LTC2217IUP-TRPBF [Linear]

16-Bit, 105Msps Low Noise ADC; 16位,105Msps低噪声ADC
LTC2217IUP-TRPBF
型号: LTC2217IUP-TRPBF
厂家: Linear    Linear
描述:

16-Bit, 105Msps Low Noise ADC
16位,105Msps低噪声ADC

文件: 总32页 (文件大小:1276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2217  
16-Bit, 105Msps  
Low Noise ADC  
FEATURES  
DESCRIPTION  
Sample Rate: 105Msps  
TheLTC®2217isa105Mspssampling16-bitA/Dconverter  
designedfordigitizinghighfrequency,widedynamicrange  
signals with input frequencies up to 400MHz. The input  
81.3dBFS Noise Floor  
100dB SFDR  
SFDR >90dB at 70MHz  
range of the ADC is fixed at 2.75V  
.
P-P  
85fs  
Jitter  
RMS  
The LTC2217 is perfect for demanding communications  
applications,withACperformancethatincludes81.3dBFS  
Noise Floor and 100dB spurious free dynamic range  
2.75V Input Range  
P-P  
400MHz Full Power Bandwidth S/H  
Optional Internal Dither  
(SFDR). Ultra low jitter of 85fs  
allows undersampling  
RMS  
Optional Data Output Randomizer  
LVDS or CMOS Outputs  
Single 3.3V Supply  
Power Dissipation: 1.19W  
Clock Duty Cycle Stabilizer  
Pin Compatible with LTC2208  
64-Pin (9mm × 9mm) QFN Package  
ofhighinputfrequencieswhilemaintainingexcellentnoise  
performance.MaximumDCspecificationsinclude 3.5LSB  
INL, 1LSB DNL (no missing codes).  
The digital output can be either differential LVDS or  
single-ended CMOS. There are two format options for the  
CMOS outputs: a single bus running at the full data rate or  
demultiplexed buses running at half data rate. A separate  
output power supply allows the CMOS output swing to  
range from 0.5V to 3.6V.  
APPLICATIONS  
Telecommunications  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL or  
CMOS inputs. An optional clock duty cycle stabilizer al-  
lows high performance at full speed with a wide range of  
clock duty cycles.  
Receivers  
Cellular Base Stations  
Spectrum Analysis  
Imaging Systems  
ATE  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents Pending.  
TYPICAL APPLICATION  
3.3V  
SENSE  
64k Point FFT,  
FIN = 4.9MHz, –1dBFS  
OV  
DD  
1.575V  
COMMON MODE  
BIAS VOLTAGE  
INTERNAL ADC  
REFERENCE  
GENERATOR  
V
0.5V TO 3.6V  
1μF  
CM  
0
–10  
2.2μF  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OF  
CLKOUT  
D15  
+
AIN  
+
16-BIT  
PIPELINED  
ADC CORE  
OUTPUT  
DRIVERS  
CORRECTION  
LOGIC AND  
SHIFT REGISTER  
CMOS  
OR  
LVDS  
ANALOG  
INPUT  
S/H  
AMP  
AIN  
D0  
–90  
OGND  
–100  
–110  
–120  
–130  
CLOCK/DUTY  
CYCLE  
CONTROL  
3.3V  
1μF  
V
DD  
1μF  
1μF  
GND  
2217 TA01  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
+
ENC  
ENC  
SHDN DITH MODE LVDS RAND  
ADC CONTROL INPUTS  
2217 TA01b  
2217f  
1
LTC2217  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
OVDD = VDD (Notes 1 and 2)  
TOP VIEW  
Supply Voltage (V )...................................0.3V to 4V  
DD  
Digital Output Ground Voltage (OGND)........0.3V to 1V  
Analog Input Voltage (Note 3) ..... 0.3V to (V + 0.3V)  
DD  
+
SENSE 1  
GND 2  
48 D11 /DA6  
Digital Input Voltage .................... 0.3V to (V + 0.3V)  
DD  
47 D11 /DA5  
+
V
3
46 D10 /DA4  
Digital Output Voltage................0.3V to (OV + 0.3V)  
CM  
GND 4  
DD  
45 D10 /DA3  
+
V
V
5
6
44 D9 /DA2  
43 D9 /DA1  
42 D8 /DA0  
41 D8 /CLKOUTA  
40 CLKOUT /CLKOUTB  
39 CLKOUT /OFB  
38 D7 /DB15  
37 D7 /DB14  
36 D6 /DB13  
35 D6 /DB12  
34 D5 /DB11  
33 D5 /DB10  
Power Dissipation............................................ 2000mW  
DD  
DD  
+
GND 7  
Operating Temperature Range  
+
AIN  
AIN  
8
9
65  
+
LTC2217C ................................................ 0°C to 70°C  
LTC2217I .............................................40°C to 85°C  
Storage Temperature Range ..................65°C to 150°C  
GND 10  
GND 11  
+
+
ENC 12  
+
ENC 13  
GND 14  
+
Digital Output Supply Voltage (OV )..........0.3V to 4V  
V
DD  
V
DD  
15  
16  
DD  
T
= 150°C, θ = 20°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
LTC2217CUP#PBF  
LTC2217IUP#PBF  
LTC2217CUP#TRPBF  
LTC2217IUP#TRPBF  
LTC2217UP  
LTC2217UP  
LEAD BASED FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2217CUP  
LTC2217IUP  
LTC2217CUP#TR  
LTC2217IUP#TR  
LTC2217UP  
LTC2217UP  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
CONVERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.5  
4
UNITS  
LSB  
Integral Linearity Error  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 5) T = 25°C  
1.3  
A
Differential Analog Input (Note 5)  
Differential Analog Input  
(Note 6)  
1.3  
LSB  
0.18/–0.22  
1
LSB  
1.3  
4
6
mV  
Offset Drift  
μV/°C  
%FS  
Gain Error  
External Reference  
0.3  
1
ppm/°C  
ppm/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
–65  
12  
Transition Noise  
External Reference  
2
LSB  
RMS  
2217f  
2
LTC2217  
ANALOG INPUT The denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.75  
MAX  
UNITS  
+
V
IN  
3.135V ≤ V ≤ 3.465V  
V
Analog Input Range (A  
A
)
IN  
DD  
P-P  
IN  
V
I
Analog Input Common Mode  
Differential Input (Note 7)  
1.2  
–1  
–3  
1.575  
1.8  
1
V
μA  
μA  
μA  
μA  
IN, CM  
+
Analog Input Leakage Current  
SENSE Input Leakage Current  
0V ≤ A  
,
A
≤ V  
IN DD  
IN  
IN  
I
I
I
0V ≤ SENSE ≤ V  
3
SENSE  
MODE  
LVDS  
DD  
MODE Pin Pull-Down Current to GND  
LVDS Pin Pull-Down Current to GND  
Analog Input Capacitance  
10  
10  
+
C
Sample Mode ENC < ENC  
9.1  
1.8  
pF  
pF  
IN  
+
Hold Mode ENC > ENC  
t
t
Sample-and-Hold  
0.35  
ns  
fs RMS  
dB  
AP  
Acquisition Delay Time  
Sample-and-Hold  
Aperture Jitter  
85  
JITTER  
+
CMRR  
Analog Input  
Common Mode Rejection Ratio  
1.2V < (A = A ) <1.8V  
80  
IN  
IN  
BW-3dB  
Full Power Bandwidth  
R < 25Ω  
S
400  
MHz  
DYNAMIC ACCURACY The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS with 2.75V range unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
81.2  
dBFS  
15MHz Input, T = 25°C  
80.4  
80.1  
81.1  
80.7  
dBFS  
dBFS  
A
15MHz Input  
30MHz Input, T = 25°C  
81.1  
dBFS  
A
70MHz Input, T = 25°C  
79.6  
79.3  
80.4  
80.1  
dBFS  
dBFS  
A
70MHz Input  
140MHz Input  
5MHz Input  
78.8  
100  
dBFS  
dBc  
SFDR  
SFDR  
Spurious Free  
Dynamic Range  
2nd or 3rd Harmonic  
15MHz Input, T = 25°C  
88  
87  
100  
99  
dBc  
dBc  
A
15MHz Input  
30MHz Input  
95  
dBc  
70MHz Input, T = 25°C  
85  
83  
92  
88  
dBc  
dBc  
A
70MHz Input  
140MHz Input  
5MHz Input  
85  
105  
105  
105  
103  
95  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Spurious Free Dynamic Range  
4th Harmonic or Higher  
15MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
93  
93  
2217f  
3
LTC2217  
DYNAMIC ACCURACY The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS with 2.75V range unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N+D)  
Signal-to-Noise  
5MHz Input  
81.2  
dBFS  
Plus Distortion Ratio  
15MHz Input, T = 25°C  
15MHz Input  
79.9  
79.7  
81  
80.6  
dBFS  
dBFS  
A
30MHz Input  
81.1  
dBFS  
70MHz Input, T = 25°C  
78.7  
78.2  
80  
79.5  
dBFS  
dBFS  
A
70MHz Input  
140MHz Input  
5MHz Input  
78.8  
105  
105  
105  
105  
100  
115  
115  
115  
115  
110  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
SFDR  
SFDR  
IMD  
Spurious Free Dynamic Range  
at 25dBFS  
Dither “OFF”  
15MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
Spurious Free Dynamic Range  
at 25dBFS  
Dither “ON”  
15MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
100  
Intermodulation Distortion  
f
IN1  
f
IN1  
= 14MHz, f = 21MHz, –7dBFS  
= 67MHz, f = 74MHz, –7dBFS  
100  
90  
dBc  
dBc  
IN2  
IN2  
COMMON MODE BIAS CHARACTERISTICS The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.575  
60  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
CM  
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
I
= 0  
= 0  
1.475  
1.675  
OUT  
OUT  
ppm/°C  
3.135V ≤ V ≤ 3.465V  
2.4  
mV/V  
DD  
Ω
| I  
| ≤ 0.8mA  
1.1  
OUT  
2217f  
4
LTC2217  
DIGITAL INPUTS AND DIGITAL OUTPUTS The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Encode Inputs (ENC , ENC )  
V
V
Differential Input Voltage  
(Note 7)  
0.2  
1.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 7)  
1.6  
V
V
ICM  
3
R
Input Resistance  
Input Capacitance  
(See Figure 2)  
(Note 7)  
6
3
k
Ω
IN  
C
IN  
pF  
Logic Inputs  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 3.3V  
2
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
IN  
= 0V to V  
μA  
pF  
DD  
C
Digital Input Capacitance  
(Note 7)  
1.5  
IN  
LOGIC OUTPUTS (CMOS MODE)  
OV = 3.3V  
DD  
V
High Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
I = –10μA  
I = 200μA  
O
3.299  
3.29  
V
V
OH  
DD  
DD  
O
3.1  
V
Low Level Output Voltage  
I = 160μA  
0.01  
0.10  
V
V
OL  
O
I = 1.6mA  
O
0.4  
I
I
Output Source Current  
Output Sink Current  
V
V
= 0V  
50  
50  
mA  
mA  
SOURCE  
OUT  
OUT  
= 3.3V  
SINK  
OV = 2.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
I = 200μA  
2.49  
0.1  
V
V
OH  
OL  
DD  
DD  
O
I = 1.60mA  
O
OV = 1.8V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
I = 200μA  
1.79  
0.1  
V
V
OH  
OL  
DD  
DD  
O
I = 1.60mA  
O
LOGIC OUTPUTS (LVDS MODE)  
STANDARD LVDS  
V
V
Differential Output Voltage  
100Ω Differential Load  
247  
350  
1.2  
454  
mV  
V
OD  
OS  
Output Common Mode Voltage 100Ω Differential Load  
1.125  
1.375  
Low Power LVDS  
V
Differential Output Voltage  
100Ω Differential Load  
125  
175  
1.2  
250  
mV  
V
OD  
OS  
V
Output Common Mode Voltage 100Ω Differential Load  
1.125  
1.375  
2217f  
5
LTC2217  
POWER REQUIREMENTS The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. AIN = –1dBFS unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.3  
17  
MAX  
UNITS  
V
V
P
Analog Supply Voltage  
Shutdown Power  
(Note 8)  
3.135  
3.465  
DD  
SHDN = V  
(Note 8)  
mW  
SHDN  
DD  
Standard LVDS Output Mode  
OV  
Output Supply Voltage  
Analog Supply Current  
Output Supply Current  
Power Dissipation  
3
3
3.3  
365  
75  
3.6  
430  
90  
V
mA  
DD  
I
I
VDD  
OVDD  
mA  
P
1450  
1716  
mW  
DIS  
Low Power LVDS Output Mode  
OV  
Output Supply Voltage  
Analog Supply Current  
Output Supply Current  
Power Dissipation  
(Note 8)  
(Note 8)  
3.3  
363  
42  
3.6  
430  
50  
V
mA  
DD  
I
I
VDD  
OVDD  
mA  
P
1335  
1584  
mW  
DIS  
CMOS Output Mode  
OV  
Output Supply Voltage  
Analog Supply Current  
Power Dissipation  
0.5  
3.6  
430  
V
mA  
DD  
I
360  
VDD  
P
DIS  
1190  
1420  
mW  
TIMING CHARACTERISTICS The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Sampling Frequency  
ENC Low Time  
(Note 8)  
1
105  
MHz  
S
L
t
Duty Cycle Stabilizer Off (Note 7)  
Duty Cycle Stabilizer On (Note 7)  
4.52  
3.1  
4.762  
4.762  
500  
500  
ns  
ns  
t
ENC High Time  
Duty Cycle Stabilizer Off (Note 7)  
Duty Cycle Stabilizer On (Note 7)  
4.52  
3.1  
4.762  
4.762  
500  
500  
ns  
ns  
H
LVDS Output Mode (Standard and Low Power)  
t
t
t
t
t
ENC to DATA Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Output Rise Time  
Output Fall Time  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.5  
2.5  
0
3.8  
3.8  
0.6  
ns  
ns  
D
C
(t -t ) (Note 7)  
C D  
0.6  
ns  
SKEW  
RISE  
FALL  
0.5  
0.5  
7
ns  
ns  
Data Latency  
Data Latency  
Cycles  
CMOS Output Mode  
t
t
t
ENC to DATA Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Data Latency  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.7  
2.7  
0
4
4
ns  
ns  
ns  
D
C
(t -t ) (Note 7)  
C D  
0.6  
0.6  
SKEW  
Data Latency  
Full Rate CMOS  
Demuxed  
7
7
Cycles  
Cycles  
2217f  
6
LTC2217  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Integral nonlinearity is defined as the deviation of a code from a “best  
fit straight line” to the transfer curve. The deviation is measured from the  
center of the quantization band.  
Note 6: Offset error is the offset voltage measured from 1/2LSB when the  
output code flickers between 0000 0000 0000 0000 and 1111 1111 1111  
1111 in 2’s complement output mode.  
Note 2: All voltage values are with respect to GND, with GND and OGND  
shorted (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Recommended operating conditions.  
DD  
of greater than 100mA below GND or above V without latchup.  
DD  
+
Note 4: V = 3.3V, f  
= 105MHz, LVDS outputs, differential ENC /  
DD  
SAMPLE  
ENC = 2V sine wave with 1.6V common mode, input range = 2.75V  
P-P  
P-P  
with differential drive, unless otherwise specified.  
TIMING DIAGRAM  
LVDS Output Mode Timing  
All Outputs are Differential and Have LVDS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
D
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
D0-D15, OF  
t
C
+
CLKOUT  
2217 TD01  
CLKOUT  
2217f  
7
LTC2217  
TIMING DIAGRAMS  
Full-Rate CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
D
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
DA0-DA15, OFA  
t
C
CLKOUTA  
CLKOUTB  
HIGH IMPEDANCE  
DB0-DB15, OFB  
2217 TD02  
Demultiplexed CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
t
D
D
N – 8  
N – 6  
N – 4  
DA0-DA15, OFA  
DB0-DB15, OFB  
N – 7  
N – 5  
N – 3  
t
C
CLKOUTA  
CLKOUTB  
2217 TD03  
2217f  
8
LTC2217  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity (INL) vs  
Output Code - Dither “Off“  
Integral Nonlinearity (INL) vs  
Output Code - Dither “On“  
Differential Nonlinearity (DNL) vs  
Output Code  
2.0  
1.5  
2.0  
1.5  
1.0  
0.8  
0.6  
1.0  
1.0  
0.4  
0.5  
0.5  
0.2  
0.0  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
2217 G03  
2217 G01  
2217 G02  
64k Point FFT, fIN = 4.9MHz,  
–1dBFS  
64k Point FFT, fIN = 15.1MHz,  
–1dBFS  
AC Grounded Input Histogram  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
32736  
32745  
32754  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT CODE  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G06  
2217 G04  
2217 G05  
64k Point 2-Tone FFT,  
fIN = 14.25MHz and 21.5MHz,  
–7dBFS  
64k Point FFT, fIN = 15.1MHz,  
–20dBFS, Dither “Off”  
64k Point FFT, fIN = 15.1MHz,  
–20dBFS, Dither “On”  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G07  
2217 G08  
2217 G09  
2217f  
9
LTC2217  
TYPICAL PERFORMANCE CHARACTERISTICS  
64k Point 2-Tone FFT,  
fIN = 14.25MHz and 21.5MHz,  
–25dBFS, Dither “On”  
SFDR vs Input Level,  
fIN = 15.2MHz, Dither “Off”  
SFDR vs Input Level,  
fIN = 15.2MHz, Dither “On”  
0
–10  
–20  
–30  
–40  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
40  
50  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
2217 G10  
2217 G12  
2217 G11  
64k Point FFT, fIN = 30.1MHz,  
–20dBFS, Dither “On”  
64k Point FFT, fIN = 28.7MHz,  
–1dBFS  
SNR vs Input Level, fIN = 15.2MHz  
82  
81  
80  
79  
78  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G13  
2217 G14  
2217 G15  
64k Point FFT, fIN = 70.1MHz,  
–20dBFS, Dither “Off”  
64k Point FFT, fIN = 70.1MHz,  
–10dBFS, Dither “Off”  
64k Point FFT, fIN = 70.2MHz,  
–1dBFS  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G16  
2217 G17  
2217 G18  
2217f  
10  
LTC2217  
TYPICAL PERFORMANCE CHARACTERISTICS  
64k Point FFT, fIN = 70.1MHz,  
–20dBFS, Dither “On”  
SFDR vs Input Level,  
fIN = 70.5MHz, Dither “Off”  
SFDR vs Input Level,  
fIN = 70.5MHz, Dither “On”  
0
–10  
–20  
–30  
–40  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
–50  
–60  
–70  
80  
80  
–80  
–90  
–100  
–110  
–120  
–130  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
0
10  
20  
30  
40  
50  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
2217 G21  
2217 G19  
2217 G20  
64k Point 2-Tone FFT,  
fIN = 67.2MHz and 74.4MHz,  
–15dBFS, Dither “On”  
64k Point 2-Tone FFT,  
fIN = 67.2MHz and 74.4MHz,  
–7dBFS  
SNR vs Input Level, FIN = 70.5MHz  
82  
81  
80  
79  
78  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G24  
2217 G22  
2217 G23  
64k Point 2-Tone FFT,  
fIN = 67.2MHz and 74.4MHz,  
–25dBFS, Dither “On”  
64k Point FFT, fIN = 140.5MHz,  
–1dBFS  
64k Point FFT, fIN = 140.1MHz,  
–20dBFS, Dither “On”  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2217 G25  
2217 G26  
2217 G27  
2217f  
11  
LTC2217  
TYPICAL PERFORMANCE CHARACTERISTICS  
SFDR vs Input Level,  
fIN = 140.5MHz, Dither “Off”  
SFDR vs Input Level,  
fIN = 140.5MHz, Dither “On”  
SNR vs Input Level,  
fIN = 140.5MHz  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
82  
81  
80  
79  
78  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
2217 G30  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
2217 G28  
2217 G29  
SFDR (HD2 and HD3) vs  
Input Frequency  
SNR and SFDR vs Sample Rate,  
fIN = 5.2MHz  
SNR vs Input Frequency  
110  
105  
100  
95  
82  
81  
80  
79  
78  
77  
76  
110  
105  
100  
95  
LIMIT  
SFDR  
HD2  
90  
90  
HD3  
SFDR  
85  
85  
SNR  
80  
80  
75  
75  
70  
70  
0
40  
80  
120  
160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
2217 G31  
2217 G32  
2217 G33  
SNR and SFDR vs Supply  
Voltage (VDD), fIN = 5.1MHz  
IVDD vs Sample Rate and Supply  
Voltage, fIN = 5MHz, –1dBFS  
SNR and SFDR vs Clock Duty  
Cycle, fIN = 5.2MHz  
110  
105  
100  
95  
110  
100  
90  
450  
425  
400  
375  
350  
325  
300  
LOWER LIMIT  
V
= 3.3V  
DD  
SFDR  
UPPER LIMIT  
90  
V
= 3.135V  
V
= 3.465V  
DD  
80  
DD  
85  
SNR  
80  
SFDR DCS OFF  
SNR DCS OFF  
SFDR DCS ON  
SNR DCS ON  
70  
75  
70  
2.8  
60  
3.0  
3.2  
3.4  
3.6  
0
50  
100  
150  
200  
30  
40  
50  
60  
70  
SUPPLY VOLTAGE (V)  
SAMPLE RATE (Msps)  
DUTY CYCLE (%)  
2217 G34  
2217 G35  
2217 G36  
2217f  
12  
LTC2217  
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized Full Scale vs  
Temperature, Internal Reference,  
5 Units  
Input Offset Voltage vs  
Temperature, Internal Reference,  
5 Units  
1.005  
1.004  
1.003  
1.002  
1.001  
1
5
4
3
2
1
0
0.999  
0.998  
0.997  
0.996  
0.995  
–1  
–2  
–3  
–4  
–5  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2217 G37  
2217 G38  
Normalized Full Scale vs  
Temperature, External Reference,  
5 Units  
Input Offset Voltage vs  
Temperature, External Reference,  
5 Units  
1.005  
1.004  
1.003  
1.002  
1.001  
1
5
4
3
2
1
0
0.999  
0.998  
0.997  
0.996  
0.995  
–1  
–2  
–3  
–4  
–5  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2217 G39  
2217 G40  
SFDR vs Analog Input Common  
Mode Voltage, 5MHz and 70MHz,  
–1dBFS  
Mid-Scale Settling After Wake  
Up from Shutdown or Starting  
Encode Clock  
Full-Scale Settling After Wake  
Up from Shutdown or Starting  
Encode Clock  
110  
105  
100  
95  
0.5  
0.4  
0.5  
0.4  
WAKE-UP  
WAKE-UP  
0.3  
0.3  
5MHz  
0.2  
0.2  
90  
0.1  
0.1  
85  
0.0  
0.0  
CLOCK START  
CLOCK START  
80  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
70MHz  
75  
70  
65  
60  
0.5 0.75  
1
1.25 1.5  
1.75  
2
0
400  
800  
1200  
1600  
2000  
0
300  
600  
900  
1200  
1500  
ANALOG INPUT COMMON MODE VOLTAGE (V)  
TIME AFTER WAKE-UP OR CLOCK START (μs)  
TIME AFTER WAKE-UP OR CLOCK START (μs)  
2217 G41  
2217 G42  
2217 G43  
2217f  
13  
LTC2217  
PIN FUNCTIONS  
For CMOS Mode. Full Rate or Demultiplexed  
CLKOUTB(Pin40):DataValidOutput.CLKOUTBwilltoggle  
at the sample rate in full rate CMOS mode or at 1/2 the  
sample rate in demultiplexed mode. Latch the data on the  
falling edge of CLKOUTB.  
SENSE (Pin 1): Reference Mode Select and External  
Reference Input. Tie SENSE to V to select the internal  
DD  
2.5V bandgap reference. An external reference of 2.5V or  
1.25V may be used; both reference values will set a full  
scale ADC range of 2.75V.  
CLKOUTA (Pin 41): Inverted Data Valid Output. CLKOUTA  
will toggle at the sample rate in full rate CMOS mode or  
at 1/2 the sample rate in demultiplexed mode. Latch the  
data on the rising edge of CLKOUTA.  
GND (Pins 2, 4, 7, 10, 11, 14, 18): ADC Power Ground.  
V
(Pin3):1.575VOutput.Optimumvoltageforinputcom-  
CM  
DA0-DA15(Pins42-48and51-59):DigitalOutputs,ABus.  
DA15 is the MSB. Output bus for full rate CMOS mode  
and demultiplexed mode.  
mon mode. Must be bypassed to ground with a minimum  
of 2.2μF. Ceramic chip capacitors are recommended.  
V
(Pins 5, 6, 15, 16, 17): 3.3V Analog Supply Pin.  
DD  
OFA (Pin 60): Over/Under Flow Digital Output for the A  
Bus. OFA is high when an over or under flow has occurred  
on the A bus.  
Bypass to GND with 1μF ceramic chip capacitors.  
+
A
A
(Pin 8): Positive Differential Analog Input.  
(Pin 9): Negative Differential Analog Input.  
IN  
IN  
LVDS (Pin 61): Data Output Mode Select Pin. Connecting  
+
LVDSto0VselectsfullrateCMOSmode.ConnectingLVDS  
ENC (Pin 12): Positive Differential Encode Input. The  
+
to1/3V selectsdemultiplexedCMOSmode. Connecting  
sampled analog input is held on the rising edge of ENC .  
DD  
LVDS to 2/3V selects Low Power LVDS mode. Connect-  
Internally biased to 1.6V through a 6.2kΩ resistor. Output  
DD  
+
ing LVDS to V selects Standard LVDS mode.  
data can be latched on the rising edge of ENC .  
DD  
MODE (Pin 62): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and disables the clock duty  
ENC (Pin 13): Negative Differential Encode Input. The  
sampled analog input is held on the falling edge of ENC .  
Internally biased to 1.6V through a 6.2kΩ resistor. By-  
pass to ground with a 0.1μF capacitor for a single-ended  
Encode signal.  
cyclestabilizer.ConnectingMODEto1/3V selects offset  
DD  
binary output format and enables the clock duty cycle sta-  
bilizer.ConnectingMODEto2/3V selects2scomplement  
DD  
SHDN (Pin 19): Power Shutdown Pin. SHDN = low results  
in normal operation. SHDN = high results in powered  
down analog circuitry and the digital outputs are placed  
in a high impedance state.  
output format and enables the clock duty cycle stabilizer.  
Connecting MODE to V selects 2’s complement output  
DD  
format and disables the clock duty cycle stabilizer.  
RAND (Pin 63): Digital Output Randomization Selection  
Pin. RAND low results in normal operation. RAND high  
selects D1-D15 to be EXCLUSIVE-ORed with D0 (the  
LSB). The output can be decoded by again applying an  
XOR operation between the LSB and all other bits. This  
mode of operation reduces the effects of digital output  
interference.  
DITH (Pin 20): Internal Dither Enable Pin. DITH = low  
disables internal dither. DITH = high enables internal  
dither. Refer to Internal Dither section of this data sheet  
for details on dither operation.  
DB0-DB15(Pins21-30and33-38):DigitalOutputs,BBus.  
DB15istheMSB. Activeindemultiplexedmode. TheBbus  
is in high impedance state in full rate CMOS mode.  
NC(Pin64):NotConnectedInternally.Forpincompatibility  
OGND (Pins 31 and 50): Output Driver Ground.  
with the LTC2208 this pin should be connected to GND or  
V
DD  
as required. Otherwise no connection.  
OV (Pins 32 and 49): Positive Supply for the Output  
DD  
Drivers. Bypass to ground with 1μF capacitor.  
GND (Exposed Pad): ADC Power Ground. The exposed  
pad on the bottom of the package must be soldered to  
ground.  
OFB(Pin39):Over/UnderFlowDigitalOutputfortheBBus.  
OFBishighwhenanoverorunderowhasoccurredonthe  
B bus. At high impedance state in full rate CMOS mode.  
2217f  
14  
LTC2217  
PIN FUNCTIONS  
For LVDS Mode. STANDARD or LOW POWER  
OGND (Pins 31 and 50): Output Driver Ground.  
SENSE (Pin 1): Reference Mode Select and External  
OV (Pins 32 and 49): Positive Supply for the Output  
DD  
Reference Input. Tie SENSE to V to select the internal  
Drivers. Bypass to ground with 0.1μF capacitor.  
DD  
2.5V bandgap reference. An external reference of 2.5V or  
1.25V may be used; both reference values will set a full  
scale ADC range of 2.75V.  
+
CLKOUT /CLKOUT (Pins 39 and 40): LVDS Data Valid  
+
0utput. Latch data on the rising edge of CLKOUT , falling  
edge of CLKOUT .  
GND (Pins 2, 4, 7, 10, 11, 14, 18): ADC Power Ground.  
+
OF /OF (Pins59and60):Over/UnderFlowDigitalOutput  
OF is high when an over or under flow has occurred.  
V
CM  
(Pin 3): 1.575V Output. Optimum voltage for input  
common mode. Must be bypassed to ground with a  
minimum of 2.2μF. Ceramic chip capacitors are recom-  
mended.  
LVDS (Pin 61): Data Output Mode Select Pin. Connecting  
LVDSto0VselectsfullrateCMOSmode.ConnectingLVDS  
to1/3V selectsdemultiplexedCMOSmode. Connecting  
DD  
V
DD  
(Pins 5, 6, 15, 16, 17): 3.3V Analog Supply Pin.  
LVDS to 2/3V selects Low Power LVDS mode. Connect-  
DD  
Bypass to GND with 1μF ceramic chip capacitors.  
ing LVDS to V selects Standard LVDS mode.  
DD  
+
A
A
(Pin 8): Positive Differential Analog Input.  
(Pin 9): Negative Differential Analog Input.  
MODE (Pin 62): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and disables the clock duty  
IN  
IN  
+
ENC (Pin 12): Positive Differential Encode Input. The  
cyclestabilizer.ConnectingMODEto1/3V selectsoffset  
DD  
+
sampled analog input is held on the rising edge of ENC .  
binary output format and enables the clock duty cycle sta-  
Internally biased to 1.6V through a 6.2kΩ resistor. Output  
bilizer.ConnectingMODEto2/3V selects2scomplement  
DD  
+
data can be latched on the rising edge of ENC .  
output format and enables the clock duty cycle stabilizer.  
Connecting MODE to V selects 2’s complement output  
DD  
ENC (Pin 13): Negative Differential Encode Input. The  
sampled analog input is held on the falling edge of ENC .  
format and disables the clock duty cycle stabilizer.  
Internally biased to 1.6V through a 6.2kΩ resistor. By-  
pass to ground with a 0.1μF capacitor for a single-ended  
Encode signal.  
RAND(Pin63):DigitalOutputRandomizationSelectionPin.  
RAND low results in normal operation. RAND high selects  
D1-D15 to be EXCLUSIVE-ORed with D0 (the LSB). The  
outputcanbedecodedbyagainapplyinganXORoperation  
between the LSB and all other bits. The mode of operation  
reduces the effects of digital output interference.  
SHDN (Pin 19): Power Shutdown Pin. SHDN = low results  
in normal operation. SHDN = high results in powered  
down analog circuitry and the digital outputs are set in  
high impedance state.  
NC (Pin 64): Not Connected Internally. For pin compat-  
ibility with the LTC2208 this pin should be connected to  
DITH (Pin 20): Internal Dither Enable Pin. DITH = low  
disablesinternaldither.DITH=highenablesinternaldither.  
Refer to Internal Dither section of the data sheet for details  
on dither operation.  
GND or V as required. Otherwise no connection.  
DD  
GND (Exposed Pad Pin 65): ADC Power Ground. The  
exposed pad on the bottom of the package must be sol-  
dered to ground.  
+
+
D0 /D0 to D15 /D15 (Pins 21-30, 33-38, 41-48 and  
51-58): LVDS Digital Outputs. All LVDS outputs require  
differential100ΩterminationresistorsattheLVDSreceiver.  
+
D15 /D15 is the MSB.  
2217f  
15  
LTC2217  
BLOCK DIAGRAM  
+
A
A
IN  
IN  
V
DD  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
GND  
DITHER  
SIGNAL  
GENERATOR  
CORRECTION LOGIC  
AND  
SHIFT REGISTER  
ADC CLOCKS  
RANGE  
SELECT  
OV  
DD  
CLKOUT+  
CLKOUT–  
+
SENSE  
OF  
DIFFERENTIAL  
INPUT  
LOW JITTER  
CLOCK  
DRIVER  
OF  
ADC  
REFERENCE  
+
PGA  
CONTROL  
LOGIC  
D15  
D15  
OUTPUT  
DRIVERS  
V
CM  
BUFFER  
+
D0  
D0  
VOLTAGE  
REFERENCE  
2217 F01  
OGND  
+
ENC  
ENC  
SHDN RAND M0DE LVDS DITH  
Figure 1. Functional Block Diagram  
2217f  
16  
LTC2217  
OPERATION  
DYNAMIC PERFORMANCE  
by the presence of another sinusoidal input at a different  
frequency.  
Signal-to-Noise Plus Distortion Ratio  
If two pure sine waves of frequencies fa and fb are applied  
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mfa nfb, where m and n = 0, 1, 2, 3, etc.  
For example, the 3rd order IMD terms include (2fa + fb),  
(fa + 2fb), (2fa - fb) and (fa - 2fb). The 3rd order IMD is  
defined as the ratio of the RMS value of either input tone  
to the RMS value of the largest 3rd order IMD product.  
The signal-to-noise plus distortion ratio [S/(N+D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band lim-  
ited to frequencies above DC to below half the sampling  
frequency (Nyquist Frequency).  
Signal-to-Noise Ratio  
Spurious Free Dynamic Range (SFDR)  
The signal-to-noise (SNR) is the ratio between the RMS  
amplitudeofthefundamentalinputfrequencyandtheRMS  
amplitude of all other frequency components, except the  
first five harmonics.  
The ratio of the RMS input signal amplitude to the RMS  
value of the peak spurious spectral component expressed  
in dBc. SFDR may also be calculated relative to full scale  
and expressed in dBFS.  
Total Harmonic Distortion  
Full Power Bandwidth  
Total harmonic distortion is the ratio of the RMS sum of  
all harmonics of the input signal to the fundamental itself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (Nyquist  
Frequency). THD is expressed as:  
The Full Power bandwidth is that input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB from a full scale input signal.  
Aperture Delay Time  
2
2
2
2
V + V + V +…V  
N
+
(
)
2
3
4
ThetimefromwhenarisingENC equalstheENC voltage  
to the instant that the input signal is held by the sample-  
and-hold circuit.  
THD= –20Log  
V1  
Aperture Delay Jitter  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
whensamplinganACinput.Thesignal-to-noiseratioterm  
due to the jitter alone will be:  
through nth harmonics.  
Intermodulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
SNR  
= 20log (2π • f • t  
)
JITTER  
IN JITTER  
ThisformulastatesSNRduetojitteraloneatanyamplitude  
in terms of dBc.  
2217f  
17  
LTC2217  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Sample/Hold Operation  
TheLTC2217isaCMOSpipelinedmultistepconverterwith  
a low noise front-end. As shown in Figure 1, the converter  
has five pipelined ADC stages; a sampled analog input  
will result in a digitized value seven cycles later (see the  
TimingDiagramsection).Theanaloginputisdifferentialfor  
improvedcommonmodenoiseimmunityandtomaximize  
the input range. Additionally, the differential input drive  
will reduce even order harmonics of the sample and hold  
circuit. The encode input is also differential for improved  
common mode noise immunity.  
Figure2showsanequivalentcircuitfortheLTC2217CMOS  
differentialsampleandhold. Thedifferentialanaloginputs  
are sampled directly onto sampling capacitors (C  
through NMOS transitors. The capacitors shown attached  
)
SAMPLE  
to each input (C  
) are the summation of all other  
PARASITIC  
capacitance associated with each input.  
During the sample phase when ENC is low, the NMOS  
transistors connect the analog inputs to the sampling  
capacitors and they charge to, and track the differential  
input voltage. When ENC transitions from low to high, the  
sampled input voltage is held on the sampling capacitors.  
During the hold phase when ENC is high, the sampling  
capacitors are disconnected from the input and the held  
voltage is passed to the ADC core for processing. As ENC  
transitions for high to low, the inputs are reconnected to  
the sampling capacitors to acquire a new sample. Since  
the sampling capacitors still hold the previous sample,  
a charging glitch proportional to the change in voltage  
between samples will be seen at this time. If the change  
between the last sample and the new sample is small,  
the charging glitch seen at the input will be small. If the  
The LTC2217 has two phases of operation, determined  
+
+
by the state of the differential ENC /ENC input pins. For  
brevity, the text will refer to ENC greater than ENC as  
+
ENC high and ENC less than ENC as ENC low.  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage amplifier. In  
operation, the ADC quantizes the input to the stage and  
the quantized value is subtracted from the input by the  
DAC to produce a residue. The residue is amplified and  
output by the residue amplifier. Successive stages oper-  
ate out of phase so that when odd stages are outputting  
their residue, the even stages are acquiring that residue  
and vice versa.  
When ENC is low, the analog input is sampled differen-  
tially directly onto the input sample-and-hold capacitors,  
inside the “input S/H” shown in the block diagram. At the  
instant that ENC transitions from low to high, the voltage  
on the sample capacitors is held. While ENC is high, the  
held input voltage is buffered by the S/H amplifier which  
drivestherstpipelinedADCstage.Therststageacquires  
the output of the S/H amplifier during the high phase of  
ENC. When ENC goes back low, the first stage produces  
its residue which is acquired by the second stage. At  
the same time, the input S/H goes back to acquiring the  
analog input. When ENC goes high, the second stage  
produces its residue which is acquired by the third stage.  
An identical process is repeated for the third and fourth  
stages, resulting in a fourth stage residue that is sent to  
the fifth stage for final evaluation.  
LTC2217  
V
DD  
C
C
SAMPLE  
7.3pF  
R
R
R
20Ω  
PARASITIC  
3Ω  
ON  
+
A
IN  
C
1.8pF  
PARASITIC  
V
DD  
SAMPLE  
7.3pF  
R
ON  
PARASITIC  
3Ω  
20Ω  
A
IN  
C
1.8pF  
PARASITIC  
V
DD  
1.6V  
6k  
+
ENC  
ENC  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally delayed such that  
the results can be properly combined in the correction  
logic before being sent to the output buffer.  
6k  
1.6V  
2217 F02  
Figure 2. Equivalent Input Circuit  
2217f  
18  
LTC2217  
APPLICATIONS INFORMATION  
input change is large, such as the change seen with input  
frequencies near Nyquist, then a larger charging glitch  
will be seen.  
has a very broadband S/H circuit, DC to 400MHz; it can  
be used in a wide range of applications; therefore, it is not  
possible to provide a single recommended RC filter.  
Figures3and4showtwoexamplesofinputRClteringfor  
two ranges of input frequencies. In general it is desirable  
to make the capacitors as large as can be tolerated—this  
will help suppress random noise as well as noise coupled  
fromthedigitalcircuitry.TheLTC2217doesnotrequireany  
input filter to achieve data sheet specifications; however,  
no filtering will put more stringent noise requirements on  
the input drive circuitry.  
Common Mode Bias  
TheADCsample-and-holdcircuitrequiresdifferentialdrive  
toachievespecifiedperformance.Eachinputshouldswing  
0.6875V for the 2.75V range, around a common mode  
voltage of 1.575V. The V output pin (Pin 3) is designed  
to provide the common mode bias level. V can be tied  
CM  
CM  
directly to the center tap of a transformer to set the DC  
input level or as a reference level to an op amp differential  
driver circuit. The V pin must be bypassed to ground  
CM  
Transformer Coupled Circuits  
close to the ADC with 2.2μF or greater.  
Figure 3 shows the LTC2217 being driven by an RF trans-  
former with a center-tapped secondary. The secondary  
Input Drive Impedance  
center tap is DC biased with V , setting the ADC input  
CM  
Aswithallhighperformance,highspeedADCsthedynamic  
performanceoftheLTC2217canbeinfluencedbytheinput  
drivecircuitry,particularlythesecondandthirdharmonics.  
SourceimpedanceandinputreactancecaninfluenceSFDR.  
At the falling edge of ENC the sample and hold circuit will  
connectthesamplingcapacitortotheinputpinandstartthe  
samplingperiod.ThesamplingperiodendswhenENCrises,  
holding the sampled input on the sampling capacitor. Ide-  
ally,theinputcircuitryshouldbefastenoughtofullycharge  
the sampling capacitor during the sampling period  
signal at its optimum DC level. Figure 3 shows a 1:1 turns  
ratiotransformer.Otherturnsratioscanbeused;however,  
astheturnsratioincreasessodoestheimpedanceseenby  
the ADC. Source impedance greater than 50Ω can reduce  
the input bandwidth and increase high frequency distor-  
tion. A disadvantage of using a transformer is the loss of  
lowfrequencyresponse.MostsmallRFtransformershave  
poor performance at frequencies below 1MHz.  
Center-tapped transformers provide a convenient means  
of DC biasing the secondary; however, they often show  
poor balance at high input frequencies, resulting in large  
2nd order harmonics.  
1/(2 • f ); however, this is not always possible and  
ENCODE  
the incomplete settling may degrade the SFDR. The sam-  
pling glitch has been designed to be as linear as possible  
to minimize the effects of incomplete settling.  
V
CM  
For the best performance it is recommended to have a  
source impedance of 100Ω or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
2.2μF  
5Ω  
10Ω  
+
5Ω  
A
A
IN  
IN  
T1  
8.2pF  
LTC2217  
35Ω  
35Ω  
8.2pF  
0.1μF  
10Ω  
INPUT DRIVE CIRCUITS  
Input Filtering  
5Ω  
8.2pF  
T1 = MA/COM ETC1-1T  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
EXCEPT 2.2μF  
2217 F03  
A first-order RC low-pass filter at the input of the ADC can  
servetwofunctions:limitthenoisefrominputcircuitryand  
provide isolation from ADC S/H switching. The LTC2217  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer. Recommended for Input  
Frequencies from 5MHz to 100MHz  
2217f  
19  
LTC2217  
APPLICATIONS INFORMATION  
Figure 4 shows transformer coupling using a transmis-  
sion line balun transformer. This type of transformer has  
much better high-frequency response and balance than  
fluxcoupledcenter-taptransformers.Couplingcapacitors  
are added at the ground and input primary terminals to  
allow the secondary terminals to be biased at 1.575V.  
V
CM  
2.2μF  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
+
25Ω  
25Ω  
A
IN  
IN  
LTC2217  
ANALOG  
INPUT  
+
+
12pF  
CM  
A
V
CM  
12pF  
AMPLIFIER = LTC6600-20,  
LTC1993, ETC.  
2217 F05  
2.2μF  
5Ω  
5Ω  
0.1μF  
0.1μF  
+
10Ω  
A
A
IN  
IN  
Figure 5. DC Coupled Input with Differential Amplifier  
ANALOG  
INPUT  
LTC2217  
0.1μF  
25Ω  
25Ω  
4.7pF  
reference, tie the SENSE pin to V . To use an external  
DD  
T1  
1:1  
reference, simply apply either a 1.25V or 2.5V reference  
4.7pF  
10Ω  
5Ω  
voltage to the SENSE input pin. Both 1.25V and 2.5V ap-  
4.7pF  
pliedtoSENSEwillresultinafullscalerangeof2.75V .A  
T1 = MA/COM ETC1-1-13  
P-P  
2217 F04  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
EXCEPT 2.2μF  
1.575V output, V , is provided for a common mode bias  
CM  
for input drive circuitry. An external bypass capacitor is  
requiredfortheV output.Thisprovidesahighfrequency  
Figure 4. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 100MHz to 250MHz  
CM  
low impedance path to ground for internal and external  
circuitry. This is also the compensation capacitor for the  
reference; which will not be stable without this capacitor.  
The minimum value required for stability is 2.2μF.  
Direct Coupled Circuits  
Figure 5 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. The advantage of this method is that it provides  
low frequency input response; however, the limited gain  
bandwidth of any op amp or closed-loop amplifier will de-  
gradetheADCSFDRathighinputfrequencies.Additionally,  
wideband op amps or differential amplifiers tend to have  
high noise. As a result, the SNR will be degraded unless  
the noise bandwidth is limited prior to the ADC input.  
RANGE  
SELECT  
AND GAIN  
CONTROL  
TIE TO V TO USE  
DD  
INTERNAL  
ADC  
REFERENCE  
INTERNAL 2.5V  
REFERENCE  
OR INPUT AN  
EXTERNAL 2.5V  
REFERENCE  
SENSE  
PGA  
OR INPUT AN  
EXTERNAL 1.25V  
REFERENCE  
2.5V  
BANDGAP  
REFERENCE  
Reference Operation  
V
CM  
Figure6showstheLTC2217referencecircuitryconsisting  
of a 2.5V bandgap reference, a programmable gain ampli-  
fier and control circuit. The LTC2217 has three modes of  
reference operation: Internal Reference, 1.25V external  
reference or 2.5V external reference. To use the internal  
1.575V  
BUFFER  
2.2μF  
2217 F06  
Figure 6. Reference Circuit  
2217f  
20  
LTC2217  
APPLICATIONS INFORMATION  
3. If the ADC is clocked with a fixed-frequency sinusoidal  
signal, filter the encode signal to reduce wideband  
noise.  
The internal programmable gain amplifier provides the  
internal reference voltage for the ADC. This amplifier has  
very stringent settling requirements and therefore is not  
accessible for external use.  
4. Balance the capacitance and series resistance at both  
encode inputs such that any coupled noise will appear  
at both inputs as common mode noise.  
TheSENSEpincanbedriven 5%aroundthenominal2.5V  
or 1.25V external reference inputs. This adjustment range  
can be used to trim the ADC gain error or other system  
gain errors. When selecting the internal reference, the  
The encode inputs have a common mode range of 1.2V  
to V . Each input may be driven from ground to V for  
DD  
DD  
SENSE pin should be tied to V as close to the converter  
DD  
single-ended drive.  
as possible. If the sense pin is driven externally it should  
be bypassed to ground as close to the device as possible  
with 1μF ceramic capacitor.  
LTC2217  
V
DD  
TO INTERNAL  
ADC CLOCK  
DRIVERS  
V
CM  
1.575V  
1.6V  
6k  
2.2μF  
V
DD  
LTC2217  
SENSE  
6
2
+
3.3V  
1μF  
LTC1461-2.5  
4
ENC  
2.2μF  
1.6V  
6k  
V
DD  
2217 F07  
ENC  
Figure 7. A 2.75V Range ADC with  
an External 2.5V Reference  
Driving the Encode Inputs  
2217 F08a  
The noise performance of the LTC2217 can depend on  
the encode signal quality as much as on the analog input.  
The encode inputs are intended to be driven differentially,  
primarily for noise immunity from common mode noise  
sources. Each input is biased through a 6k resistor to a  
1.6V bias. The bias resistors set the DC operating point  
fortransformercoupleddrivecircuitsandcansetthelogic  
threshold for single-ended drive circuits.  
Figure 8a. Equivalent Encode Input Circuit  
0.1μF  
+
T1  
ENC  
50Ω  
50Ω  
100Ω  
8.2pF  
LTC2217  
0.1μF  
0.1μF  
ENC  
Any noise present on the encode signal will result in ad-  
ditional aperture jitter that will be RMS summed with the  
inherent ADC aperture jitter.  
2217 F08b  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
In applications where jitter is critical (high input frequen-  
cies), take the following into consideration:  
Figure 8b. Balun-Driven Encode  
1. Differential drive should be used.  
2. Use as large an amplitude possible. If using trans-  
former coupling, use a higher turns ratio to increase the  
amplitude.  
2217f  
21  
LTC2217  
APPLICATIONS INFORMATION  
+
The lower limit of the LTC2217 sample rate is determined  
by droop affecting the sample and hold circuits. The  
pipelined architecture of this ADC relies on storing analog  
signals on small valued capacitors. Junction leakage will  
dischargethecapacitors.Thespecifiedminimumoperating  
frequency for the LTC2217 is 1Msps.  
ENC  
V
= 1.6V  
THRESHOLD  
LTC2217  
1.6V  
ENC  
0.1μF  
2217 F09  
Figure 9. Single-Ended ENC Drive,  
Not Recommended for Low Jitter  
DIGITAL OUTPUTS  
3.3V  
Digital Output Modes  
3.3V  
MC100LVELT22  
D0  
The LTC2217 can operate in four digital output modes:  
standard LVDS, low power LVDS, full rate CMOS, and  
demultiplexed CMOS. The LVDS pin selects the mode of  
operation. This pin has a four level logic input, centered at  
130Ω  
Q0  
130Ω  
ENC  
+
LTC2217  
ENC  
Q0  
0,1/3VDD,2/3V andVDD.Anexternalresistordividercan  
DD  
83Ω  
83Ω  
be used to set the 1/3VDD and 2/3VDD logic levels. Table 1  
shows the logic states for the LVDS pin.  
2217 F10  
Table 1. LVDS Pin Function  
LVDS  
Figure 10. ENC Drive Using a CMOS to PECL Translator  
DIGITAL OUTPUT MODE  
Full-Rate CMOS  
Demultiplexed CMOS  
Low Power LVDS  
LVDS  
0V(GND)  
Maximum and Minimum Encode Rates  
1/3V  
2/3V  
DD  
DD  
The maximum encode rate for the LTC2217 is 105Msps.  
For the ADC to operate properly the encode signal should  
have a 50% ( 5%) duty cycle. Each half cycle must have  
at least 4.5ns for the ADC internal circuitry to have enough  
settlingtimeforproperoperation.Achievingaprecise50%  
duty cycle is easy with differential sinusoidal drive using  
a transformer or using symmetric differential logic such  
as PECL or LVDS. When using a single-ended ENCODE  
signal asymmetric rise and fall times can result in duty  
cycles that are far from 50%.  
V
DD  
Digital Output Buffers (CMOS Modes)  
Figure 11 shows an equivalent circuit for a single output  
buffer in CMOS Mode, Full-Rate or Demultiplexed. Each  
buffer is powered by OVDD and OGND, isolated from the  
ADCpowerandground.TheadditionalN-channeltransistor  
intheoutputdriverallowsoperationdowntolowvoltages.  
The internal resistor in series with the output makes the  
output appear as 50Ω to external circuitry and eliminates  
the need for external damping resistors.  
An optional clock duty cycle stabilizer can be used if the  
input clock does not have a 50% duty cycle. This circuit  
usestherisingedgeofENCpintosampletheanaloginput.  
The falling edge of ENC is ignored and an internal falling  
edge is generated by a phase-locked loop. The input clock  
duty cycle can vary from 30% to 70% and the clock duty  
cycle stabilizer will maintain a constant 50% internal duty  
cycle. If the clock is turned off for a long period of time,  
the duty cycle stabilizer circuit will require one hundred  
clock cycles for the PLL to lock onto the input clock. To  
use the clock duty cycle stabilizer, the MODE pin must be  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digital outputs of the LTC2217 should drive a minimum  
capacitive load to avoid possible interaction between the  
digital outputs and sensitive input circuitry. The output  
should be buffered with a device such as a ALVCH16373  
CMOS latch. For full speed operation the capacitive load  
should be kept under 10pF. A resistor in series with the  
connected to 1/3V or 2/3V using external resistors.  
DD  
DD  
2217f  
22  
LTC2217  
APPLICATIONS INFORMATION  
output may be used, but is not required since the ADC  
has a series resistor of 43Ω on-chip.  
+
resistor, even if the signal is not used (such as OF /OF or  
+
CLKOUT /CLKOUT ). To minimize noise the PC board  
traces for each LVDS output pair should be routed close  
together. TominimizeclockskewallLVDSPCboardtraces  
should have about the same length.  
Lower OV voltages will also help reduce interference  
DD  
from the digital outputs.  
In Low Power LVDS Mode 1.75mA is steered between  
the differential outputs, resulting in 175mV at the LVDS  
receiver’s 100Ω termination resistor. The output com-  
mon mode voltage is 1.20V, the same as standard LVDS  
Mode.  
LTC2217  
OV  
DD  
0.5V  
TO 3.6V  
V
V
DD  
DD  
0.1μF  
OV  
DD  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
43Ω  
TYPICAL  
DATA  
OUTPUT  
Data Format  
The LTC2217 parallel digital output can be selected for  
offset binary or 2’s complement format. The format is  
selected with the MODE pin. This pin has a four level  
OGND  
2217 F11  
logic input, centered at 0, 1/3V , 2/3V and V . An  
DD  
DD  
DD  
external resistor divider can be user to set the 1/3V  
Figure 11. Equivalent Circuit for a Digital Output Buffer  
DD  
and 2/3V logic levels. Table 2 shows the logic states  
DD  
for the MODE pin.  
Digital Output Buffers (LVDS Modes)  
Table 2. MODE Pin Function  
CLOCK DUTY  
Figure 12 shows an equivalent circuit for an LVDS output  
+
pair. A 3.5mA current is steered from OUT to OUT or  
vice versa, which creates a 350mV differential voltage  
acrossthe100ΩterminationresistorattheLVDSreceiver.  
A feedback loop regulates the common mode output volt-  
age to 1.20V. For proper operation each LVDS output pair  
must be terminated with an external 100Ω termination  
MODE  
OUTPUT FORMAT  
CYCLE STABILIZER  
0(GND)  
Offset Binary  
Off  
On  
On  
Off  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
V
DD  
LTC2217  
OV  
DD  
3.3V  
3.5mA  
0.1μF  
V
DD  
V
DD  
OV  
DD  
43Ω  
43Ω  
DATA  
FROM  
LATCH  
10k  
10k  
PREDRIVER  
LOGIC  
LVDS  
RECEIVER  
OV  
DD  
100Ω  
+
1.20V  
OGND  
2217 F12  
Figure 12. Equivalent Output Buffer in LVDS Mode  
2217f  
23  
LTC2217  
APPLICATIONS INFORMATION  
Overflow Bit  
LSB and all other bits. The LSB, OF and CLKOUT output  
are not affected. The output Randomizer function is active  
when the RAND pin is high.  
An overflow output bit (OF) indicates when the converter  
is over-ranged or under-ranged. In CMOS mode, a logic  
high on the OFA pin indicates an overflow or underflow on  
the A data bus, while a logic high on the OFB pin indicates  
an overflow on the B data bus. In LVDS mode, a differ-  
ential logic high on OF /OF pins indicates an overflow  
or underflow.  
LTC2217  
CLKOUT  
CLKOUT  
OF  
+
OF  
Output Clock  
D15  
The ADC has a delayed version of the encode input avail-  
able as a digital output, CLKOUT. The CLKOUT pin can  
be used to synchronize the converter data to the digital  
system. This is necessary when using a sinusoidal en-  
code. In both CMOS modes, A bus data will be updated  
as CLKOUTA falls and CLKOUTB rises. In demultiplexed  
CMOS mode the B bus data will be updated as CLKOUTA  
falls and CLKOUTB rises.  
D15 D0  
D14 D0  
D14  
D2  
D1  
D2 D0  
D1 D0  
In Full Rate CMOS Mode, only the A data bus is active;  
data may be latched on the rising edge of CLKOUTA or  
the falling edge of CLKOUTB.  
RAND = HIGH,  
SCRAMBLE  
ENABLED  
RAND  
D0  
In demultiplexed CMOS mode CLKOUTA and CLKOUTB  
will toggle at 1/2 the frequency of the encode signal. Both  
the A bus and the B bus may be latched on the rising edge  
of CLKOUTA or the falling edge of CLKOUTB.  
D0  
2217 F13  
Figure 13. Functional Equivalent of Digital Output Randomizer  
Digital Output Randomizer  
Output Driver Power  
Interference from the ADC digital outputs is sometimes  
unavoidable. Interference from the digital outputs may be  
fromcapacitiveorinductivecoupling, orcouplingthrough  
the ground plane. Even a tiny coupling factor can result in  
discernible unwanted tones in the ADC output spectrum.  
By randomizing the digital output before it is transmitted  
offchip,theseunwantedtonescanberandomized,trading  
a slight increase in the noise floor for a large reduction in  
unwanted tone amplitude.  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OV , should be tied  
DD  
to the same power supply as for the logic being driven.  
For example, if the converter is driving a DSP powered  
by a 1.8V supply, then OV should be tied to that same  
DD  
1.8V supply. In CMOS mode OV can be powered with  
DD  
any logic voltage up to the 3.6V. OGND can be powered  
with any voltage from ground up to 1V and must be less  
The digital output is “Randomized” by applying an exclu-  
sive-ORlogicoperationbetweentheLSBandallotherdata  
output bits. To decode, the reverse operation is applied;  
that is, an exclusive-OR operation is applied between the  
than OV . The logic outputs will swing between OGND  
DD  
and OV . In LVDS Mode, OV should be connected to  
DD  
DD  
a 3.3V supply and OGND should be connected to GND.  
2217f  
24  
LTC2217  
APPLICATIONS INFORMATION  
Internal Dither  
PC BOARD  
FPGA  
The LTC2217 is a 16-bit ADC with a very linear transfer  
function;however,atlowinputlevelsevenslightimperfec-  
tions in the transfer function will result in unwanted tones.  
Small errors in the transfer function are usually a result  
of ADC element mismatches. An optional internal dither  
mode can be enabled to randomize the input location on  
the ADC transfer curve, resulting in improved SFDR for  
low signal levels.  
CLKOUT  
OF  
D15 D0  
D15  
D14 D0  
As shown in Figure 15, the output of the sample-and-hold  
amplifier is summed with the output of a dither DAC. The  
dither DAC is driven by a long sequence pseudo-random  
numbergenerator;therandomnumberfedtotheditherDAC  
is also subtracted from the ADC result. If the dither DAC  
is precisely calibrated to the ADC, very little of the dither  
signalwillbeseenattheoutput.Thedithersignalthatdoes  
leak through will appear as white noise. The dither DAC is  
calibrated to result in typically less than 0.5dB elevation  
in the noise floor of the ADC as compared to the noise  
floor with dither off, when a suitable input termination is  
provided (see Demo Board schematic DC996B).  
D14  
LTC2217  
D2 D0  
D1 D0  
D2  
D1  
D0  
D0  
2217 F14  
Figure 14. Descrambling a Scrambled Digital Output  
LTC2217  
CLKOUT  
OF  
+
D15  
AIN  
16-BIT  
PIPELINED  
ADC CORE  
DIGITAL  
SUMMATION  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
S/H  
AMP  
AIN  
D0  
CLOCK/DUTY  
CYCLE  
CONTROL  
MULTIBIT DEEP  
PSEUDO-RANDOM  
NUMBER  
PRECISION  
DAC  
GENERATOR  
2217 F15  
+
ENC  
ENC  
DITH  
DITHER ENABLE  
HIGH = DITHER ON  
LOW = DITHER OFF  
Figure 15. Functional Equivalent Block Diagram of Internal Dither Circuit  
2217f  
25  
LTC2217  
APPLICATIONS INFORMATION  
Grounding and Bypassing  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
The LTC2217 requires a printed circuit board with a  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTC2217 has been optimized for a flowthrough layout so  
that the interaction between inputs and digital outputs is  
minimized. Layout for the printed circuit board should  
ensure that digital and analog signal lines are separated  
as much as possible. In particular, care should be taken  
not to run any digital track alongside an analog signal  
track or underneath the ADC.  
The LTC2217 differential inputs should run parallel and  
close to each other. The input traces should be as short  
as possible to minimize capacitance and to minimize  
noise pickup.  
Heat Transfer  
Most of the heat generated by the LTC2217 is transferred  
from the die through the bottom-side exposed pad. For  
good electrical and thermal performance, the exposed  
pad must be soldered to a large grounded pad on the PC  
board. It is critical that the exposed pad and all ground  
pins are connected to a ground plane of sufficient area  
with as many vias as possible.  
High quality ceramic bypass capacitors should be used  
at the V  
V
, and OV pins. Bypass capacitors must  
DD, CM DD  
be located as close to the pins as possible. The traces  
2217f  
26  
LTC2217  
APPLICATIONS INFORMATION  
Layer 1 Component Side  
Layer 2 GND Plane  
2217f  
27  
LTC2217  
APPLICATIONS INFORMATION  
Layer 3 GND  
Layer 4 GND  
2217f  
28  
LTC2217  
APPLICATIONS INFORMATION  
Layer 5 GND  
Layer 6 Bottom Side  
2217f  
29  
LTC2217  
APPLICATIONS INFORMATION  
V C 5  
V C 4  
V C 3  
V C 2  
V C 1  
V E 5  
V E 4  
V E 3  
V E 2  
V E 1  
V C 5  
V C 4  
V C 3  
V C 2  
V C 1  
V E 5  
V E 4  
V E 3  
V E 2  
V E 1  
4 8  
4 7  
2 6  
2 5  
1 2  
3 7  
3 6  
2 3  
4 8  
4 7  
2 6  
2 5  
1 2  
3 7  
3 6  
2 3  
2
1
2
1
6 5  
O V D D 4 9  
O G N D 5 0  
O V D D 3 2  
3 2  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
O G N D 3 1  
3 1  
D 4 +  
3 0  
D 1 2 –  
D 1 2 +  
D 1 3 –  
D 1 3 +  
D 1 4 –  
D 1 4 +  
D 1 5 –  
D 1 5 +  
D 4 –  
2 9  
D 3 +  
2 7  
D 3 –  
2 7  
D 2 +  
2 6  
D 2 –  
2 5  
D 1 +  
2 4  
D 1 –  
2 3  
O F –  
O F +  
L V D S  
D 0 +  
2 2  
D 0 –  
2 1  
D I T H  
2 0  
S H D N  
M O D E  
R A N D  
1 9  
G N D 1 8  
1 8  
V D D 1 7  
N C  
1 7  
2217f  
30  
LTC2217  
PACKAGE DESCRIPTION  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705)  
0.70 0.05  
7.15 0.05  
7.50 REF  
8.10 0.05 9.50 0.05  
(4 SIDES)  
7.15 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.10  
TYP  
R = 0.115  
TYP  
9 .00 0.10  
(4 SIDES)  
63 64  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
7.15 0.10  
7.50 REF  
(4-SIDES)  
7.15 0.10  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
2217f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC2217  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1749  
LTC1750  
LT1993  
12-Bit, 80Msps Wideband ADC  
Up to 500MHz IF Undersampling, 87dB SFDR  
Up to 500MHz IF Undersampling, 90dB SFDR  
600MHz BW, 75dBc Distortion at 70MHz  
150mW, 81.6dB SNR, 100dB SFDR  
14-Bit, 80Msps Wideband ADC  
High Speed Differential Op Amp  
16-Bit, 10Msps ADC  
16-Bit, 25Msps ADC  
16-Bit, 40Msps ADC  
16-Bit, 65Msps ADC  
16-Bit, 80Msps ADC  
16-Bit, 105Msps ADC  
16-Bit, 130Msps ADC  
16-Bit, 160Msps ADC  
16-Bit, 65Msps ADC  
16-Bit, 80Msps ADC  
12-Bit, 170Msps ADC  
12-Bit, 185Msps ADC  
14-Bit, 65Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 125Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
14-Bit, 105Msps ADC  
14-Bit, 125Msps ADC  
Dual 14-Bit, 80Msps ADC  
LTC2202  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
LTC2208  
LTC2209  
LTC2215  
LTC2216  
LTC2220  
LTC2220-1  
LTC2249  
LTC2250  
LTC2251  
LTC2252  
LTC2253  
LTC2254  
LTC2255  
LTC2299  
LT5512  
230mW, 81.6dB SNR, 100dB SFDR  
470mW, 79dB SNR, 100dB SFDR  
530mW, 79dB SNR, 100dB SFDR  
725mW, 77.9dB SNR, 100dB SFDR  
900mW, 77.9dB SNR, 100dB SFDR  
1250mW, 77.7dB SNR, 100dB SFDR  
1450mW, 77.1dB SNR, 100dB SFDR  
700mW, 81.5dB SNR, 100dB SFDR  
970mW, 81.3dB SNR, 100dB SFDR  
890mW, 67.5dB SNR, 9mm × 9mm QFN Package  
910mW, 67.5dB SNR, 9mm × 9mm QFN Package  
230mW, 73dB SNR, 5mm × 5mm QFN Package  
320mW, 61.6dB SNR, 5mm × 5mm QFN Package  
395mW, 61.6dB SNR, 5mm × 5mm QFN Package  
320mW, 70.2dB SNR, 5mm × 5mm QFN Package  
395mW, 70.2dB SNR, 5mm × 5mm QFN Package  
320mW, 72.5dB SNR, 5mm × 5mm QFN Package  
395mW, 72.4dB SNR, 5mm × 5mm QFN Package  
445mW, 73dB SNR, 9mm × 9mm QFN Package  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level  
Downconverting Mixer  
LT5514  
LT5522  
Ultralow Distortion IF Amplifier/ADC 450MHz 1dB BW, 47dB OIP3, Digital Gain Control 10.5dB to 33dB in 1.5dB/Step  
Driver with Digitally Controlled Gain  
600MHz to 2.7GHz High Linearity  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF and LO Ports  
2217f  
LT 0108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY