LTC2260-12_15 [Linear]

12-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs;
LTC2260-12_15
型号: LTC2260-12_15
厂家: Linear    Linear
描述:

12-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs

文件: 总34页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2261-12  
LTC2260-12/LTC2259-12  
12-Bit, 125/105/80Msps  
Ultralow Power 1.8V ADCs  
FeaTures  
DescripTion  
The LTC®2261-12/LTC2260-12/LTC2259-12 are sam-  
pling 12-bit A/D converters designed for digitizing high  
frequency, wide dynamic range signals. They are perfect  
for demanding communications applications with AC  
performancethatincludes70.8dBSNRand85dBspurious  
n
70.8dB SNR  
n
85dB SFDR  
n
Low Power: 124mW/103mW/87mW  
n
Single 1.8V Supply  
n
CMOS, DDR CMOS or DDR LVDS Outputs  
n
free dynamic range (SFDR). Ultralow jitter of 0.17ps  
Selectable Input Ranges: 1V to 2V  
RMS  
P-P  
P-P  
n
n
n
n
n
n
n
allows undersampling of IF frequencies with excellent  
800MHz Full-Power Bandwidth S/H  
noise performance.  
Optional Data Output Randomizer  
Optional Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
DC specs include 0.3LSB INL (typical), 0.1LSB DNL  
(typical) and no missing codes over temperature. The  
transition noise is a low 0.3LSB  
Serial SPI Port for Configuration  
.
RMS  
Pin Compatible 14-Bit and 12-Bit Versions  
The digital outputs can be either full-rate CMOS, double-  
data rate CMOS, or double-data rate LVDS. A separate  
output power supply allows the CMOS output swing to  
range from 1.2V to 1.8V.  
40-Pin (6mm × 6mm) QFN Package  
applicaTions  
n
+
Communications  
The ENC and ENC inputs may be driven differentially or  
single ended with a sine wave, PECL, LVDS, TTL or CMOS  
inputs. An optional clock duty cycle stabilizer allows high  
performance at full speed for a wide range of clock duty  
cycles.  
n
Cellular Base Stations  
n
Software Defined Radios  
Portable Medical Imaging  
Multi-Channel Data Acquisition  
Nondestructive Testing  
n
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
1.8V  
2-Tone FFT, fIN = 70MHz and 75MHz  
1.2V  
TO 1.8V  
V
DD  
0
OV  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
D11  
+
12-BIT  
PIPELINED  
ADC CORE  
CMOS  
OR  
LVDS  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
OGND  
–80  
–90  
CLOCK/DUTY  
CYCLE  
CONTROL  
–100  
–110  
–120  
226112 TA01a  
GND  
0
20  
30  
40  
50  
60  
10  
125MHz  
CLOCK  
FREQUENCY (MHz)  
226112 TA01b  
226112fc  
1
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
absoluTe MaxiMuM raTings (Notes 1, 2)  
Supply Voltages (V , OV )....................... –0.3V to 2V  
Digital Output Voltage................ –0.3V to (OV + 0.3V)  
DD  
DD  
DD  
+
Analog Input Voltage (A , A  
,
Operating Temperature Range:  
IN  
IN  
PAR/SER, SENSE) (Note 3).......... –0.3V to (V + 0.2V)  
LTC2261C, LTC2260C, LTC2259C............ 0°C to 70°C  
LTC2261I, LTC2260I, LTC2259I ...........–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
DD  
+
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4)............................................. –0.3V to 3.9V  
pin conFiguraTions  
DOUBLE-DATA RATE CMOS OUTPUT MODE  
TOP VIEW  
FULL-RATE CMOS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
40 39 38 37 36 35 34 33 32 31  
+
A
A
1
2
30  
29  
28  
D7  
IN  
A
A
1
2
30  
29  
28  
D6_7  
IN  
IN  
D6  
IN  
DNC  
+
+
GND  
REFH  
3
CLKOUT  
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
REFH  
5
26 OV  
DD  
41  
GND  
41  
GND  
REFL  
6
25  
OGND  
24 D5  
23  
REFL  
6
25  
OGND  
REFL  
7
REFL  
7
24 D4_5  
PAR/SER  
8
D4  
22 D3  
21  
PAR/SER  
8
23  
22  
21  
DNC  
D2_3  
DNC  
V
DD  
9
V
DD  
9
V
10  
D2  
DD  
V
10  
DD  
11 12 13 14 15 16 17 18 19 20  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
T
= 150°C, θ = 32°C/W  
JMAX JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
DOUBLE-DATA RATE LVDS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
+
A
A
1
2
30  
29  
28  
D6_7  
D6_7  
IN  
IN  
+
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
41  
GND  
REFL  
6
25  
OGND  
+
REFL  
7
24 D4_5  
+
PAR/SER  
8
23  
D4_5  
22 D2_3  
21  
V
DD  
9
V
DD  
10  
D2_3  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
226112fc  
2
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2261CUJ-12#PBF  
LTC2261IUJ-12#PBF  
LTC2260CUJ-12#PBF  
LTC2260IUJ-12#PBF  
LTC2259CUJ-12#PBF  
LTC2259IUJ-12#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2261UJ-12  
LTC2261UJ-12  
LTC2260UJ-12  
LTC2260UJ-12  
LTC2259UJ-12  
LTC2259UJ-12  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2261CUJ-12#TRPBF  
LTC2261IUJ-12#TRPBF  
LTC2260CUJ-12#TRPBF  
LTC2260IUJ-12#TRPBF  
LTC2259CUJ-12#TRPBF  
LTC2259IUJ-12#TRPBF  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2261-12  
TYP  
LTC2260-12  
TYP  
LTC2259-12  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
12  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
12  
–1  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–1  
0.3  
0.1  
1.5  
1
0.4  
9
–1  
0.3  
0.1  
1.5  
1
0.4  
9
0.3  
0.1  
1.5  
1
0.4  
9
LSB  
LSB  
mV  
–0.4  
–9  
–0.4  
–9  
–0.4  
–9  
Gain Error  
Internal Reference  
External Reference  
1.5  
0.4  
1.5  
0.4  
1.5  
0.4  
%FS  
%FS  
l
–1.5  
1.5  
–1.5  
1.5  
–1.5  
1.5  
Offset Drift  
20  
20  
20  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
External Reference  
0.3  
0.3  
0.3  
LSB  
RMS  
226112fc  
3
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
– 100mV  
0.625  
V
CM  
V
+ 100mV  
1.300  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
CM  
CM  
External Voltage Reference Applied to SENSE External Reference Mode  
1.250  
V
I
Analog Input Common Mode Current  
Per Pin, 125Msps  
Per Pin, 105Msps  
Per Pin, 80Msps  
155  
130  
100  
µA  
µA  
µA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current  
0 < A , A < V , No Encode  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
DD  
DD  
PAR/SER Input Leakage Current  
SENSE Input Leakage Current  
0 < PAR/SER < V  
IN2  
0.625V < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
0
AP  
0.17  
80  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
Figure 6 Test Circuit  
800  
MHz  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2261-12  
TYP  
LTC2260-12  
TYP  
LTC2259-12  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
TYP MAX UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
70.8  
70.7  
70.4  
70.8  
70.7  
70.4  
70.6  
70.5  
70.2  
dB  
dB  
dB  
l
l
l
l
70MHz Input  
140MHz Input  
69.4  
69.4  
69.1  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd or 3rd Harmonic  
88  
85  
82  
88  
85  
82  
88  
85  
82  
dB  
dB  
dB  
70MHz Input  
140MHz Input  
76  
83  
76  
82  
79  
85  
Spurious Free Dynamic Range 5MHz Input  
4th Harmonic or Higher  
90  
90  
90  
90  
90  
90  
90  
90  
90  
dB  
dB  
dB  
70MHz Input  
140MHz Input  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
70MHz Input  
140MHz Input  
70.6  
70.4  
70  
70.6  
70.4  
70  
70.4  
70.3  
69.9  
dB  
dB  
dB  
68.6  
68.6  
68.8  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
226112fc  
4
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
(Note 8)  
V
kΩ  
pF  
IN  
R
10  
IN  
IN  
C
Input Capacitance  
3.5  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
DD  
0.6  
3.6  
+
ENC to GND  
(See Figure 11)  
(Note 8)  
V
R
30  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
3.5  
DIGITAL INPUTS (CS, SDI, SCK)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
µA  
pF  
C
IN  
Input Capacitance  
(Note 8)  
3
200  
4
SDO OUTPUT (Open-Drain Output. Requires 2k Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL-DATA RATE AND DOUBLE-DATA RATE)  
OV = 1.8V  
DD  
l
l
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.750  
1.790  
0.010  
V
V
O
I = 500µA  
O
0.050  
OV = 1.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.488  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
OV = 1.2V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.185  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
350  
175  
454  
mV  
mV  
OD  
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.250  
1.250  
1.375  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
226112fc  
5
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2261-12  
TYP  
LTC2260-12  
TYP  
LTC2259-12  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
CMOS Output Modes: Full-Data Rate and Double-Data Rate  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
(Note 10)  
(Note 10)  
1.7  
1.1  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.9  
1.9  
V
V
DD  
OV  
DD  
I
DC Input  
Sine Wave Input  
68.7  
70  
81.1  
57.1  
58.3  
67.4  
48  
49  
56.6  
mA  
mA  
VDD  
I
Digital Supply Current  
Power Dissipation  
Sine Wave Input, OV =1.2V  
3.5  
2.9  
2.2  
mA  
OVDD  
DD  
l
P
DC Input  
124  
130  
146  
103  
108  
122  
87  
91  
102  
mW  
mW  
DISS  
Sine Wave Input, OV =1.2V  
DD  
LVDS Output Mode  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
(Note 10)  
1.7  
1.7  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.9  
1.9  
V
V
DD  
OV  
(Note 10)  
DD  
I
I
Sine Wave Input  
73.6  
86.9  
61.9  
73.1  
52.7 62.2  
mA  
VDD  
OVDD  
l
l
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
18.8  
36.7  
22.2  
43.3  
18.8  
36.7  
22.2  
43.3  
18.8 22.2  
36.7 43.3  
mA  
mA  
(0V = 1.8V)  
DD  
l
l
P
Power Dissipation  
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
166  
199  
196  
235  
145  
177  
172  
210  
129  
161  
152  
190  
mW  
mW  
DISS  
All Output Modes  
P
P
P
Sleep Mode Power  
Nap Mode Power  
0.5  
9
0.5  
9
0.5  
9
mW  
mW  
mW  
SLEEP  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No Increase for Nap or Sleep Modes)  
10  
10  
10  
DIFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2261-12  
TYP  
LTC2260-12  
TYP  
LTC2259-12  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
l
f
S
t
L
Sampling Frequency  
(Note 10)  
1
125  
1
105  
1
80  
MHz  
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2.0  
4
4
500  
500  
4.52  
2.00  
4.76  
4.76  
500  
500  
5.93  
2.00  
6.25  
6.25  
500  
500  
ns  
ns  
l
l
t
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2.0  
4
4
500  
500  
4.52  
2.00  
4.76  
4.76  
500  
500  
5.93  
2.00  
6.25  
6.25  
500  
500  
ns  
ns  
H
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
AP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (CMOS Modes: Full-Data Rate and Double-Data Rate)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.7  
1.4  
0.3  
3.1  
2.6  
0.6  
ns  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
SKEW  
D
C
Full-Data Rate Mode  
Double-Data Rate Mode  
5.0  
5.5  
Cycles  
Cycles  
226112fc  
6
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (LVDS Mode)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.8  
1.5  
0.3  
5.5  
3.2  
2.7  
0.6  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
ns  
SKEW  
D
C
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
125  
SDO  
PULLUP  
+
termination disabled, differential ENC /ENC = 2V sine wave, input  
P-P  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
range = 2V with differential drive, unless otherwise noted.  
P-P  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 0000 0000 0000 and 1111 1111 1111 in  
2’s complement output mode.  
DD  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 8: Guaranteed by design, not subject to test.  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
Note 9: V = 1.8V, f  
or 80MHz (LTC2259), ENC = single-ended 1.8V square wave, ENC = 0V,  
= 125MHz (LTC2261), 105MHz (LTC2260),  
DD  
SAMPLE  
+
DD  
input range = 2V with differential drive, 5pF load on each digital output  
P-P  
unless otherwise noted.  
Note 5: V = OV = 1.8V, f  
105MHz (LTC2260), or 80MHz (LTC2259), LVDS outputs with internal  
= 125MHz (LTC2261),  
DD  
DD  
SAMPLE  
Note 10: Recommended operating conditions.  
TiMing DiagraMs  
Full-Rate CMOS Output Mode Timing  
All Outputs Are Single Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D11, OF  
t
C
+
CLKOUT  
CLKOUT  
226112 TD01  
226112fc  
7
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
TiMing DiagraMs  
Double-Data Rate CMOS Output Mode Timing  
All Outputs Are Single Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
D0_1  
D0  
D1  
D0  
D1  
N-4  
D0  
N-3  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-3  
N-2  
D10_11  
OF  
D10  
D11  
D10  
OF  
D11  
D10  
D11  
D10  
D11  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
OF  
OF  
OF  
N-2  
N-5  
N-4  
N-3  
t
t
C
C
+
CLKOUT  
CLKOUT  
226112 TD02  
Double-Data Rate LVDS Output Mode Timing  
All Outputs Are Differential and Have LVDS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
+
D0_1  
D0  
D1  
D0  
N-4  
D1  
D0  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-3  
N-3  
N-2  
D0_1  
+
D10_11  
D10  
D11  
D10  
D11  
D10  
D11  
D10  
D11  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
D10_11  
+
OF  
OF  
N-5  
OF  
N-4  
OF  
N-3  
OF  
N-3  
OF  
t
C
t
C
+
CLKOUT  
CLKOUT  
226112 TD03  
226112fc  
8
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
TiMing DiagraMs  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
226112 TD04  
HIGH IMPEDANCE  
Typical perForMance characTerisTics  
LTC2261-12: Integral  
Nonlinearity (INL)  
LTC2261-12: Differential  
Nonlinearity (DNL)  
LTC2261-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 125Msps  
1.0  
0.8  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
0.4  
0.4  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–80  
–90  
–100  
–110  
–120  
–0.8  
–1.0  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
1024  
0
20  
30  
40  
50  
60  
10  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
226112 G01  
226112 G02  
226112 G03  
226112fc  
9
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical perForMance characTerisTics  
LTC2261-12: 8k Point FFT, fIN = 30MHz  
–1dBFS, 125Msps  
LTC2261-12: 8k Point FFT, fIN = 70MHz  
–1dBFS, 125Msps  
LTC2261-12: 8k Point FFT, fIN = 140MHz  
–1dBFS, 125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226112 G05  
226112 G06  
226112 G04  
LTC2261-12: SNR vs Input  
LTC2261-12: 8k Point 2-Tone FFT,  
IN = 70MHz, 75MHz, –1dBFS,  
125Msps  
LTC2261-12: Shorted Input  
Histogram  
Frequency, –1dB, 2V Range,  
125Msps  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
18000  
16000  
14000  
12000  
10000  
8000  
72  
71  
70  
69  
68  
67  
66  
–80  
–90  
–100  
–110  
–120  
6000  
4000  
2000  
0
0
20  
30  
40  
50  
60  
10  
2041  
2043  
2045  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
226112 G07  
226112 G08  
226112 G09  
LTC2261-12: SFDR vs Input  
Frequency, –1dB, 2V Range,  
125Msps  
LTC2261-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 125Msps  
LTC2261-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
80  
75  
70  
65  
dBFS  
80  
LVDS OUTPUTS  
CMOS OUTPUTS  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
60  
55  
50  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
0
25  
50  
75  
100  
125  
SAMPLE RATE (Msps)  
226112 G10  
226112 G12  
226112 G13  
226112fc  
10  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical perForMance characTerisTics  
LTC2261-12: SNR vs Sample Rate  
LTC2261-12: IOVDD vs Sample  
and Digital Output Mode,  
LTC2261-12: SNR vs SENSE,  
fIN = 5MHz, –1dB  
Rate, 5MHz Sine Wave Input,  
–1dB, 5pF on Each Data Output  
30MHz Sine Wave Input, –1dB  
45  
40  
35  
30  
25  
20  
15  
72  
71  
70  
69  
68  
67  
66  
72  
3.5mA LVDS  
71  
70  
69  
68  
67  
LVDS  
CMOS  
DDR CMOS  
1.75mA LVDS  
10  
5
1.8V CMOS  
1.2V CMOS  
100 125  
0
0
25  
50  
75  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
25  
50  
75  
100  
125  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
226112 G14  
226112 G15  
226112 G18  
LTC2260-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 105Msps  
LTC2260-12: Differential  
Nonlinearity (DNL)  
LTC2260-12: Integral Nonlinearity  
(INL)  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.4  
0.2  
0
–0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–0.4  
–0.6  
–0.8  
–1.0  
0
20  
30  
40  
50  
10  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
1024  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
226112 G23  
226112 G22  
226112 G21  
LTC2260-12: 8k Point FFT, fIN = 30MHz  
–1dBFS, 105Msps  
LTC2260-12: 8k Point FFT, fIN = 70MHz  
–1dBFS, 105Msps  
LTC2260-12: 8k Point FFT, fIN = 140MHz  
–1dBFS, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
0
20  
30  
40  
50  
0
20  
30  
40  
50  
10  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226112 G26  
226112 G24  
226112 G25  
226112fc  
11  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical perForMance characTerisTics  
LTC2260-12: 8k Point 2-Tone FFT,  
LTC2260-12: SNR vs Input  
Frequency, –1dB, 2V Range,  
105Msps  
fIN = 70MHz, 75MHz, –1dBFS,  
LTC2260-12: Shorted Input  
105Msps  
Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
72  
71  
70  
69  
68  
67  
66  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
0
20  
30  
40  
50  
10  
2044  
2045  
OUTPUT CODE  
2048  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
226112 G27  
226112 G29  
226112 G28  
LTC2260-12: SFDR vs Input  
Frequency, –1dB, 2V Range,  
105Msps  
LTC2260-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 105Msps  
LTC2260-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
65  
60  
55  
50  
110  
100  
90  
95  
90  
85  
80  
75  
70  
65  
dBFS  
LVDS OUTPUTS  
CMOS OUTPUTS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
45  
40  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
25  
50  
75  
100  
–70  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
SAMPLE RATE (Msps)  
226112 G32  
226112 G33  
226112 G30  
LTC2260-12: IOVDD vs Sample  
Rate, 5MHz Sine Wave Input,  
–1dB, 5pF on Each Data Output  
LTC2260-12: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2259-12: Integral Nonlinearity  
(INL)  
45  
40  
35  
30  
25  
20  
15  
72  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5mA LVDS  
71  
70  
69  
68  
1.75mA LVDS  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
10  
5
67  
66  
1.8V CMOS  
1.2V CMOS  
0
0
25  
50  
75  
100  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
2048  
3072  
4096  
1024  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
OUTPUT CODE  
226112 G34  
226112 G35  
226112 G41  
226112fc  
12  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical perForMance characTerisTics  
LTC2259-12: 8k Point FFT, fIN = 30MHz  
–1dBFS, 80Msps  
LTC2259-12: Differential  
Nonlinearity (DNL)  
LTC2259-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 80Msps  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
0
2048  
3072  
4096  
0
20  
30  
40  
1024  
0
20  
30  
40  
10  
10  
OUTPUT CODE  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226112 G42  
226112 G44  
226112 G43  
LTC2259-12: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
80Msps  
LTC2259-12: 8k Point FFT, fIN = 140MHz  
–1dBFS, 80Msps  
LTC2259-12: 8k Point FFT, fIN = 70MHz  
–1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
0
20  
30  
40  
10  
10  
0
20  
30  
40  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226114 G47  
226114 G46  
226112 G45  
LTC2259-12: SNR vs Input  
Frequency, –1dB, 2V Range,  
80Msps  
LTC2259-12: SFDR vs Input  
Frequency, –1dB, 2V Range,  
80Msps  
LTC2259-12: Shorted Input  
Histogram  
72  
71  
70  
69  
68  
67  
95  
90  
85  
80  
75  
70  
65  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
2052  
2054  
2056  
50  
OUTPUT CODE  
226112 G49  
226112 G50  
226112 G48  
226112fc  
13  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical perForMance characTerisTics  
LTC2259-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 80Msps  
LTC2259-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
55  
50  
45  
110  
100  
90  
dBFS  
LVDS OUTPUTS  
CMOS OUTPUTS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
40  
35  
0
20  
40  
60  
80  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
SAMPLE RATE (Msps)  
226112 G53  
226112 G52  
LTC2259-12: IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB, 5pF  
on Each Data Output  
LTC2259-12: SNR vs SENSE,  
fIN = 5MHz, –1dB  
45  
40  
35  
30  
25  
20  
15  
72  
71  
3.5mA LVDS  
70  
69  
68  
67  
66  
1.75mA LVDS  
10  
5
1.2V CMOS  
1.8V CMOS  
0
0
20  
40  
60  
80  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
226112 G54  
226112 G55  
226112fc  
14  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
pin FuncTions  
PINS THAT ARE THE SAME FOR ALL DIGITAL OUTPUT  
SCK (Pin 14): In serial programming mode, (PAR/SER =  
MODES  
0V), SCK is the serial interface clock input. In the parallel  
programming mode (PAR/SER = V ), SCK controls the  
+
DD  
A
A
(Pin 1): Positive Differential Analog Input.  
(Pin 2): Negative Differential Analog Input.  
IN  
digital output mode. When SCK is low, the full-rate CMOS  
output mode is enabled. When SCK is high, the double-  
data rate LVDS output mode (with 3.5mA output current)  
is enabled. SCK can be driven with 1.8V to 3.3V logic.  
IN  
GND (Pin 3): ADC Power Ground.  
REFH (Pins 4, 5): ADC High Reference. Bypass to Pins  
6, 7 with a 2.2µF ceramic capacitor and to ground with a  
0.1µF ceramic capacitor.  
SDI (Pin 15): In serial programming mode, (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI is  
clocked into the mode control registers on the rising edge  
of SCK. In the parallel programming mode (PAR/SER =  
REFL (Pins 6, 7): ADC Low Reference. Bypass to Pins  
4, 5 with a 2.2µF ceramic capacitor and to ground with a  
0.1µF ceramic capacitor.  
V ), SDI can be used to power down the part. When SDI  
DD  
is low, the part operates normally. When SDI is high, the  
part enters sleep mode. SDI can be driven with 1.8V to  
3.3V logic.  
PAR/SER(Pin8):ProgrammingModeSelectionPin. Con-  
nect to ground to enable the serial programming mode.  
CS, SCK, SDI, SDO become a serial interface that control  
SDO (Pin 16): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control registers  
and can be latched on the falling edge of SCK. SDO is an  
open-drain NMOS output that requires an external 2k  
pull-up resistor to 1.8V-3.3V. If read back from the mode  
control registers is not needed, the pull-up resistor is not  
necessaryandSDOcanbeleftunconnected.Intheparallel  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, SCK, SDI become  
parallel logic inputs that control a reduced set of the A/D  
operating modes. PAR/SER should be connected directly  
to ground or the V of the part and not be driven by a  
DD  
logic signal.  
V
(Pins 9, 10, 40): 1.8V Analog Power Supply. Bypass  
DD  
programming mode (PAR/SER = V ), SDO is not used  
DD  
to ground with 0.1µF ceramic capacitors. Pins 9 and 10  
and should not be connected.  
can share a bypass capacitor.  
OGND (Pin 25): Output Driver Ground.  
+
ENC (Pin 11): Encode Input. Conversion starts on the  
OV (Pin 26): Output Driver Supply. Bypass to ground  
rising edge.  
DD  
with a 0.1µF ceramic capacitor.  
ENC (Pin 12): Encode Complement Input. Conversion  
V
(Pin 37): Common Mode Bias Output, Nominally  
starts on the falling edge.  
CM  
Equal to V /2. V should be used to bias the common  
DD  
CM  
CS (Pin 13): In serial programming mode, (PAR/SER =  
0V), CS is the serial interface chip select input. When  
CS is low, SCK is enabled for shifting data on SDI into  
the mode control registers. In the parallel programming  
mode of the analog inputs. Bypass to ground with a 0.1µF  
ceramic capacitor.  
V
(Pin38):ReferenceVoltageOutput.Bypasstoground  
REF  
with a 1µF ceramic capacitor, nominally 1.25V.  
mode (PAR/SER = V ), CS controls the clock duty cycle  
DD  
stabilizer. When CSislow, theclockduty cyclestabilizeris  
turned off. When CS is high, the clock duty cycle stabilizer  
is turned on. CS can be driven with 1.8V to 3.3V logic.  
SENSE(Pin39):ReferenceProgrammingPin.Connecting  
SENSEtoV selectstheinternalreferenceanda 1Vinput  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a 0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
input range of ±0.8 • V  
.
SENSE  
226112fc  
15  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
pin FuncTions  
+
FULL-RATE CMOS OUTPUT MODE  
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
normally transition at the same time as the falling and ris-  
+
+
All Pins Below Have CMOS Output Levels (OGND to  
ing edges of CLKOUT . The phase of CLKOUT can also  
be delayed relative to the digital outputs by programming  
the mode control registers.  
OV )  
DD  
D0 to D11 (Pins 19-24, 29-34): Digital Outputs. D11 is  
the MSB.  
DNC (Pins 17, 18, 19, 21, 23, 29, 31, 33, 35): Do not  
connect these pins.  
+
CLKOUT (Pin 27): Inverted Version of CLKOUT .  
+
OF (Pin 36): Over/Under Flow Digital Output. OF is high  
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
when an overflow or underflow has occurred.  
normally transition at the same time as the falling edge  
+
+
of CLKOUT . The phase of CLKOUT can also be delayed  
relative to the digital outputs by programming the mode  
control registers.  
DOUBLE-DATA RATE LVDS OUTPUT MODE  
All Pins Below Have LVDS Output Levels. The Output  
Current Level is Programmable. There is an Optional  
Internal 100Ω Termination Resistor Between the Pins  
of Each LVDS Output Pair.  
DNC (Pins 17, 18, 35): Do not connect these pins.  
OF (Pin 36): Over/Under Flow Digital Output. OF is high  
when an overflow or underflow has occurred.  
+
+
D0_1 /D0_1 to D10_11 /D10_11 (Pins 19/20, 21/22,  
23/24, 29/30, 31/32, 33/34): Double-Data Rate Digital  
Outputs.Two databitsaremultiplexedontoeachdifferential  
output pair. The even data bits (D0, D2, D4, D6, D8, D10)  
DOUBLE-DATA RATE CMOS OUTPUT MODE  
All Pins Below Have CMOS Output Levels (OGND to  
OV )  
DD  
+
appear when CLKOUT is low. The odd data bits (D1, D3,  
D5, D7, D9, D11) appear when CLKOUT is high.  
D0_1 to D10_11 (Pins 20, 22, 24, 30, 32, 34): Double-  
Data Rate Digital Outputs. Two data bits are multiplexed  
onto each output pin. The even data bits (D0, D2, D4, D6,  
+
+
CLKOUT /CLKOUT (Pins 27/28): Data Output Clock.  
+
The digital outputs normally transition at the same time  
D8, D10) appear when CLKOUT is low. The odd data bits  
+
+
as the falling and rising edges of CLKOUT . The phase of  
(D1, D3, D5, D7, D9, D11) appear when CLKOUT is high.  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
+
CLKOUT (Pin 27): Inverted Version of CLKOUT .  
by programming the mode control registers.  
+
+
OF /OF (Pins 35/36): Over/Under Flow Digital Output.  
OF is high when an overflow or underflow has occurred.  
226112fc  
16  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
FuncTional block DiagraM  
+
A
IN  
V
DD  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
A
IN  
GND  
V
CM  
V
/2  
DD  
0.1µF  
V
REF  
1.25V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
1µF  
RANGE  
SELECT  
REFH  
REFL INTERNAL CLOCK SIGNALS  
REF  
BUF  
OV  
OF  
DD  
SENSE  
D11  
DIFF  
CLOCK/DUTY  
CYCLE  
CONTROL  
MODE  
OUTPUT  
DRIVERS  
REF  
CONTROL  
AMP  
REGISTERS  
D0  
+
CLKOUT  
CLKOUT  
226112 F01  
0.1µF  
2.2µF  
REFH  
REFL  
OGND  
+
PAR/SER  
SCK SDI  
SDO  
ENC  
ENC  
CS  
0.1µF  
0.1µF  
Figure 1. Functional Block Diagram  
226112fc  
17  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
CONVERTER OPERATION  
the inputs should swing from V – 0.5V to V + 0.5V.  
CM CM  
Thereshouldbe180°phasedifferencebetweentheinputs.  
TheLTC2261-12/LTC2260-12/LTC2259-12arelowpower  
12-bit125Msps/105Msps/80MspsA/Dconvertersthatare  
poweredbyasingle1.8Vsupply.Theanaloginputsshould  
be driven differentially. The encode input can be driven  
differentially or single ended for lower power consump-  
tion. The digital outputs can be CMOS, double-data rate  
CMOS(tohalvethenumberofoutputlines),ordouble-data  
rate LVDS (to reduce digital noise in the system.) Many  
additional features can be chosen by programming the  
mode control registers through a serial SPI port. See the  
Serial Programming Mode section.  
INPUT DRIVE CIRCUITS  
Input Filtering  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
showsanexampleofaninputRCfilter.TheRCcomponent  
values should be chosen based on the application’s input  
frequency.  
ANALOG INPUT  
Transformer Coupled Circuits  
The analog input is a differential CMOS sample-and-hold  
circuit(Figure2).Theinputsshouldbedrivendifferentially  
around a common mode voltage set by the V output  
pin, which is nominally V /2. For the 2V input range,  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
CM  
tap is biased with V , setting the A/D input at its optimal  
CM  
DD  
DC level. At higher input frequencies a transmission line  
50Ω  
V
CM  
LTC2261-12  
V
0.1µF  
DD  
C
C
SAMPLE  
3.5pF  
0.1µF  
R
T1  
1:1  
ON  
+
25Ω  
A
10Ω  
10Ω  
IN  
25Ω  
ANALOG  
INPUT  
+
A
A
IN  
LTC2261-12  
C
0.1µF  
25Ω  
25Ω  
PARASITIC  
1.8pF  
V
DD  
12pF  
SAMPLE  
3.5pF  
R
25Ω  
ON  
25Ω  
A
IN  
IN  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
C
PARASITIC  
226112 F03  
1.8pF  
V
DD  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
1.2V  
10k  
+
ENC  
ENC  
10k  
1.2V  
226112 F02  
Figure 2. Equivalent Input Circuit  
226112fc  
18  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingleended, thenatransformercircuit(Figures 4  
to 6) should convert the signal to differential before driv-  
ing the A/D.  
Amplifier Circuits  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
50Ω  
V
CM  
LTC2261-12  
T1  
0.1µF  
25Ω  
25Ω  
0.1µF  
1.8pF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
A
IN  
LTC2261-12  
T1  
0.1µF  
25Ω  
25Ω  
226112 F05  
4.7pF  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
A
IN  
226112 F04  
Figure 5. Recommended Front-End Circuit for Input  
Frequencies from 170MHz to 270MHz  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 4. Recommended Front-End Circuit for Input  
Frequencies from 70MHz to 170MHz  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
2.7nH  
0.1µF  
+
A
A
IN  
IN  
ANALOG  
INPUT  
LTC2261-12  
25Ω  
25Ω  
T1  
2.7nH  
T1: MA/COM ETC1-1-13  
226112 F06  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 6. Recommended Front-End Circuit for Input  
Frequencies Above 270MHz  
226112fc  
19  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
Reference  
The V , REFH and REFL pins should be bypassed as  
REF  
shown in Figure 8. The 0.1µF capacitor between REFH  
and REFL should be as close to the pins as possible (not  
on the back side of the circuit board).  
The LTC2261-12/LTC2260-12/LTC2259-12 have an inter-  
nal 1.25V voltage reference. For a 2V input range using  
the internal reference, connect SENSE to V . For a 1V  
DD  
input range using the internal reference, connect SENSE  
to ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9.)  
LTC2261-12  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
1µF  
0.625V  
will then be 1.6 • V  
.
SENSE  
RANGE  
DETECT  
AND  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
TIE TO GND FOR 1V RANGE;  
SENSE  
V
CM  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.65V < V  
< 1.300V  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
SENSE  
0.1µF  
200Ω 200Ω  
25Ω  
INTERNAL ADC  
HIGH REFERENCE  
0.1µF  
0.1µF  
+
0.1µF  
A
IN  
REFH  
0.1µF  
LTC2261-12  
ANALOG  
INPUT  
+
+
12pF  
2.2µF  
0.8x  
DIFF AMP  
25Ω  
A
IN  
0.1µF  
226112 F07  
REFL  
Figure 7. Front-End Circuit Using a High Speed  
Differential Amplifier  
INTERNAL ADC  
LOW REFERENCE  
226112 F08  
Figure 8. Reference Circuit  
V
REF  
1µF  
LTC2261-12  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1µF  
226112 F09  
Figure 9. Using an External 1.25V Reference  
226112fc  
20  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
Encode Input  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10) and the single-ended encode mode  
(Figure 11).  
+
to ground and ENC is driven with a square wave encode  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
DD  
+
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
+
is0.9V. ForgoodjitterperformanceENC shouldhavefast  
rise and fall times.  
Clock Duty Cycle Stabilizer  
The differential encode mode is recommended for sinu-  
soidal, PECL or LVDS encode inputs (Figures 12, 13). The  
encode inputs are internally biased to 1.2V through 10k  
equivalent resistance. The encode inputs can be taken  
For good performance the encode signal should have a  
50%( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency or is turned off, the duty cycle  
stabilizer circuit requires one hundred clock cycles to lock  
onto the input clock. The duty cycle stabilizer is enabled  
by mode control register A2 (serial programming mode),  
or by CS (parallel programming mode).  
above V (up to 3.6V), and the common mode range  
DD  
is from 1.1V to 1.6V. In the differential encode mode,  
ENC should stay at least 200mV above ground to avoid  
falselytriggeringthesingle-endedencodemode.Forgood  
+
jitter performance ENC and ENC should have fast rise  
and fall times.  
0.1µF  
LTC2261-12  
+
25Ω  
V
ENC  
DD  
T1  
1:4  
DIFFERENTIAL  
COMPARATOR  
100Ω  
D1  
V
DD  
LTC2261-12  
100Ω  
ENC  
15k  
30k  
+
0.1µF  
ENC  
226112 F12  
T1: COILCRAFT WBC4 - 1WL  
D1: AVAGO HSMS - 2822  
ENC  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 12. Sinusoidal Encode Drive  
226112 F10  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
0.1µF  
+
ENC  
LTC2261-12  
+
PECL OR  
LTC2261-12  
LVDS  
CLOCK  
0.1µF  
1.8V TO 3.3V  
0V  
ENC  
ENC  
30k  
ENC  
CMOS LOGIC  
BUFFER  
226112 F13  
226112 F11  
Figure 13. PECL or LVDS Encode Drive  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
226112fc  
21  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
to make the sampling clock have a 50%( 5%) duty cycle.  
The duty cycle stabilizer should not be used below 5Msps.  
When using double-data rate CMOS at high sample rates  
the SNR will degrade slightly (see Typical Performance  
Characteristics section). DDR CMOS is not recommended  
for sample frequencies above 100MHz.  
Double-Data Rate LVDS Mode  
DIGITAL OUTPUTS  
In double-data rate LVDS mode, two data bits are  
multiplexed and output on each differential output pair.  
Digital Output Modes  
+
There are 6 LVDS output pairs (D0_1 /D0_1 through  
+
D10_11 /D10_11 ) for the digital output data. Overflow  
The LTC2261-12/LTC2260-12/LTC2259-12 can operate  
in three digital output modes: full-rate CMOS, double-  
data rate CMOS (to halve the number of output lines),  
or double-data rate LVDS (to reduce digital noise in the  
system). The output mode is set by mode control regis-  
ter A3 (serial programming mode), or by SCK (parallel  
programming mode). Note that double-data rate CMOS  
cannot be selected in the parallel programming mode.  
+
+
(OF /OF )andthedataoutputclock(CLKOUT /CLKOUT )  
each have an LVDS output pair.  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
Full-Rate CMOS Mode  
The outputs are powered by OV and OGND which are  
DD  
In full-rate CMOS mode the 12 digital outputs (D0-D11),  
+
isolated from the A/D core power and ground. In LVDS  
overflow (OF), and the data output clocks (CLKOUT ,  
mode, OV must be 1.8V.  
DD  
CLKOUT ) have CMOS output levels. The outputs are  
powered by OV and OGND which are isolated from the  
DD  
Programmable LVDS Output Current  
A/D core power and ground. OV can range from 1.1V  
DD  
to 1.9V, allowing 1.2V through 1.8V CMOS logic outputs.  
In LVDS mode, the default output driver current is 3.5mA.  
Thiscurrentcanbeadjustedbyseriallyprogrammingmode  
control register A3. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
Optional LVDS Driver Internal Termination  
Double-Data Rate CMOS Mode  
In most cases using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is increased by 1.6x to maintain about the same output  
voltage swing.  
In double-data rate CMOS mode, two data bits are  
multiplexed and output on each data pin. This reduces  
the number of data lines by seven, simplifying board  
routing and reducing the number of input pins needed  
to receive the data. The 6 digital outputs (D0_1, D2_3,  
D4_5, D6_7, D8_9, D10_11), overflow (OF), and the data  
+
output clocks (CLKOUT , CLKOUT ) have CMOS output  
levels. TheoutputsarepoweredbyOV andOGNDwhich  
DD  
are isolated from the A/D core power and ground. OV  
DD  
can range from 1.1V to 1.9V, allowing 1.2V through 1.8V  
CMOS logic outputs.  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
226112fc  
22  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
+
Overflow Bit  
CLKOUT and CLKOUT , independently of the phase shift.  
Thecombinationofthesetwofeaturesenablesphaseshifts  
of 45° up to 315° (Figure 14).  
The overflow output bit (OF) outputs a logic high when  
the analog input is either overranged or underranged. The  
overflow bit has the same pipeline latency as the data bits.  
DATA FORMAT  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
Phase Shifting the Output Clock  
In full-rate CMOS mode the data output bits normally  
+
change at the same time as the falling edge of CLKOUT ,  
+
so the rising edge of CLKOUT can be used to latch the  
output data. In double-data rate CMOS and LVDS modes  
the data output bits normally change at the same time as  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D11-D0  
D11-D0  
IN  
IN  
+
thefallingandrisingedgesofCLKOUT .To allowadequate  
setup-and-hold time when latching the data, the CLKOUT  
signal may need to be phase shifted relative to the data  
outputbits. MostFPGAshavethisfeature;thisisgenerally  
the best place to adjust the timing.  
(2V RANGE)  
>+1.000000V  
+0.999512V  
+0.999024V  
+0.000488V  
0.000000V  
OF (OFFSET BINARY)  
(2’s COMPLEMENT)  
+
1
0
0
0
0
0
0
0
0
1
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
TheLTC2261-12/LTC2260-12/LTC2259-12canalsophase  
+
–0.000488V  
–0.000976V  
–0.999512V  
–1.000000V  
≤–1.000000V  
shift the CLKOUT /CLKOUT signals by serially program-  
ming mode control register A2. The output clock can be  
shifted by 0°, 45°, 90° or 135°. To use the phase shifting  
feature the clock duty cycle stabilizer must be turned  
on. Another control register bit can invert the polarity of  
+
ENC  
D0-D11, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
CLKPHASE1 CLKPHASE0  
0°  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
226112 F14  
Figure 14. Phase Shifting CLKOUT  
226112fc  
23  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
Digital Output Randomizer  
Alternate Bit Polarity  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
Anotherfeaturethatreducesdigitalfeedbackonthecircuit  
board is the alternate bit polarity mode. When this mode  
is enabled, all of the odd bits (D1, D3, D5, D7, D9, D11)  
are inverted before the output buffers. The even bits (D0,  
D2, D4, D6, D8, D10), OF and CLKOUT are not affected.  
Thiscanreducedigitalcurrentsinthecircuitboardground  
plane and reduce digital noise, particularly for very small  
analog input signals.  
Thedigitaloutput israndomized byapplying an exclusive-  
OR logic operation between the LSB and all other data  
outputbits.To decode,thereverseoperationisapplied—an  
exclusive-OR operation is applied between the LSB and  
all other bits. The LSB, OF and CLKOUT outputs are not  
affected. The output randomizer is enabled by serially  
programming mode control register A4.  
When there is a very small signal at the input of the A/D  
thatiscenteredaroundmid-scale,thedigitaloutputstoggle  
between mostly 1s and mostly 0s. This simultaneous  
switchingofmostofthebitswillcauselargecurrentsinthe  
ground plane. By inverting every other bit, the alternate bit  
polarity mode makes half of the bits transition high while  
half of the bits transition low. To first order, this cancels  
currentflowinthegroundplane,reducingthedigitalnoise.  
CLKOUT  
CLKOUT  
OF  
PC BOARD  
FPGA  
CLKOUT  
OF  
OF  
D11  
D11/D0  
D10/D0  
D11/D0  
D11  
D10  
D10  
D2  
D10/D0  
LTC2261-12  
D2/D0  
D1/D0  
D2/D0  
D1/D0  
RANDOMIZER  
ON  
D2  
D1  
D0  
D1  
D0  
D0  
D0  
116112 F15  
116112 F15  
Figure 15. Functional Equivalent of Digital Output Randomizer  
Figure 16. Unrandomizing a Randomized Digital  
Output Signal  
226112fc  
24  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
depends on the size of the bypass capacitors on V  
REFH, and REFL. For the suggested values in Figure 8,  
the A/D will stabilize after 2ms.  
,
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11). The alternate  
bit polarity mode is independent of the digital output  
randomizer—either, both or neither function can be on  
at the same time. When alternate bit polarity mode is on,  
the data format is offset binary and the 2’s complement  
control bit has no effect. The alternate bit polarity mode is  
enabledbyseriallyprogrammingmodecontrolregisterA4.  
REF  
InnapmodetheA/Dcoreispowereddownwhiletheinternal  
referencecircuitsstayactive,allowingfasterwake-upthan  
from sleep mode. Recovering from nap mode requires at  
least 100 clock cycles. If the application demands very  
accurate DC settling then an additional 50µs should be  
allowedsotheon-chipreferencescansettlefromtheslight  
temperature shift caused by the change in supply current  
astheA/Dleavesnapmode. Napmodeisenabledbymode  
control register A1 in the serial programming mode.  
Digital Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D11-D0) to known values:  
DEVICE PROGRAMMING MODES  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
The operating modes of the LTC2261-12 can be pro-  
grammed by either a parallel interface or a simple serial  
interface. The serial interface has more flexibility and  
can program all available modes. The parallel interface  
is more limited and can only program some of the more  
commonly used modes.  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples  
Checkerboard: Outputs change from 1010101010101  
to 0101010101010 on alternating samples  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement, randomizer, alternate-bit-polarity.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
inputs that set certain operating modes. These pins can  
Output Disable  
be tied to V or ground, or driven by 1.8V, 2.5V or 3.3V  
DD  
CMOS logic. Table 2 shows the modes set by CS, SCK  
The digital outputs may be disabled by serially program-  
mingmodecontrolregisterA3.Alldigitaloutputsincluding  
OFandCLKOUTaredisabled.Thehighimpedancedisabled  
state is intended for long periods of inactivity—it is too  
slow to multiplex a data bus between multiple converters  
at full speed.  
and SDI.  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Digital Output Mode Control Bit  
0 = Full-Rate CMOS Output Mode  
Sleep and Nap Modes  
SCK  
SDI  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire A/D converter is powered  
down,resultingin0.5mWpowerconsumption.Sleepmode  
is enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
1 = Double-Data Rate LVDS Output Mode  
(3.5mA LVDS Current, Internal Termination Off)  
Power Down Control Bit  
0 = Normal Operation  
1 = Sleep Mode  
226112fc  
25  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
Serial Programming Mode  
diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Table 3 shows a map of the mode control registers.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset SPI  
write command is complete, bit D7 is automatically set  
back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the timing  
Table 3. Serial Programming Mode Register Map  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers are Reset to 00h. This Bit is Automatically Set Back to Zero at the End of the SPI Write  
Command.  
The Reset Register Is Write Only.  
Unused, Don’t Care Bits.  
Bits 6-0  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
X
PWROFF1  
PWROFF0  
Bits 7-2  
Unused, Don’t Care Bits.  
Bits 1-0  
PWROFF1:PWROFF0  
00 = Normal Operation  
01 = Nap Mode  
Power Down Control Bits  
10 = Not Used  
11 = Sleep Mode  
226112fc  
26  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
D2  
D1  
D0  
X
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, Don’t Care Bits.  
Bit 3  
CLKINV  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (As Shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (As Shown in the Timing Diagrams)  
01 = CLKOUT+/CLKOUT– Delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT+/CLKOUT– Delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT+/CLKOUT– Delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT Phase Delay Feature is Used, the Clock Duty Cycle Stabilizer Must Also be Turned On  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE1  
OUTMODE0  
Bit 7  
Unused, Don’t Care Bit.  
Bits 6-4  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 3  
TERMON  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 1.6× the Current Set by ILVDS2:ILVDS0  
LVDS Internal Termination Bit  
Bit 2  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are Enabled  
1 = Digital Outputs are Disabled and Have High Output Impedance  
Bits 1-0  
OUTMODE1:OUTMODE0  
Digital Output Mode Control Bits  
00 = Full-Rate CMOS Output Mode  
01 = Double-Data Rate LVDS Output Mode  
10 = Double-Data Rate CMOS Output Mode  
11 = Not Used  
226112fc  
27  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
applicaTions inForMaTion  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
X
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
RAND  
TWOSCOMP  
Bit 7-6  
Unused, Don’t Care Bits.  
Bits 5-3  
OUTTEST2:OUTTEST0  
Digital Output Test Pattern Bits  
000 = Digital Output Test Patterns Off  
001 = All Digital Outputs = 0  
011 = All Digital Outputs = 1  
101 = Checkerboard Output Pattern. OF, D11-D0 Alternate Between 1 0101 0101 0101 and 0 1010 1010 1010  
111 = Alternating Output Pattern. OF, D11-D0 Alternate Between 0 0000 0000 0000 and 1 1111 1111 1111  
Note: Other Bit Combinations are not Used  
Bit 2  
Bit 1  
Bit 0  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Note: ABP = 1 forces the output format to be Offset Binary  
GROUNDING AND BYPASSING  
The V capacitor should be located as close to the pin  
CM  
as possible. To make space for this the capacitor on V  
REF  
The LTC2261-12 requires a printed circuit board with a  
clean unbroken ground plane. A multilayer board with  
an internal ground plane is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
can be further away or on the back of the PC board. The  
traces connecting the pins and bypass capacitors must  
be kept short and should be made as wide as possible.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
High quality ceramic bypass capacitors should be used at  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
HEAT TRANSFER  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1µF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2µF capacitor  
between REFH and REFL can be somewhat further away.  
Most of the heat generated by the LTC2261-12 is trans-  
ferred from the die through the bottom-side exposed pad  
and package leads onto the printed circuit board. For good  
electricalandthermalperformance,theexposedpadmust  
be soldered to a large grounded pad on the PC board.  
226112fc  
28  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical applicaTions  
LTC2261 Schematic  
T2  
MABAES0060  
R9 10Ω  
SENSE  
C23  
1µF  
R39  
ANALOG INPUT  
33.2Ω  
1%  
R14  
1k  
C51  
4.7pF  
R40  
33.2Ω  
1%  
C17  
1µF  
R10 10Ω  
V
DD  
R16  
100Ω  
R15 100Ω  
C12  
0.1µF  
C13  
1µF  
C19  
0.1µF  
DIGITAL  
OUTPUTS  
40  
39  
38  
37  
36  
+
35  
34  
33  
32  
31  
V
SENSE V  
V
CM  
OF  
OF D11 D10 D9 D8  
DD  
REF  
R27 10Ω  
R28 10Ω  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+
AIN  
D7  
2
3
AIN  
D6  
+
GND  
CLKOUT  
4
REFH  
REFH  
REFL  
REFL  
CLKOUT  
5
C15  
0.1µF  
0V  
OV  
DD  
DD  
C20  
2.2µF  
LTC2261CUJ  
C37  
0.1µF  
6
OGND  
7
D5  
D4  
D3  
D2  
8
PAR/SER  
C21  
0.1µF  
PAR/SER  
9
V
V
DD  
DD  
10  
V
DD  
C18  
0.1µF  
+
GND ENC ENC CS SCK SDI SDO DNC DNC D0 D1  
DIGITAL  
OUTPUTS  
41  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R13  
100Ω  
ENCODE CLOCK  
226112 TA02  
SPI BUS  
226112fc  
29  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical applicaTions  
Silkscreen Top  
Top Side  
226112 TA04  
226112 TA03  
Inner Layer 2 GND  
Inner Layer 3  
226112 TA05  
226112 TA06  
226112fc  
30  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
Typical applicaTions  
Inner Layer 4  
Inner Layer 5 Power  
226112 TA07  
226112 TA08  
Bottom Side  
226112 TA09  
226112fc  
31  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-ꢀ728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.ꢀ0 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
6.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
39 40  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ NOTCH  
R = 0.45 OR  
0.35 × 45°  
CHAMFER  
4.42 0.ꢀ0  
4.50 REF  
(4-SIDES)  
4.42 0.ꢀ0  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
ꢀ. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
226112fc  
32  
For more information www.linear.com/LTC2261-12  
LTC2261-12  
LTC2260-12/LTC2259-12  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
08/12 Corrected RESET REGISTER A0, D7 description.  
26  
29  
20  
Attached V to pins 9,10 and 40 on schematic.  
DD  
C
01/14 Corrected “external reference” to “internal reference” for 1V input range.  
226112fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
33  
LTC2261-12  
LTC2260-12/LTC2259-12  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1993-2  
LT1994  
High Speed Differential Op Amp  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
Low Noise, Low Distortion Fully Differential Input/  
Output Amplifier/Driver  
LTC2215  
LTC2216  
LTC2217  
LTC2202  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
LTC2208  
LTC2209  
LTC2220  
LTC2220-1  
LTC2224  
LTC2249  
LTC2250  
LTC2251  
LTC2252  
LTC2253  
LTC2254  
LTC2255  
16-Bit, 65Msps, Low Noise ADC  
16-Bit, 80Msps, Low Noise ADC  
16-Bit, 105Msps, Low Noise ADC  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
16-Bit, 25Msps, 3.3V ADC, Lowest Noise  
16-Bit, 40Msps, 3.3V ADC  
700mW, 81.5dB SNR, 100dB SFDR, 64-Pin QFN  
970mW, 81.3dB SNR, 100dB SFDR, 64-Pin QFN  
1190mW, 81.2dB SNR, 100dB SFDR, 64-Pin QFN  
140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
220mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
480mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
590mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
725mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
900mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Pin QFN  
1450mW, 77.1dB SNR, 100dB SFDR, 64-Pin QFN  
890mW, 67.5dB SNR, 9mm × 9mm QFN Package  
910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
230mW, 73dB SNR, 5mm × 5mm QFN Package  
320mW, 61.6dB SNR, 5mm × 5mm QFN Package  
395mW, 61.6dB SNR, 5mm × 5mm QFN Package  
320mW, 70.2dB SNR, 5mm × 5mm QFN Package  
395mW, 70.2dB SNR, 5mm × 5mm QFN Package  
320mW, 72.5dB SNR, 5mm × 5mm QFN Package  
395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN  
16-Bit, 65Msps, 3.3V ADC  
16-Bit, 80Msps, 3.3V ADC  
16-Bit, 105Msps, 3.3V ADC  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
16-Bit, 160Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 170Msps ADC  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High IF Sampling  
14-Bit, 80Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 125Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
14-Bit, 105Msps ADC  
14-Bit, 125Msps, 3V ADC, Lowest Power  
LTC2259-14/  
LTC2260-14/  
LTC2261-14  
14-Bit, 80/105/125Msps 1.8V ADCs,  
Ultra-Low Power  
89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR  
DDR LVDS/DDR CMOS/CMOS Outputs, 6mm × 6mm QFN Package  
LTC2284  
LTC2299  
LT5517  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
Dual 14-Bit, 80Msps ADC  
540mW, 72.4dB SNR, 88dB SFDR, 64-Pin QFN  
230mW, 71.6dB SNR, 5mm × 5mm QFN Package  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
LT5527  
400MHz to 3.7GHz High Linearity Downconverting  
Mixer  
24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
LT5557  
400MHz to 3.8GHz High Linearity Downconverting  
Mixer  
23.7dBm IIP3 at 2.6GHz, 23.5dBm IIP3 at 3.5GHz, NF = 13.2dB,  
3.3V Supply Operation, Integrated Transformer  
LT5575  
800MHz to 2.7GHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator  
Integrated RF and LO Transformer  
LTC6400-20  
1.8GHz Low Noise, Low Distortion Differential ADC  
Driver for 300MHz IF  
Fixed Gain 10V/V, 2.1nV√Hz Total Input Noise, 3mm × 3mm QFN-16 Package  
LT6604-2.5/  
LT6604 -5/  
LT6604-10/  
LT6604-15  
Dual Matched 2.5MHz, 5MHz, 10MHz, 15MHz Filter Dual Matched 4th Order LP Filters with Differential Drivers. Low Noise, Low  
with ADC Driver Distortion Amplifiers  
226112fc  
LT 0114 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
34  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2261-12  
LINEAR TECHNOLOGY CORPORATION 2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY