltage on either output is a function of the  
input signal’s amplitude, the gain configured and the  
output signal’s common mode level set by the VOCM pin.  
For maximum signal swing, the VOCM pin is set at the  
midpoint of the supply voltages. For other applications,  
such as an ADC driver, the required level must fall within  
the VOCM range of (–VS + 0.5V) to (+VS – 1.3V). For single-  
ended input signals, it is not always obvious which output  
will clip first thus both outputs are calculated and the  
minimum value determines the signal limit. Refer to  
Figure 5 for the formulae and Table 1 for examples.  
When taken outside of the linear operating range, the  
circuit does not perform as expected, however nothing  
extreme occurs. Outputs driven into the supply voltage  
rails are simply clipped. There is no phase reversal or  
oscillation. Once the outputs return to the linear operating  
range, there is a small recovery time, then normal opera-  
tion proceeds. When the input common mode voltage is  
below the specified lower limit, on-chip protection diodes  
conduct and clamp the signal. Once the signal returns to  
thespecifiedoperatingrange, normaloperationproceeds.  
If the input common mode voltage goes slightly above the  
specified upper limit (by no more than about 500mV), the  
amplifier’s open-loop gain reduces and DC offset and  
closed-loop gain errors increase. Return the input back to  
the specified range and normal performance commences.  
If taken well above the upper limit, the amplifier’s input  
stage is cut off. The gain servo is now open loop; however,  
thecommonmodeservoisstillfunctional. Outputbalance  
is maintained and the outputs go to opposite supply rails.  
However, which output goes to which supply rail is  
To ensure proper linear operation both the input common  
mode level and the output signal level must be within the  
specified limits. These same criteria are also present with  
standardopamps. However, withafullydifferentialampli-  
fier, it is a bit more complex and old familiar op amp  
intuition often leads to the wrong result. This is especially  
true for single-ended to differential conversion with level  
shifting.Therequiredcalculationsareabittedious,butare  
necessary to guarantee proper linear operation.  
1992f  
31  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
Differential Input Signals  
R
FB  
INM  
NODE  
R
IN  
A
B
2AV  
–V  
2BV  
2BV  
+
+V  
OUT  
P-P  
P-P  
IN  
–A  
A
–B  
B
V
V
INDIFF  
OUTDIFF  
4BV  
LTC1992  
V
V
OCM  
V
INCM  
V
OUTCM  
OCM  
4AV  
P-PDIFF  
P-PDIFF  
R
IN  
+V  
2AV  
P-P  
+
–V  
OUT  
IN  
P-P  
–B  
–A  
INP  
NODE  
R
R
FB  
IN  
R
FB  
G =  
INPUT COMMON MODE LIMITS  
A. CALCULATE V  
INCM  
MINIMUM AND MAXIMUM GIVEN R , R AND V  
IN FB  
OCM  
1
V
= (+V – 1.3V) +  
(+V – 1.3V – V )  
OCM  
INCM(MAX)  
S
S
G
1
G
V
= (–V – 0.1V) +  
(–V – 0.1V – V )  
S OCM  
INCM(MIN)  
S
B. WITH A KNOWN V  
, R , R AND V  
, CALCULATE COMMON MODE  
OR  
INCM IN FB  
OCM  
VOLTAGE AT INP AND INM NODES (V  
) AND CHECK THAT IT IS  
1
INCM(AMP)  
WITHIN THE SPECIFIED LIMITS.  
V
+ V  
INM  
2
G
G + 1  
INP  
V
=
=
V
+
V
INCM(AMP)  
INCM  
OCM  
G + 1  
OUTPUT SIGNAL CLIPPING LIMIT  
V (V  
4
G
4
G
) = THE LESSER VALUE OF (+V – V  
) OR (V – –V )  
INDIFF(MAX) P-PDIFF  
S
OCM OCM S  
Single End Input Signals  
R
FB  
INM  
NODE  
R
R
IN  
B
2BV  
2BV  
+
V
+V  
OUT  
P-P  
INREF  
–B  
B
V
OUTDIFF  
4BV  
LTC1992  
V
OCM  
V
OCM  
V
OUTCM  
P-PDIFF  
IN  
A
V
+
2AV  
P-P  
–V  
OUT  
V
REF  
INSIG  
P-P  
–B  
–A  
INP  
NODE  
R
R
FB  
IN  
R
FB  
G =  
INPUT COMMON MODE LIMITS (NOTE: FOR THE FIXED GAIN LTC1992-X PARTS, V  
INREF  
AND V  
CANNOT EXCEED THE SUPPLIES)  
INSIG  
V
1
G
INREF  
2
V
V
V
= 2 +V – 1.3V –  
+
+
+V – 1.3V – V  
S
INSIG(MAX)  
S
OCM  
(
)
)
(
(
)
)
V
INREF  
2
1
G
= 2 –V – 0.1V –  
–V – 0.1V – V  
S
INSIG(MIN)  
S
OCM  
(
OR  
1
= 2 (+V – –V ) – 1.2V +  
(+V – –V ) – 1.2V  
S S  
INSIGP-P  
S
S
(
)
(
)
G
OUTPUT SIGNAL CLIPPING LIMIT  
2
G
2
G
V
= THE LESSER VALUE OF V  
INREF  
+
(+V – V  
) OR V +  
INREF  
(V  
OCM  
– –V )  
S
INSIG(MAX)  
INSIG(MIN)  
S
OCM  
2
G
2
G
V
= THE GREATER VALUE OF V  
INREF  
+
(–V – V  
S
) OR V  
OCM INREF  
+
(V – +V ) 1992 F05  
OCM S  
Figure 5. Input Signal Limitations  
1992f  
32  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 1. Input Signal Limitations for Some Common Applications  
Differential Input Signal, VOCM at Midsupply. (VINCM must be within the Min and Max table values and  
VINDIFF must be less than the table value)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
V
V
V
(V  
V
OUTDIFF(MAX)  
S
S
OCM  
INCM(MAX)  
(V)  
INCM(MIN)  
(V)  
INDIFF(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
(V)  
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
)
(V  
P-PDIFF  
)
P-PDIFF  
0
1
2
1.450  
1.425  
1.410  
1.405  
4.900  
4.300  
3.940  
3.820  
7.400  
5.550  
4.440  
4.070  
–1.550  
–0.825  
–0.390  
–0.245  
–2.700  
–1.400  
–0.620  
–0.360  
5.40  
5.40  
0
2.70  
1.08  
0.54  
5.40  
5.40  
5.40  
0
5
0
10  
1
0
10.00  
5.00  
10.00  
10.00  
10.00  
10.00  
20.00  
20.00  
20.00  
20.00  
5
0
2
5
0
5
2.00  
5
0
10  
1
1.00  
5
–5  
–5  
–5  
–5  
–10.200  
–7.650  
–6.120  
–5.610  
20.00  
10.00  
4.00  
5
2
0
5
5
0
5
10  
0
2.00  
Differential Input Signal, VOCM at Typical ADC Levels. (VINCM must be within the Min and Max table values and  
VINDIFF must be less than the table value)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
(V)  
V
V
V
(V  
V
OUTDIFF(MAX)  
S
S
OCM  
INCM(MAX)  
(V)  
INCM(MIN)  
(V)  
INDIFF(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
)
(V  
P-PDIFF  
)
P-PDIFF  
0
1
2
1
1.800  
1.600  
1.480  
1.440  
5.400  
4.550  
4.040  
3.870  
5.400  
4.550  
4.040  
3.870  
–1.200  
–0.650  
–0.320  
–0.210  
–2.200  
–1.150  
–0.520  
–0.310  
4.00  
4.00  
0
1
2.00  
0.80  
0.40  
8.00  
4.00  
1.60  
0.80  
4.00  
4.00  
4.00  
8.00  
8.00  
8.00  
8.00  
0
5
1
0
10  
1
1
0
2
5
0
2
2
5
0
5
2
5
0
10  
1
2
5
–5  
–5  
–5  
–5  
2
–12.200  
–8.650  
–6.520  
–5.810  
12.00  
6.00  
2.40  
1.20  
12.00  
12.00  
12.00  
12.00  
5
2
2
5
5
2
5
10  
2
1992f  
33  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. Input Signal Limitations for Some Common Applications  
Midsupply Referenced Single-Ended Input Signal, VOCM at Midsupply. (The VINSIG Min and Max values listed account for both the input  
common mode limits and the output clipping)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
V
V
V
V
V
OUTDIFF(MAX)  
S
S
OCM  
INREF  
(V)  
INSIG(MAX)  
(V)  
INSIG(MIN)  
(V)  
INSIGP-P(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
(V)  
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
(V AROUND V  
P-P  
)
(V  
P-PDIFF  
)
INREF  
0
1
2
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
1.550  
1.500  
1.470  
1.460  
7.300  
5.000  
3.500  
3.000  
10.000  
5.000  
2.000  
1.000  
–1.350  
0.000  
0.810  
1.080  
–2.500  
0.000  
1.500  
2.000  
0.40  
0.30  
0.24  
0.22  
9.60  
5.00  
2.00  
1.00  
20.00  
10.00  
4.00  
2.00  
0.40  
0
0.60  
1.20  
2.20  
9.60  
0
5
0
10  
1
0
5
0
2
10.00  
10.00  
10.00  
20.00  
20.00  
20.00  
20.00  
5
0
5
5
0
10  
1
5
–5  
–5  
–5  
–5  
–10.000  
–5.000  
–2.000  
–1.000  
5
2
0
0
5
5
0
0
5
10  
0
0
Midsupply Referenced Single-Ended Input Signal, VOCM at Typical ADC Levels. (The VINSIG Min and Max values listed account for both  
the input common mode limits and the output clipping)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
(V)  
V
V
V
V
V
OUTDIFF(MAX)  
S
S
OCM  
INREF  
(V)  
INSIG(MAX)  
(V)  
INSIG(MIN)  
(V)  
INSIGP-P(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
(V AROUND V  
P-P  
)
(V  
P-PDIFF  
)
INREF  
0
1
2
1
1.35  
1.35  
1.35  
1.35  
2.5  
2.5  
2.5  
2.5  
0
2.250  
1.850  
1.610  
1.530  
6.500  
4.500  
3.300  
2.900  
6.000  
3.000  
1.200  
0.600  
–0.650  
0.350  
1.80  
1.00  
0.52  
0.36  
8.00  
4.00  
1.60  
0.80  
12.00  
6.00  
2.40  
1.20  
1.80  
0
1
2.00  
2.60  
3.60  
8.00  
8.00  
8.00  
8.00  
0
5
1
0.950  
0
10  
1
1
1.150  
0
2
–1.500  
0.500  
5
0
2
2
5
0
5
2
1.700  
5
0
10  
1
2
2.100  
5
–5  
–5  
–5  
–5  
2
–6.000  
–3.000  
–1.200  
–0.600  
12.00  
12.00  
12.00  
12.00  
5
2
2
0
5
5
2
0
5
10  
2
0
1992f  
34  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 1. Input Signal Limitations for Some Common Applications  
Single Supply Ground Referenced Single-Ended Input Signal, VOCM at Midsupply. (The VINSIG Min and Max values listed account for  
both the input common mode limits and the output clipping)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
V
V
V
V
V
OUTDIFF(MAX)  
S
S
OCM  
INREF  
(V)  
INSIG(MAX)  
(V)  
INSIG(MIN)  
(V)  
INSIGP-P(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
(V)  
1.35  
1.35  
1.35  
1.35  
2.5  
(V AROUND V  
P-P  
)
(V  
P-PDIFF  
)
INREF  
0
1
2
0
0
0
0
0
0
0
0
2.700  
1.350  
0.540  
0.270  
5.000  
2.500  
1.000  
0.500  
–2.700  
–1.350  
–0.540  
–0.270  
–5.000  
–2.500  
–1.000  
–0.500  
5.40  
2.70  
1.08  
0.54  
10.00  
5.00  
2.00  
1.00  
5.40  
0
5.40  
5.40  
5.40  
0
5
0
10  
1
0
10.00  
10.00  
10.00  
10.00  
5
0
2
2.5  
5
0
5
2.5  
5
0
10  
2.5  
Single Supply Ground Referenced Single-Ended Input Signal, VOCM at Typical ADC Reference Levels. (The VINSIG Min and Max values  
listed account for both the input common mode limits and the output clipping)  
+V  
–V  
(V)  
GAIN  
(V/V)  
V
(V)  
V
V
V
V
V
OUTDIFF(MAX)  
S
S
OCM  
INREF  
(V)  
INSIG(MAX)  
(V)  
INSIG(MIN)  
(V)  
INSIGP-P(MAX)  
(V)  
2.7  
2.7  
2.7  
2.7  
5
(V AROUND V  
P-P  
)
(V  
P-PDIFF  
)
INREF  
0
1
2
1
0
0
0
0
0
0
0
0
2.000  
1.000  
0.400  
0.200  
4.000  
2.000  
0.800  
0.400  
–2.000  
–1.000  
–0.400  
–0.200  
–4.000  
–2.000  
–0.800  
–0.400  
4.00  
2.00  
0.80  
0.40  
8.00  
4.00  
1.60  
0.80  
4.00  
0
1
4.00  
4.00  
4.00  
8.00  
8.00  
8.00  
8.00  
0
5
1
0
10  
1
1
0
2
5
0
2
2
5
0
5
2
5
0
10  
2
Fully Differential Amplifier Applications  
Circuit Analysis  
While mathematically correct, the basic signal equation  
does not immediately yield any intuitive feel for fully  
differential amplifier application operation. However, by  
nulling out specific terms, some basic observations and  
sensitivities come forth. Setting β1 equal to β2, VOSDIFF to  
zero and VOUTCM to VOCM gives the old gain equation from  
Figure 3. The ground referenced, single-ended input sig-  
nal equation yields the interesting result that the driven  
side feedback factor (β1) has a very different sensitivity  
than the grounded side (β2). The CMRR is twice the  
feedback factor difference divided by the feedback factor  
sum. The differential output offset voltage has two terms.  
The first term is determined by the input offset term,  
All of the previous applications circuit discussions have  
assumed perfectly matched symmetrical feedback net-  
works. To consider the effects of mismatched or asym-  
metricalfeedbacknetworks,theequationsgetabitmessier.  
Figure 6 lists the basic gain equation for the differential  
outputvoltageintermsof+VIN, –VIN, VOSDIFF, VOUTCM and  
the feedback factors β1 and β2. The feedback factors are  
simplytheportionoftheoutputthatisfedbacktotheinput  
summingjunctionbytheRFB-RIN resistivevoltagedivider.  
β1 and β2have the range of zero to one. The VOUTCM term  
also includes its offset voltage, VOSCM, and its gain mis-  
match term, KCM. The KCM term is determined by the  
matching of the on-chip RCMP and RCMM resistors in the  
common mode level servo (see Figure 2).  
V
OSDIFF, and the application’s gain. Note that this term  
equates to the formula in Figure 3 when β1 equals β2. The  
amount of signal level shifting and the feedback factor  
mismatch determines the second term. This term  
1992f  
35  
LTC1992 Family  
W U U  
U
APPLICATIO S I FOR ATIO  
R
FB2  
R
IN2  
IN1  
+
–V  
IN  
+V  
–V  
OUT  
V
V
INDIFF  
OUTDIFF  
+V – –V  
LTC1992  
V
OCM  
V
OCM  
+V – –V  
IN  
IN  
OUT OUT  
R
+V  
IN  
+
OUT  
R
FB1  
2[+V • (1 – β1) – (–V ) • (1 – β2)] + 2V  
+ 2V  
(β1 – β2)  
IN  
IN  
OSDIFF  
OUTCM  
V
=
OUTDIFF  
β1 + β2  
WHERE:  
R
R
IN2  
IN1  
β1 =  
; β2 =  
; V  
V
= AMPLIFIER INPUT REFERRED OFFSET VOLTAGE  
OSDIFF  
R
+ R  
R
+ R  
IN1  
FB1  
IN2  
FB2  
= K • V  
+ V  
OSCM  
OUTCM  
CM OCM  
0.999 < K < 1.001  
CM  
• FOR GROUND REFERENCED, SINGLE-ENDED INPUT SIGNAL, LET +V = V  
IN INSIG  
AND –V = 0V  
IN  
2 • V  
INSIG  
• (1 – β1) + 2V  
OSDIFF  
+ 2V (β1 – β2)  
OUTCM  
V
=
OUTDIFF  
β1 + β2  
• COMMON MODE REJECTION: SET +V = –V = V  
, V  
= 0V, V = 0V  
OUTCM  
IN  
IN  
INCM OSDIFF  
V  
β1 + β2  
β2 – β1  
INCM  
CMRR =  
= 2  
; OUTPUT REFERRED  
V  
OUTDIFF  
• OUTPUT DC OFFSET VOLTAGE: SET +V = –V = V  
IN  
IN  
INCM  
β2 – β1  
β1 + β2  
2
V
= V  
OSDIFF  
+ (V  
– V ) 2  
INCM  
OSDIFFOUT  
OUTCM  
β1 + β2  
Figure 6. Basic Equations for Mismatched or Asymmetrical Feedback Applications Circuits  
quantifies the undesired effect of signal level shifting dual, split supply voltage applications with a ground  
discussed earlier in the Signal Level Shifting section.  
referenced input signal and a grounded VOCM pin.  
The top application circuit in Figure 7 yields a high input  
impedance, precision gain of 2 block without any external  
resistors. The on-chip common mode feedback servo  
resistors determine the gain precision (better than 0.1  
percent). By using the –VOUT output alone, this circuit is  
also useful to get a precision, single-ended output, high  
input impedance inverter. To intuitively understand this  
circuit, consider it as a standard op amp voltage follower  
(delivered through the signal gain servo) with a comple-  
mentary output (delivered through the common mode  
level servo). As usual, the amplifier’s input common  
mode range must not be exceeded. As with a standard op  
amp voltage follower, the common mode signal seen at  
the amplifier’s input is the input signal itself. This condi-  
tion limits the input signal swing, as well as the output  
signal swing, to be the input signal common mode range  
specification.  
Asymmetrical Feedback Application Circuits  
The basic signal equation in Figure 6 also gives insight to  
another piece of intuition. The feedback factors may be  
deliberatelysettodifferentvalues. Oneinterestingclassof  
these application circuits sets one or both of the feedback  
factorstotheextremevaluesofeitherzeroorone.Figure 7  
shows three such circuits.  
At first these application circuits may look to be unstable  
or open loop. It is the common mode feedback loop that  
enables these circuits to function. While they are useful  
circuits, they have some shortcomings that must be  
considered. First, do to the severe feedback factor asym-  
metry, the VOCM level influences the differential output  
voltage with about the same strength as the input signal.  
With this much gain in the VOCM path, differential output  
offset and noise increase. The large VOCM to VOUTDIFF gain  
also necessitates that these circuits are largely limited to  
The middle circuit is largely the same as the first except  
that the noninverting amplifier path has gain. Note that  
1992f  
36  
LTC1992 Family  
W U U  
APPLICATIO S I FOR ATIO  
U
+V  
OUT  
V
= 2(+V – V  
)
OCM  
+
OUTDIFF  
IN  
V
OCM  
V
OCM  
LTC1992  
V
IN  
–V  
OUT  
+
SETTING V  
= 0V  
OCM  
V
V
= 2V  
OUTDIFF  
IN  
R
R
IN  
FB  
R
1
IN  
+V  
= 2 +V  
– V  
OCM  
; β =  
+
OUT  
OUTDIFF  
IN  
(
)
β
R
+ R  
IN  
FB  
V
V
OCM  
LTC1992  
OCM  
SETTING V  
= 0V  
1
OCM  
V
IN  
–V  
OUT  
+
R
FB  
= 2V 1 +  
V
= 2V  
IN  
OUTDIFF  
IN  
(
)
(
)
R
IN  
β
1 – β  
β
R
IN  
+ R  
+V  
OUT  
V
= 2 +V  
+ V  
OCM  
; β =  
+
OUTDIFF  
IN  
(
)
R
IN  
FB  
V
OCM  
V
LTC1992  
OCM  
R
IN  
SETTING V  
= 0V  
OCM  
V
IN  
–V  
OUT  
+
R
R
1 – β  
FB  
= 2V  
IN  
V
= 2V  
IN  
(
)
(
)
OUTDIFF  
β
IN  
R
FB  
1992 F07  
Figure 7. Asymmetrical Feedback Application Circuits (Most Suitable in Applications with Dual,  
Split Supplies (e.g., ±5V), Ground Referenced Single-Ended Input Signals and VOCM Connected to Ground)  
once the VOCM voltage is set to zero, the gain formula is Thebottomcircuitisanothercircuitthatutilizesastandard  
the same as a standard noninverting op amp circuit op amp configuration with a complementary output. In  
multiplied by two to account for the complementary this case, the standard op amp circuit has an inverting  
output. Taking RFB to zero (i.e., taking β to one) gives the configuration. With VOCM at zero volts, the gain formula is  
same formula as the top circuit. As in the top circuit, this the same as a standard inverting op amp circuit multiplied  
circuit is also useful as a single-ended output, high input by two to account for the complementary output. This  
impedance inverting gain block (this time with gain). The circuit does not have any common mode level constraints  
input common mode considerations are similar to the top astheinvertinginputvoltagesetstheinputcommonmode  
circuit’s, but are not nearly as constrained since there is level. This circuit also delivers rail-to-rail output voltage  
now gain in the noninverting amplifier path. This circuit, swing without any concerns.  
with VOCM at ground, also permits a rail-to-rail output  
swing in most applications.  
1992f  
37  
LTC1992 Family  
U
TYPICAL APPLICATIO S  
Interfacing a Bipolar, Ground Referenced, Single-Ended Signal to a Unipolar Single Supply,  
Differential Input ADC (VIN = 0V Gives a Digital Mid-Scale Code)  
5V  
1µF  
0.1µF  
40k  
10k  
13.3k  
1
8
3
100  
100Ω  
10k  
4
2
3
V
V
1
7
REF  
CC  
7
6
5
+IN  
–IN  
+
MID  
SCK  
SERIAL  
DATA  
V
V
100pF  
LTC1864 SDO  
LTC1992  
2
8
OCM  
LINK  
2.5V  
10k  
CONV  
GND  
+
V
IN  
0V  
6
5
–2.5V  
5V  
4
1992 TA02a  
13.3k  
10k  
0.1µF  
40k  
Compact, Unipolar Serial Data Conversion  
5V  
1µF  
1
8
3
0.1µF  
100  
100Ω  
4
2
3
V
V
1
7
REF  
CC  
7
6
5
+IN  
–IN  
+
SCK  
SERIAL  
DATA  
LINK  
V
MID  
100pF  
LTC1864 SDO  
LTC1992-2  
2
8
V
OCM  
2.5V  
CONV  
GND  
+
V
IN  
6
5
0V  
4
1992 TA03a  
0.1µF  
Zero Components, Single-Ended Adder/Subtracter  
+V  
S
0.1µF  
3
1
2
8
4
V
V
V1 = V + V – V  
B C  
+
A
B
A
C
V
LTC1992-2  
OCM  
V
+
V2 = V + V – V  
C
B
A
5
6
0.1µF  
–V  
S
1992 TA04  
1992f  
38  
LTC1992 Family  
U
TYPICAL APPLICATIO S  
Single-Ended to Differential Conversion Driving an ADC  
2.2µF  
10µF  
5V 10µF  
5V 10µF  
10  
FFT of the Output Data  
+
+
+
3
36  
10  
35  
9
0
–10  
20  
30  
40  
50  
60  
70  
80  
V
AV  
AV  
f
f
= 10.0099kHz  
= 333kHz  
DV  
DD  
DGND  
SNR =85.3dB  
THD = –72.1dB  
SINAD = –72dB  
REF  
DD  
DD  
IN  
SAMPLE  
SHDN 33  
CS 32  
LTC1603  
CONTROL  
LOGIC  
AND  
TIMING  
µP  
CONTROL  
LINES  
CONVST 31  
RD 30  
REFCOMP  
4.375V  
7.5k  
4
1
2.5V  
REF  
1.75X  
5V  
+
BUSY 27  
47µF  
0.1µF  
100Ω  
OV  
DD  
29  
28  
5V OR  
90  
+
3
3V  
–100  
–110  
–120  
–130  
–140  
+
A
4
IN  
10µF  
1
7
OGND  
+
MID  
+
V
16-BIT  
SAMPLING  
ADC  
OUTPUT  
BUFFERS  
100pF  
B15 TO B0  
16-BIT  
LTC1992-1  
2
8
V
PARALLEL  
BUS  
OCM  
D15 TO D0  
2
A
IN  
0
10 20 30 40 50 60 70 80 90 100  
+
V
IN  
6
5
100Ω  
0.1µF  
11 TO 26  
1992 TA06a  
FREQUENCY (kHz)  
AGND AGND AGND AGND  
V
SS  
34  
1992 TA06b  
5
6
7
8
10µF  
–5V  
+
–5V  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
GAUGE PLANE  
0.52  
(.0205)  
REF  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
8
7 6  
5
0.53 ± 0.152  
(.021 ± .006)  
DETAIL “A”  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
SEATING  
PLANE  
(.0165 ± .0015)  
0.18  
(.007)  
TYP  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
RECOMMENDED SOLDER PAD LAYOUT  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
1
2
3
4
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1992f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
39  
LTC1992 Family  
U
TYPICAL APPLICATIO  
Balanced Frequency Converter (Suitable for Frequencies up to 50kHz)  
60kHz LOW PASS FILTER  
5V  
SAMPLER  
2kHz LOWPASS FILTER  
0.1µF  
9.53k  
0.1µF  
0.1µF  
75k  
120pF  
4
+
390pF  
V
3
9.53k  
9.53k  
8.87k  
1
7
2
8
4
7
8
BNC  
BNC  
3
+
MID  
37.4k  
60.4k  
1
7
2
8
4
11  
V
+
OUTP  
V
330pF  
8.87k  
LTC1992  
V
MID  
BNC  
V
OCM  
180pF  
60.4k  
LTC1992  
1/2 LTC1043  
13  
V
OCM  
V
INP  
+
37.4k  
12  
5
6
V
+
OUTM  
14  
16  
5
6
CLK  
120pF  
9.53k  
V
390pF  
75k  
17  
0.1µF  
0.1µF  
0.1µF  
10k  
0.1µF  
V
OCM  
1992 TA05a  
CLK  
–5V  
V
= 24kHz  
INP  
0V  
(1V/DIV)  
CLK = 25kHz  
(LOGIC SQUARE WAVE)  
(5V/DIV)  
0V  
0V  
0V  
V
= 1kHz  
OUTP  
(0.5V/DIV)  
= 1kHz  
V
OUTM  
(0.5V/DIV)  
1992 TA05b  
200µs/DIV  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Single Resistor Sets the Gain  
LT1167  
Precision Instrumentation Amplifier  
LT1990  
High Voltage, Gain Selectable Difference Amplifier  
Precision Gain Selectable Difference Amplifier  
High Speed Gain Selectable Difference Amplifier  
Differential In/Out Amplifier Lowpass Filter  
±250V Common Mode, Micropower, Selectable Gain = 1, 10  
Micropower, Pin Selectable Gain = –13 to 14  
LT1991  
LT1995  
30MHz, 1000V/µs, Pin Selectable Gain = –7 to 8  
Very Low Noise, Standard Differential Amplifier Pinout  
LT6600-X  
1992f  
LT/TP 0105 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY