LTC2267-14_15 [Linear]

14-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs;
LTC2267-14_15
型号: LTC2267-14_15
厂家: Linear    Linear
描述:

14-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs

文件: 总32页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2268-14/  
LTC2267-14/LTC2266-14  
14-Bit, 125Msps/105Msps/  
80Msps Low Power Dual ADCs  
FeaTures  
DescripTion  
TheLTC®2268-14/LTC2267-14/LTC2266-14are2-channel,  
simultaneous sampling 14-bit A/D converters designed  
for digitizing high frequency, wide dynamic range signals.  
They are perfect for demanding communications applica-  
tions with AC performance that includes 73.1dB SNR and  
88dB spurious free dynamic range (SFDR). Ultralow jitter  
n
2-Channel Simultaneous Sampling ADC  
n
73.1dB SNR  
n
88dB SFDR  
n
Low Power: 299mW/243mW/203mW Total  
n
150mW/121mW/101mW Per Channel  
n
Single 1.8V Supply  
n
Serial LVDS Outputs: 1 or 2 Bits Per Channel  
of0.15ps  
allowsundersamplingofIFfrequencieswith  
RMS  
n
Selectable Input Ranges: 1V to 2V  
excellent noise performance.  
P-P  
P-P  
n
n
n
n
n
800MHz Full Power Bandwidth S/H  
DC specs include ±1LSB INL (typ), ±0.3LSB DNL (typ)  
Shutdown and Nap Modes  
and no missing codes over temperature. The transition  
Serial SPI Port for Configuration  
noise is a low 1.2LSB  
.
RMS  
Pin Compatible 14-Bit and 12-Bit Versions  
The digital outputs are serial LVDS to minimize the num-  
ber of data lines. Each channel outputs two bits at a time  
(2-lane mode). At lower sampling rates there is a one bit  
per channel option (1-lane mode). The LVDS drivers have  
optional internal termination and adjustable output levels  
to ensure clean signal integrity.  
40-Pin (6mm × 6mm) QFN Package  
applicaTions  
n
Communications  
n
Cellular Base Stations  
n
Software Defined Radios  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL, or  
CMOS inputs. An internal clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Portable Medical Imaging  
n
Multichannel Data Acquisition  
n
Nondestructive Testing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
LTC2268-14, 125Msps,  
1.8V  
V
1.8V  
OV  
2-Tone FFT, fIN = 70MHz and 75MHz  
DD  
DD  
0
–10  
–20  
–30  
–40  
CH.1  
ANALOG  
INPUT  
OUT1A  
OUT1B  
14-BIT  
S/H  
S/H  
ADC CORE  
SERIALIZED  
DATA  
SERIALIZER  
OUT2A  
OUT2B  
CH.2  
ANALOG  
INPUT  
–50  
–60  
–70  
14-BIT  
ADC CORE  
LVDS  
OUTPUTS  
DATA  
CLOCK  
OUT  
–80  
–90  
ENCODE  
INPUT  
PLL  
FRAME  
–100  
–110  
–120  
GND  
OGND  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
226814 TA01  
226814 TA01b  
22687614fa  
1
LTC2268-14/  
LTC2267-14/LTC2266-14  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Supply Voltages  
V , OV ................................................ –0.3V to 2V  
DD  
DD  
+
Analog Input Voltage (A , A  
,
IN  
IN  
40 39 38 37 36 35 34 33 32 31  
+
PAR/SER, SENSE) (Note 3).............–0.3V to (V +0.2V)  
DD  
+
A
A
1
2
30  
29  
28  
OUT1B  
OUT1B  
+
IN1  
IN1  
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4) ............................................ –0.3V to 3.9V  
+
V
3
DCO  
CM1  
REFH  
REFH  
REFL  
REFL  
4
27 DCO  
26 OV  
Digital Output Voltage .................. –0.3V to (OV +0.3V)  
Operating Temperature Range  
LTC2268C, 2267C, 2266C........................ 0°C to 70°C  
LTC2268I, 2267I, 2266I ....................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
41  
GND  
5
DD  
DD  
6
25 OGND  
+
7
24 FR  
V
8
23  
FR  
CM2  
+
+
A
9
22 OUT2A  
21  
IN2  
A
10  
OUT2A  
IN2  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2268CUJ-14#PBF  
LTC2268IUJ-14#PBF  
LTC2267CUJ-14#PBF  
LTC2267IUJ-14#PBF  
LTC2266CUJ-14#PBF  
LTC2266IUJ-14#PBF  
TAPE AND REEL  
LTC2268CUJ-14#TRPBF LTC2268UJ-14  
LTC2268IUJ-14#TRPBF LTC2268UJ-14  
LTC2267CUJ-14#TRPBF LTC2267UJ-14  
LTC2267IUJ-14#TRPBF LTC2267UJ-14  
LTC2266CUJ-14#TRPBF LTC2266UJ-14  
LTC2266IUJ-14#TRPBF LTC2266UJ-14  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
22687614fa  
2
LTC2268-14/  
LTC2267-14/LTC2266-14  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2268-14  
TYP  
LTC2267-14  
TYP  
LTC2266-14  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
l
l
Resolution  
14  
14  
14  
Bits  
(No Missing Codes)  
Integral Linearity Error  
Differential Analog Input  
(Note 6)  
–3.5  
3.5  
–3.5  
3.5  
–2.75  
2.75  
LSB  
±1  
±1  
±1  
l
l
Differential Linearity Error  
Offset Error  
Differential Analog Input  
(Note 7)  
–0.8  
–12  
0.8  
12  
–0.8  
–12  
0.8  
12  
–0.8  
–12  
0.8  
2
LSB  
mV  
±0.3  
±3  
±0.3  
±3  
±0.3  
±3  
Gain Error  
Internal Reference  
External Reference  
–0.9  
–0.9  
–0.9  
–0.9  
–0.9  
–0.9  
%FS  
%FS  
l
–2.3  
0.5  
–2.3  
0.5  
–2.3  
0.5  
Offset Drift  
µV/°C  
±20  
±20  
±20  
Full-Scale Drift  
Internal Reference  
External Reference  
ppm/°C  
ppm/°C  
±30  
±10  
±30  
±10  
±30  
±10  
Gain Matching  
Offset Matching  
Transition Noise  
External Reference  
±0.2  
±3  
±0.2  
±3  
±0.2  
±3  
%FS  
mV  
External Reference  
1.2  
1.2  
1.2  
LSB  
RMS  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
V
V
V
Analog Input Range (A – A  
)
1.7V < V < 1.9V  
1 to 2  
V
P–P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A – A )/2  
Differential Analog Input (Note 8)  
V
– 100mV  
0.625  
V
CM  
V
CM  
+100mV  
1.3  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
CM  
External Voltage Reference Applied to SENSE External Reference Mode  
1.25  
V
I
Analog Input Common Mode Current  
Per Pin, 125Msps  
Per Pin, 105Msps  
Per Pin, 80Msps  
155  
130  
100  
µA  
µA  
µA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A , A < V  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
DD  
0 < PAR/SER < V  
IN2  
DD  
SENSE Input Leakage Current  
0.625 < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
0
AP  
0.15  
80  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
Figure 6 Test Circuit  
800  
MHz  
22687614fa  
3
LTC2268-14/  
LTC2267-14/LTC2266-14  
DigiTal accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2268-14  
LTC2267-14  
LTC2266-14  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN  
TYP MAX MIN  
UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
73.1  
73  
73  
70.8 72.9  
72.6  
73  
dBFS  
dBFS  
dBFS  
l
l
l
l
70MHz Input  
140MHz Input  
71.4  
71  
76  
85  
72.9  
72.5  
72.6  
SFDR  
Spurious Free Dynamic Range  
5MHz Input  
70MHz Input  
140MHz Input  
88  
85  
82  
88  
88  
85  
82  
dBFS  
dBFS  
dBFS  
nd  
rd  
2
or 3 Harmonic  
75  
84  
76  
83  
85  
82  
Spurious Free Dynamic Range  
5MHz Input  
70MHz Input  
140MHz Input  
90  
90  
90  
90  
90  
90  
90  
90  
90  
dBFS  
dBFS  
dBFS  
th  
4
Harmonic or Higher  
S/(N+D) Signal-to-Noise Plus Distortion 5MHz Input  
73  
73  
72.9  
70.4 72.6  
72  
dBFS  
dBFS  
dBFS  
Ratio  
70MHz Input  
140MHz Input  
70.5 72.6  
72  
70.2 72.6  
72  
Crosstalk  
10MHz Input  
–105  
–105  
–105  
dBc  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 V  
±25  
4
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.V + 25mV  
0.5 V – 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
OUT  
I
= 0  
1.225  
1.25  
±25  
7
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
DIFFERENTIAL ENCODE MODE (ENC NOT TIED TO GND)  
l
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
V
Common Mode Input Voltage  
Internally Set  
1.2  
V
V
ICM  
l
l
Externally Set (Note 8)  
1.1  
0.2  
1.6  
3.6  
+
V
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
V
kΩ  
pF  
IN  
R
10  
IN  
C
Input Capacitance  
3.5  
IN  
SINGLE-ENDED ENCODE MODE (ENC TIED TO GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
=1.8V  
=1.8V  
1.2  
0
V
IH  
IL  
IN  
DD  
0.6  
3.6  
V
DD  
+
ENC to GND  
V
kΩ  
R
(See Figure 11)  
30  
IN  
IN  
C
Input Capacitance  
3.5  
pF  
22687614fa  
4
LTC2268-14/  
LTC2267-14/LTC2266-14  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
=1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
V
=1.8V  
0.6  
10  
I
= 0V to 3.6V  
–10  
µA  
pF  
IN  
C
Input Capacitance  
3
200  
3
IN  
SDO OUTPUT (Serial Programming Mode. Open Drain Output. Requires 2kΩ Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
DD  
=1.8V, SDO = 0V  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
350  
175  
454  
250  
mV  
mV  
OD  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.25  
1.25  
1.375  
1.375  
V
V
OS  
R
Termination Enabled, OV =1.8V  
100  
Ω
TERM  
DD  
poWer reQuireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2268-14  
TYP MAX MIN  
LTC2267-14  
TYP MAX MIN  
LTC2266-14  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.7  
UNITS  
l
l
l
V
Analog Supply Voltage (Note 10)  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
98  
1.9  
1.9  
V
V
DD  
OV  
DD  
Output Supply Voltage (Note 10)  
1.7  
I
I
Analog Supply Current Sine Wave Input  
150  
168  
119  
131  
111  
mA  
VDD  
OVDD  
l
l
Digital Supply Current 2-Lane Mode, 1.75mA Mode  
2-Lane Mode, 3.5mA Mode  
16  
30  
20  
34  
16  
29  
19  
33  
15  
29  
18  
32  
mA  
mA  
l
l
P
DISS  
Power Dissipation  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, 3.5mA Mode  
299  
324  
338  
364  
243  
266  
270  
295  
203  
229  
232  
257  
mW  
mW  
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
70  
20  
70  
20  
70  
20  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No Increase for Sleep Mode)  
DIFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2268-14  
LTC2267-14  
TYP MAX MIN  
LTC2266-14  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN  
UNITS  
l
f
Sampling Frequency  
(Notes 10, 11)  
5
125  
5
105  
5
80  
MHz  
S
l
l
t
ENC Low Time (Note 8)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
100  
100  
4.52 4.76  
4.76  
100  
100  
5.93 6.25  
100  
100  
ns  
ns  
ENCL  
2
2
6.25  
l
l
t
t
Analog Supply Current  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
100  
100  
4.52 4.76  
100  
100  
5.93 6.25  
100  
100  
ns  
ns  
ENCH  
2
4.76  
2
6.25  
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
AP  
22687614fa  
5
LTC2268-14/  
LTC2267-14/LTC2266-14  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 100Ω Differential, C = 2pF to GND on Each Output)  
MIN  
TYP  
MAX  
UNITS  
DIGITAL DATA OUTPUTS (R  
TERM  
L
t
Serial Data Bit Period  
2-Lanes, 16-Bit Serialization  
2-Lanes, 14-Bit Serialization  
2-Lanes, 12-Bit Serialization  
1-Lane, 16-Bit Serialization  
1-Lane, 14-Bit Serialization  
1-Lane, 12-Bit Serialization  
1/(8 • f )  
s
SER  
S
1/(7 • f )  
S
1/(6 • f )  
S
1/(16 • f )  
S
1/(14 • f )  
S
1/(12 • f )  
S
l
l
l
t
t
t
t
t
FR to DCO Delay  
DATA to DCO Delay  
Propagation Delay  
Output Rise Time  
Output Fall Time  
(Note 8)  
0.35 • t  
0.35 • t  
0.5 • t  
0.65 • t  
0.65 • t  
s
s
FRAME  
DATA  
PD  
SER  
SER  
SER  
SER  
(Note 8)  
0.5 • t  
SER  
SER  
(Note 8)  
0.7n + 2 • t  
1.1n + 2 • t  
1.5n + 2 • t  
SER  
s
SER  
SER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
ns  
ns  
R
F
DCO Cycle-Cycle Jitter  
Pipeline Latency  
t
= 1ns  
ps  
P-P  
SER  
6
Cycles  
SPI PORT TIMING (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK falling to SDO Valid  
Readback Mode, C  
= 20pF, R  
125  
SDO  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and 11 1111 1111  
1111 in 2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V  
,
DD  
Note 8: Guaranteed by design, not subject to test.  
they will be clamped by internal diodes. This product can handle input  
Note 9: V = OV = 1.8V, f  
(LTC2267), or 80MHz (LTC2266), 2-lane output mode, ENC = single-  
ended 1.8V square wave, ENC = 0V, input range = 2V with differential  
= 125MHz (LTC2268), 105MHz  
DD  
DD  
SAMPLE  
+
currents of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
P-P  
clamped by internal diodes. When these pin voltages are taken above  
drive, unless otherwise noted. The supply current and power dissipation  
specifications are totals for the entire chip, not per channel.  
V
DD  
they will not be clamped by internal diodes. This product can handle  
input currents of greater than 100mA below GND without latchup.  
Note 10: Recommended operating conditions.  
Note 5: V = OV = 1.8V, f = 125MHz (LTC2268), 105MHz  
DD  
DD  
SAMPLE  
Note 11: The maximum sampling frequency depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
+
(LTC2267), or 80MHz (LTC2266), 2-lane output mode, differential ENC /  
ENC = 2V sine wave, input range = 2V with differential drive, unless  
P-P  
P-P  
data rate is 1000Mbps so t  
must be greater than or equal to 1ns.  
SER  
otherwise noted.  
22687614fa  
6
LTC2268-14/  
LTC2267-14/LTC2266-14  
TiMing DiagraMs  
2-Lane Output Mode, 16-Bit Serialization*  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D5  
D3  
D2  
D1  
D0  
0
0
D13 D11 D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D13 D11 D9  
D12 D10 D8  
+
OUT#A  
OUT#B  
D4  
D12 D10 D8  
SAMPLE N-5  
D0  
0
+
OUT#B  
SAMPLE N-6  
SAMPLE N-4  
226814 TD01  
*SEE THE DIGITAL OUTPUTS SECTION  
2-Lane Output Mode, 14-Bit Serialization  
t
AP  
ANALOG  
INPUT  
N + 2  
N + 1  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D13 D11 D9  
D0 D12 D10 D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D13 D11 D9  
D0 D12 D10 D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D13 D11 D9  
+
OUT#A  
OUT#B  
D0 D12 D10 D8  
SAMPLE N-3  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
226814 TD02  
+
+
NOTE THAT IN THIS MODE, FR /FR HAS TWO TIMES THE PERIOD OF ENC /ENC  
22687614fa  
7
LTC2268-14/  
LTC2267-14/LTC2266-14  
TiMing DiagraMs  
2-Lane Output Mode, 12-Bit Serialization  
t
N + 1  
AP  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
+
FR  
FR  
t
PD  
t
SER  
OUT#A  
D9  
D8  
D7  
D6  
D5  
D4  
D3 D13 D11 D9  
D7  
D5  
D4  
D3 D13 D11 D9  
D2 D12 D10 D8  
+
OUT#A  
OUT#B  
D2 D12 D10 D8  
SAMPLE N-5  
D6  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-4  
226814 TD03  
1-Lane Output Mode, 16-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D1  
D0  
0
0
D13 D12 D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
D13 D12 D11 D10  
SAMPLE N-4  
+
OUT#A  
SAMPLE N-6  
226814 TD04  
+
OUT#B , OUT#B ARE DISABLED  
22687614fa  
8
LTC2268-14/  
LTC2267-14/LTC2266-14  
TiMing DiagraMs  
1-Lane Output Mode, 14-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D3  
D2  
D1  
D0 D13 D12 D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 D13 D12 D11 D10  
SAMPLE N-4  
+
OUT#A  
SAMPLE N-6  
226814 TD05  
+
OUT#B , OUT#B ARE DISABLED  
1-Lane Output Mode, 12-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D5  
D4  
D3  
D2 D13 D12 D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
D3  
D2 D13 D12 D11  
+
OUT#A  
SAMPLE N-6  
SAMPLE N-4  
+
226814 TD06  
OUT#B , OUT#B ARE DISABLED  
22687614fa  
9
LTC2268-14/  
LTC2267-14/LTC2266-14  
TiMing DiagraMs  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
226814 TD07  
HIGH IMPEDANCE  
22687614fa  
10  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical perForMance characTerisTics  
LTC2268-14: Integral  
Nonlinearity (INL)  
LTC2268-14: Differential  
Nonlinearity (DNL)  
LTC2268-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 125Msps  
2.0  
1.5  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
0.4  
0.2  
0
0.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
8192  
12288  
16384  
0
8192  
12288  
16384  
0
10  
20  
30  
40  
50  
60  
4096  
4096  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
226814 G01  
226814 G02  
226814 G03  
LTC2268-14: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 125Msps  
LTC2268-14: 8k Point FFT,  
IN = 70MHz, –1dBFS, 125Msps  
LTC2268-14: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 125Msps  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226814 G04  
226814 G05  
226814 G06  
LTC2268-14: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
125Msps  
LTC2268-14: SNR vs Input  
LTC2268-14: Shorted Input  
Histogram  
Frequency, 1dB, 2V Range,  
125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
74  
73  
72  
71  
70  
69  
68  
67  
66  
–80  
–90  
–100  
–110  
–120  
2000  
1000  
0
0
20  
30  
40  
50  
60  
8178  
8182  
8184  
8186  
10  
8180  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
226814 G07  
226814 G08  
226814 G09  
22687614fa  
11  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical perForMance characTerisTics  
LTC2268-14: SFDR vs Input  
Frequency, 1dB, 2V Range,  
125Msps  
LTC2268-14: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 125Msps  
LTC2268-14: SNR vs Input Level,  
fIN = 70MHz, 2V Range, 125Msps  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
dBFS  
80  
dBc  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
–70  
INPUT LEVEL (dBFS)  
226814 G50a  
226814 G10  
226814 G12  
LTC2268-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
IOVDD vs Sample Rate, 5MHz  
Sine Wave Input, –1dB  
LTC2268-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
160  
150  
140  
130  
120  
110  
100  
30  
20  
10  
0
74  
73  
72  
71  
70  
69  
2-LANE, 3.5mA  
1-LANE, 3.5mA  
2-LANE, 1.75mA  
1-LANE, 1.75mA  
68  
67  
66  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
226814 G51  
226814 G53  
226814 G15  
LTC2267-14: Integral  
Nonlinearity (INL)  
LTC2267-14: Differential  
Nonlinearity (DNL)  
LTC2267-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 105Msps  
2.0  
1.5  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
0.4  
0.2  
0
0.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
8192  
12288  
16384  
0
8192  
12288  
16384  
0
20  
30  
40  
50  
4096  
4096  
10  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
226814 G21  
226814 G22  
226814 G23  
22687614fa  
12  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical perForMance characTerisTics  
LTC2267-14: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 105Msps  
LTC2267-14: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 105Msps  
LTC2267-14: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
0
20  
30  
40  
50  
0
20  
30  
40  
50  
10  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226814 G24  
226814 G25  
226814 G26  
LTC2267-14: 8k Point 2-Tone FFT,  
IN = 70MHz, 75MHz, –1dBFS,  
105Msps  
LTC2267-14: SNR vs Input  
Frequency, 1dB, 2V Range,  
105Msps  
f
LTC2267-14: Shorted Input  
Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
74  
73  
72  
71  
70  
69  
68  
67  
66  
–80  
–90  
–100  
–110  
–120  
2000  
1000  
0
0
20  
30  
40  
50  
8195  
8199  
8201  
8203  
10  
8197  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
226814 G27  
226814 G28  
226814 G29  
LTC2267-14: SFDR vs Input  
Frequency, 1dB, 2V Range,  
105Msps  
LTC2267-14: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 105Msps  
LTC2267-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
130  
120  
110  
100  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
90  
80  
0
25  
50  
75  
100  
226814 G54  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
–70  
SAMPLE RATE (Msps)  
226814 G30  
226814 G32  
22687614fa  
13  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical perForMance characTerisTics  
LTC2267-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2266-14: Integral  
Nonlinearity (INL)  
LTC2266-14: Differential  
Nonlinearity (DNL)  
1.0  
0.8  
0.6  
74  
73  
72  
71  
70  
69  
2.0  
1.5  
1.0  
0.4  
0.2  
0
0.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
68  
67  
66  
0
8192  
12288  
16384  
4096  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
8192  
12288  
16384  
4096  
OUTPUT CODE  
SENSE PIN (V)  
OUTPUT CODE  
226814 G42  
226814 G35  
226814 G41  
LTC2266-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 80Msps  
LTC2266-14: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 80Msps  
LTC2266-14: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
10  
0
20  
30  
40  
0
20  
30  
40  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226814 G43  
226814 G44  
226814 G45  
LTC2266-14: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
80Msps  
LTC2266-14: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 80Msps  
LTC2266-14:  
Shorted Input Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
2000  
1000  
0
0
20  
30  
40  
0
20  
30  
40  
8184  
8188  
8190  
8192  
10  
10  
8186  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CODE  
226814 G46  
226814 G47  
226814 G48  
22687614fa  
14  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical perForMance characTerisTics  
LTC2266-14: SNR vs Input  
LTC2266-14: SFDR vs Input  
LTC2266-14: SFDR vs Input  
Frequency, 1dB, 2V Range,  
80Msps  
Frequency, 1dB, 2V Range,  
Frequency, 1dB, 2V Range,  
80Msps  
80Msps  
74  
73  
72  
71  
70  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
–70  
226814 G49  
226814 G50  
226814 G52  
LTC2266-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2266-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
DCO Cycle-Cycle Jitter vs Serial  
Data Rate  
350  
300  
250  
200  
150  
110  
100  
90  
74  
73  
72  
71  
70  
69  
100  
50  
0
80  
68  
67  
66  
70  
0
20  
40  
60  
80  
0
200  
400  
600  
800  
1000  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SERIAL DATA RATE (Mbps)  
SENSE PIN (V)  
226814 G55a  
226814 G52a  
226814 G55  
22687614fa  
15  
LTC2268-14/  
LTC2267-14/LTC2266-14  
pin FuncTions  
+
A
A
V
(Pin1):Channel1PositiveDifferentialAnalogInput.  
(Pin2):Channel1NegativeDifferentialAnalogInput.  
(Pin3):CommonModeBiasOutput,NominallyEqual  
SCK (Pin 16): In serial programming mode, (PAR/SER =  
IN1  
0V), SCK is the serial interface clock input. In the parallel  
IN1  
programming mode (PAR/SER= V ), SCK selects 3.5mA  
DD  
or 1.75mA LVDS output currents. SCK can be driven with  
CM1  
to V /2. V should be used to bias the common mode  
1.8V to 3.3V logic.  
DD  
CM  
of the analog inputs of channel 1. Bypass to ground with  
a 0.1µF ceramic capacitor.  
SDI (Pin 17): In serial programming mode, (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI is  
clocked into the mode control registers on the rising edge  
of SCK. In the parallel programming mode (PAR/SER =  
REFH (Pins 4,5): ADC High Reference. Bypass to pins 6, 7  
with a 2.2µF ceramic capacitor and to ground with a 0.1µF  
ceramic capacitor.  
V ), SDI can be used to power down the part. SDI can  
DD  
be driven with 1.8V to 3.3V logic.  
REFL (Pins 6,7): ADC Low Reference. Bypass to pins 4, 5  
with a 2.2µF ceramic capacitor and to ground with a 0.1µF  
ceramic capacitor.  
GND (Pins 18, 33, 37, Exposed Pad Pin 41): ADC Power  
Ground. The exposed pad must be soldered to the PCB  
ground.  
V
(Pin8):CommonModeBiasOutput,NominallyEqual  
CM2  
to V /2. V should be used to bias the common mode  
OGND (Pin 25): Output Driver Ground. Must be shorted  
to the ground plane by a very low inductance path. Use  
multiple vias close to the pin.  
DD  
CM  
of the analog inputs of channel 2. Bypass to ground with  
a 0.1µF ceramic capacitor.  
+
A
(Pin 9): Channel 2 Positive Differential Analog  
(Pin 10): Channel 2 Negative Differential Analog  
OV (Pin 26): Output Driver Supply. Bypass to ground  
IN2  
DD  
Input.  
with a 0.1µF ceramic capacitor.  
A
IN2  
SDO (Pin 34): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control registers  
and can be latched on the falling edge of SCK. SDO is an  
open-drain NMOS output that requires an external 2k  
pull-up resistor to 1.8V – 3.3V. If read back from the mode  
control registers is not needed, the pull-up resistor is not  
necessaryandSDOcanbeleftunconnected.Intheparallel  
Input.  
V
(Pins 11, 12, 39, 40): 1.8V Analog Power Supply.  
DD  
Bypasstogroundwith0.1µFceramiccapacitors. Adjacent  
pins can share a bypass capacitor.  
+
ENC (Pin 13): Encode Input. Conversion starts on the  
rising edge.  
programmingmode(PAR/SER=V ),SDOisaninputthat  
ENC (Pin 14): Encode Complement Input. Conversion  
DD  
enables internal 100Ω termination resistors on the digital  
outputs. When used as an input, SDO can be driven with  
1.8V to 3.3V logic through a 1k series resistor.  
starts on the falling edge.  
CS(Pin15):Inserialprogrammingmode,(PAR/SER=0V),  
CS is the serial interface chip select input. When CS is low,  
SCKisenabledforshiftingdataonSDIintothemodecontrol  
registers. In the parallel programming mode (PAR/SER =  
PAR/SER (Pin 35): Programming Mode Selection Pin.  
Connecttogroundtoenabletheserialprogrammingmode.  
CS, SCK, SDI, SDO become a serial interface that control  
V ), CS selects 2-lane or 1-lane output mode. CS can  
DD  
the A/D operating modes. Connect to V to enable the  
be driven with 1.8V to 3.3V logic.  
DD  
parallel programming mode where CS, SCK, SDI, SDO  
22687614fa  
16  
LTC2268-14/  
LTC2267-14/LTC2266-14  
pin FuncTions  
become parallel logic inputs that control a reduced set of  
LVDS Outputs  
the A/D operating modes. PAR/SER should be connected  
All pins below are differential LVDS outputs. The output  
current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDS output pair.  
directly to ground or the V of the part and not be driven  
DD  
by a logic signal.  
V
(Pin36):ReferenceVoltageOutput.Bypasstoground  
REF  
with a 1µF ceramic capacitor, nominally 1.25V.  
+
+
OUT2B /OUT2B , OUT2A /OUT2A (Pins 19/20, 21/22):  
SENSE(Pin38):ReferenceProgrammingPin.Connecting  
Serial Data Outputs for Channel 2. In 1-lane output mode  
+
SENSEtoV selectstheinternalreferenceanda±1Vinput  
only OUT2A /OUT2A are used.  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a ±0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
+
FR /FR (Pins 23/24): Frame Start Outputs.  
+
DCO /DCO (Pins 27/28): Data Clock Outputs.  
+
+
input range of ±0.8 • V  
.
SENSE  
OUT1B /OUT1B , OUT1A /OUT1A (Pins 29/30, 31/32):  
Serial Data Outputs for Channel 1. In 1-lane output mode  
+
only OUT1A /OUT1A are used.  
22687614fa  
17  
LTC2268-14/  
LTC2267-14/LTC2266-14  
block DiagraM  
1.8V  
1.8V  
+
V
ENC  
ENC  
OV  
DD  
DD  
+
OUT1A  
OUT1A  
PLL  
+
+
A
A
IN1  
OUT1B  
14-BIT  
ADC CORE  
OUT1B  
SAMPLE-  
AND-HOLD  
IN1  
+
OUT2A  
OUT2A  
DATA  
SERIALIZER  
+
A
A
IN2  
+
OUT2B  
OUT2B  
14-BIT  
ADC CORE  
SAMPLE-  
AND-HOLD  
IN2  
+
DCO  
V
REF  
1.25V  
REFERENCE  
DCO  
1µF  
+
FR  
RANGE  
SELECT  
FR  
OGND  
REFH  
REFL  
REF  
BUF  
SENSE  
V
/2  
DD  
DIFF  
REF  
AMP  
MODE  
CONTROL  
REGISTERS  
REFH  
0.1µF  
REFL  
V
V
CM2  
PAR/SER  
CS  
SCK SDI  
SDO  
CM1  
GND  
226814 F01  
0.1µF  
0.1µF  
2.2µF  
0.1µF  
0.1µF  
Figure 1. Functional Block Diagram  
22687614fa  
18  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
CONVERTER OPERATION  
ANALOG INPUT  
The analog inputs are differential CMOS sample-and-hold  
circuits(Figure2).Theinputsshouldbedrivendifferentially  
The LTC2268-14/LTC2267-14/LTC2266-14 are low power,  
2-channel, 14-bit, 125Msps/105Msps/80Msps A/D con-  
verters that are powered by a single 1.8V supply. The  
analog inputs should be driven differentially. The encode  
input can be driven differentially for optimal jitter perfor-  
mance, or single-ended for lower power consumption.  
To minimize the number of data lines the digital outputs  
are serial LVDS. Each channel outputs two bits at a time  
(2-lane mode). At lower sampling rates there is a one bit  
perchanneloption(1-lanemode).Manyadditionalfeatures  
canbechosenbyprogrammingthemodecontrolregisters  
through a serial SPI port.  
around a common mode voltage set by the V  
or V  
CM1  
CM2  
output pins, which are nominally V /2. For the 2V input  
DD  
range, the inputs should swing from V – 0.5V to V  
CM  
CM  
+ 0.5V. There should be 180° phase difference between  
the inputs.  
Thetwochannelsaresimultaneouslysampledbyashared  
encode circuit (Figure 2).  
INPUT DRIVE CIRCUITS  
Input filtering  
LTC2268-14  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
V
DD  
C
C
SAMPLE  
3.5pF  
R
ON  
10Ω  
10Ω  
25Ω  
+
A
A
IN  
C
PARASITIC  
1.8pF  
V
DD  
SAMPLE  
3.5pF  
R
25Ω  
ON  
IN  
C
1.8pF  
PARASITIC  
V
DD  
50Ω  
V
CM  
0.1µF  
0.1µF  
T1  
1:1  
1.2V  
+
25Ω  
A
IN  
ANALOG  
INPUT  
10k  
LTC2268-14  
0.1µF  
25Ω  
25Ω  
+
ENC  
12pF  
ENC  
25Ω  
A
IN  
10k  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
226814 F03  
1.2V  
226814 F02  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 2. Equivalent Input Circuit. Only One  
of the Two Analog Channels is Shown  
22687614fa  
19  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
Transformer Coupled Circuits  
Amplifier Circuits  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distor-  
tion.  
tap is biased with V , setting the A/D input at its optimal  
CM  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
At very high frequencies an RF gain block will often  
have lower distortion than a differential amplifier. If the  
gain block is single-ended, then a transformer circuit  
(Figures 4 to 6) should convert the signal to differential  
before driving the A/D.  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTC2268-14  
T1  
0.1µF  
25Ω  
25Ω  
50Ω  
V
CM  
4.7pF  
0.1µF  
A
IN  
0.1µF  
0.1µF  
2.7nH  
0.1µF  
+
A
IN  
IN  
ANALOG  
INPUT  
226814 F04  
LTC2268-14  
25Ω  
25Ω  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
T1  
2.7nH  
A
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
226814 F06  
Figure 4.Recommended Front End Circuit for Input  
Frequencies from 70MHz to 170MHz  
Figure 6. Recommended Front End Circuit for Input  
Frequencies Above 300MHz  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
+
V
CM  
A
ANALOG  
INPUT  
IN  
T2  
LTC2268-14  
T1  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
0.1µF  
25Ω  
25Ω  
200Ω 200Ω  
25Ω  
0.1µF  
0.1µF  
1.8pF  
+
A
IN  
LTC2268-14  
A
ANALOG  
INPUT  
IN  
+
+
12pF  
226814 F05  
25Ω  
A
IN  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
226814 F07  
Figure 7. Front End Circuit Using a High Speed  
Differential Amplifier  
Figure 5. Recommended Front End Circuit for Input  
Frequencies from 170MHz to 300MHz  
22687614fa  
20  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
Reference  
The reference is shared by both ADC channels, so it is  
not possible to independently adjust the input range of  
individual channels.  
TheLTC2268-14/LTC2267-14/LTC2266-14hasaninternal  
1.25V voltage reference. For a 2V input range using the  
The V , REFH and REFL pins should be bypassed as  
internal reference, connect SENSE to V . For a 1V input  
REF  
DD  
shown in Figure 8. The 0.1µF capacitor between REFH  
and REFL should be as close to the pins as possible (not  
on the backside of the circuit board).  
range using the internal reference, connect SENSE to  
ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9).  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
Encode Input  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should be  
treated as analog signals — do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
will then be 1.6 V  
.
SENSE  
LTC2268-14  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
1µF  
0.625V  
RANGE  
DETECT  
AND  
LTC2268-14  
V
DD  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
DIFFERENTIAL  
COMPARATOR  
RANGE = 1.6 • V  
FOR  
SENSE  
V
DD  
BUFFER  
0.65V < V  
< 1.300V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
0.1µF  
15k  
30k  
REFH  
0.1µF  
+
ENC  
ENC  
2.2µF  
0.8x  
DIFF AMP  
0.1µF  
REFL  
226814 F10  
INTERNAL ADC  
LOW REFERENCE  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
226814 F08  
Figure 8. Reference Circuit  
LTC2268-14  
+
1.8V TO 3.3V  
0V  
ENC  
V
REF  
30k  
ENC  
1µF  
CMOS LOGIC  
BUFFER  
LTC2268-14  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1µF  
226814 F11  
226814 F09  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
Figure 9. Using an External 1.25V Reference  
22687614fa  
21  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12 and 13).  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance. The encode inputs can be taken  
Clock PLL and Duty Cycle Stabilizer  
Theencodeclockismultipliedbyaninternalphase-locked  
loop (PLL) to generate the serial digital output data. If the  
encode signal changes frequency or is turned off, the PLL  
requires 25µs to lock onto the input clock.  
above V (up to 3.6V), and the common mode range is  
DD  
from 1.1V to 1.6V. In the differential encode mode, ENC  
A clock duty cycle stabilizer circuit allows the duty cycle  
of the applied encode signal to vary from 30% to 70%.  
In the serial programming mode it is possible to disable  
the duty cycle stabilizer, but this is not recommended. In  
the parallel programming mode the duty cycle stabilizer  
is always enabled.  
should stay at least 200mV above ground to avoid falsely  
triggering the single-ended encode mode. For good jitter  
+
performance ENC should have fast rise and fall times.  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
+
to ground and ENC is driven with a square wave encode  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
DD  
+
DIGITAL OUTPUTS  
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
+
is 0.9V. For good jitter performance ENC should have fast  
The digital outputs of the LTC2268-14/LTC2267-14/  
LTC2266-14 are serialized LVDS signals. Each channel  
outputs two bits at a time (2-lane mode). At lower sam-  
pling rates there is a one bit per channel option (1-lane  
mode). The data can be serialized with 16-, 14-, or 12-bit  
serialization (see Timing Diagrams for details). Note that  
with 12-bit serialization the two LSBs are not available  
— this mode is included for compatibility with the 12-bit  
versions of these parts.  
rise and fall times.  
0.1µF  
0.1µF  
+
T1  
ENC  
LTC2268-14  
50Ω  
50Ω  
100Ω  
0.1µF  
ENC  
The output data should be latched on the rising and falling  
edges of the data clock out (DCO). A data frame output  
(FR) can be used to determine when the data from a new  
conversionresultbegins. Inthe2-lane, 14-bitserialization  
mode, the frequency of the FR output is halved.  
226814 F12  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 12. Sinusoidal Encode Drive  
Themaximumserialdatarateforthedataoutputsis1Gbps,  
so the maximum sample rate of the ADC will depend on  
the serialization mode as well as the speed grade of the  
ADC (see Table 1). The minimum sample rate for all seri-  
alization modes is 5Msps.  
0.1µF  
+
ENC  
PECL OR  
LTC2268-14  
LVDS  
CLOCK  
0.1µF  
ENC  
226814 F13  
Figure 13. PECL or LVDS Encode Drive  
22687614fa  
22  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTC2268-14. The Sampling  
Frequency for the Slower Speed Grades Cannot Exceed 105MHz (LTC2267-14) or 80MHz (LTC2266-14).  
MAXIMUM SAMPLING  
SERIALIZATION MODE  
2-Lane  
FREQUENCY, f (MHz)  
DCO FREQUENCY  
4 • f  
FR FREQUENCY  
SERIAL DATA RATE  
S
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
125  
125  
125  
62.5  
71.4  
83.3  
f
8 • f  
7 • f  
6 • f  
S
S
S
S
S
2-Lane  
3.5 • f  
0.5 • f  
S
S
2-Lane  
3 • f  
8 • f  
7 • f  
6 • f  
f
S
f
S
f
S
f
S
S
1-Lane  
16 • f  
14 • f  
12 • f  
S
S
S
S
S
S
1-Lane  
1-Lane  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
DATA FORMAT  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A1.  
The outputs are powered by OV and OGND which are  
DD  
Table 2. Output Codes vs Input Voltage  
isolated from the A/D core power and ground.  
+
A
– A  
D13-D0  
D13-D0  
IN  
IN  
(2V RANGE)  
>1.000000V  
+0.999878V  
+0.999756V  
+0.000122V  
+0.000000V  
–0.000122V  
–0.000244V  
–0.999878V  
–1.000000V  
≤–1.000000V  
(OFFSET BINARY)  
(2s COMPLEMENT)  
Programmable LVDS Output Current  
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
The default output driver current is 3.5mA. This current  
can be adjusted by control register A2 in the serial pro-  
gramming mode. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA. In the  
parallel programming mode the SCK pin can select either  
3.5mA or 1.75mA.  
Optional LVDS Driver Internal Termination  
In most cases using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A2. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internalterminationisenabled, theoutputdrivercurrentis  
doubled to maintain the same output voltage swing. In the  
Parallel Programming Mode, the SDO pin enables internal  
termination. Internalterminationshouldonlybeusedwith  
1.75mA, 2.1mA or 2.5mA LVDS output current modes.  
Digital Output Randomizer  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
22687614fa  
23  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The FR and DCO outputs are  
not affected. The output randomizer is enabled by serially  
programming mode control register A1.  
shift caused by the change in supply current as the A/D  
leaves nap mode. Nap mode is enabled by mode control  
register A1 in the serial programming mode.  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2268-14/LTC2267-14/  
LTC2266-14 can be programmed by either a parallel  
interface or a simple serial interface. The serial interface  
has more flexibility and can program all available modes.  
Theparallelinterfaceismorelimitedandcanonlyprogram  
some of the more commonly used modes.  
Digital Output Test Pattern  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
(D13-D0) of both channels to known values. The digital  
output test patterns are enabled by serially programming  
mode control registers A3 and A4. When enabled, the test  
patterns override all other formatting modes: 2’s comple-  
ment and randomizer.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven by 1.8V, 2.5V, or  
Output Disable  
DD  
3.3V CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table 3 shows the  
modes set by CS, SCK, SDI and SDO.  
The digital outputs may be disabled by serially program-  
ming mode control register A2. The current drive for all  
digital outputs including DCO and FR are disabled to save  
powerorenablein-circuittesting.Whendisabledthecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance may remain low.  
Table 3. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
2-Lane/1-Lane Selection Bit  
0 = 2-Lane, 16-Bit Serialization Output Mode  
1 = 1-Lane, 14-Bit Serialization Output Mode  
LVDS Current Selection Bit  
0 = 3.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
Power Down Control Bit  
Sleep and Nap Modes  
SCK  
SDI  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire chip is powered down,  
resulting in 1mW power consumption. Sleep mode is  
enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
0 = Normal Operation  
1 = Sleep Mode  
SDO  
Internal 100Ω Termination Selection Bit  
0 = Internal Termination Disabled  
1 = Internal Termination Enabled  
depends on the size of the bypass capacitors on V  
,
REF  
REFH, and REFL. For the suggested values in Figure 8,  
the A/D will stabilize after 2ms.  
In nap mode any combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL stay active, allowing faster wake-up than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cycles. If the application demands very accurate DC  
settling then an additional 50µs should be allowed so the  
on-chip references can settle from the slight temperature  
Serial Programming Mode  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Dataiswrittentoaregisterwitha16-bitserialword.Datacan  
also be read back from a register to verify its contents.  
22687614fa  
24  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
Table 4 shows a map of the mode control registers.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
Software Reset  
If the R/W bit is low, the serial data (D7:D0) will be written  
to the register set by the address bits (A6:A0). If the R/W  
bit is high, data in the register set by the address bits (A6:  
A0) will be read back on the SDO pin (see the Timing Dia-  
grams section). During a read back command the register  
is not updated and data on SDI is ignored.  
If serial programming is used, the mode control registers  
should be programmed as soon as possible after the power  
supplies turn on and are stable. The first serial command  
mustbeasoftwareresetwhichwillresetallregisterdatabits  
to logic 0. To perform a software reset, bit D7 in the reset  
register is written with a logic 1. After the reset SPI write  
commandiscomplete,bitD7isautomaticallysetbacktozero.  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers Are Reset to 00h. The ADC is momentarily placed in SLEEP mode.  
This Bit Is Automatically Set Back to Zero at the End of the SPI Write Command.  
The Reset Register is Write Only.  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
D6  
D5  
D4  
D3  
D2  
X
D1  
X
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_2  
NAP_1  
Bit 7  
Bit 6  
Bit 5  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This is Not Recommended.  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Two’s Complement Mode Control Bit  
Bits 4,3,0  
SLEEP:NAP_2:NAP_1  
000 = Normal Operation  
Sleep/Nap Mode Control Bits  
0X1 = Channel 1 in Nap Mode  
01X = Channel 2 in Nap Mode  
1XX = Sleep Mode. Both Channels Are Disabled  
Note: Any Combination of Channels Can Be Placed in Nap Mode.  
Bits 2,1  
Unused, Don’t Care Bits.  
22687614fa  
25  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE2  
OUTMODE1  
OUTMODE0  
Bits 7-5  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 4  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 2x the Current Set by ILVDS2:ILVDS0. Internal termination should only be  
used with 1.75mA, 2.1mA or 2.5mA LVDS output current modes.  
Bit 3  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are enabled.  
1 = Digital Outputs are disabled.  
Bits 2-0  
OUTMODE2:OUTMODE0 Digital Output Mode Control Bits  
000 = 2-Lanes, 16-Bit Serialization  
001 = 2-Lanes, 14-Bit Serialization  
010 = 2-Lanes, 12-Bit Serialization  
011 = Not Used  
100 = Not Used  
101 = 1-Lane, 14-Bit Serialization  
110 = 1-Lane, 12-Bit Serialization  
111 = 1-Lane, 16-Bit Serialization  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST  
TP13  
TP12  
TP11  
TP10  
TP9  
TP8  
Bit 7  
OUTTEST  
Digital Output Test Pattern Control Bit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Bit 6  
Unused, Don’t Care Bit.  
Bits 5-0  
TP13:TP8  
Test Pattern Data Bits (MSB)  
TP13:TP8 Set the Test Pattern for Data Bit 13 (MSB) Through Data Bit 8.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TP7  
TP6  
TP5  
TP4  
TP3  
TP2  
TP1  
TP0  
Bits 7-0  
TP7:TP0  
Test Pattern Data Bits (LSB)  
TP7:TP0 Set the Test Pattern for Data Bit 7 Through Data Bit 0 (LSB).  
22687614fa  
26  
LTC2268-14/  
LTC2267-14/LTC2266-14  
applicaTions inForMaTion  
GROUNDING AND BYPASSING  
between REFH and REFL can be somewhat further away.  
Thetracesconnectingthepinsandbypasscapacitorsmust  
be kept short and should be made as wide as possible.  
The LTC2268-14/LTC2267-14/LTC2266-14 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane in the  
first layer beneath the ADC is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
HEAT TRANSFER  
High quality ceramic bypass capacitors should be used at  
MostoftheheatgeneratedbytheLTC2268-14/LTC2267-14/  
LTC2266-14 is transferred from the die through the  
bottom-side Exposed Pad and package leads onto the  
printed circuit board. For good electrical and thermal  
performance, theExposedPadmustbesolderedtoalarge  
grounded pad on the PC board. This pad should be con-  
nected to the internal ground planes by an array of vias.  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1µF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2µF capacitor  
Typical applicaTions  
Silkscreen Top  
Top Side  
22687614fa  
27  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical applicaTions  
Inner Layer 2 GND  
Inner Layer 3  
Inner Layer 4  
Inner Layer 5 Power  
Bottom Side  
Silkscreen Bottom  
22687614fa  
28  
LTC2268-14/  
LTC2267-14/LTC2266-14  
Typical applicaTions  
LTC2268 Schematic  
PAR/SER  
C4  
1µF  
SDO  
SENSE  
V
DD  
C5  
1µF  
40 39 38 37 36 35 34 33 32 31  
A
A
IN1  
DIGITAL  
OUTPUTS  
R8  
100  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+
+
+
C29  
OUT1B  
A
A
V
IN1  
IN1  
IN1  
0.1µF  
OUT1B  
DCO  
DCO  
OV  
3
CM1  
4
REFH  
REFH  
REFL  
REFL  
5
LTC2268  
OV  
DD  
DD  
C1  
2.2µF  
C30  
0.1µF  
6
C16  
0.1µF  
C2  
OGND  
0.1µF  
7
+
FR  
8
C3  
0.1µF  
FR  
V
A
A
CM2  
9
+
+
C59  
0.1µF  
OUT2A  
IN2  
10  
OUT2A  
IN2  
R92  
100  
A
A
IN2  
IN2  
DIGITAL  
OUTPUTS  
11 12 13 14 15 16 17 18 19 20  
V
DD  
C7  
0.1µF  
SPI BUS  
C47  
0.1µF  
C46  
0.1µF  
226814 TA02  
ENCODE  
CLOCK  
ENCODE  
CLOCK  
22687614fa  
29  
LTC2268-14/  
LTC2267-14/LTC2266-14  
package DescripTion  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.10 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.115  
TYP  
6.00 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 ¥ 45  
CHAMFER  
4.42 0.10  
4.50 REF  
(4-SIDES)  
4.42 0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
22687614fa  
30  
LTC2268-14/  
LTC2267-14/LTC2266-14  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
+
A
6/11  
Revised A and A in Pin Functions section to match Pin Configuration  
16  
25  
29  
IN  
IN  
Revised Software Reset paragraph and Table 4 in Applications Information section  
Added V to LTC2268 Schematic in Typical Applications section  
DD  
22687614fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC2268-14/  
LTC2267-14/LTC2266-14  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2170-14/LTC2171-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2172-14 Quad ADCs, Ultralow Power  
178mW/234mW/360mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC2170-12/LTC2171-12/ 12-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2172-12 Quad ADCs, Ultralow Power  
178mW/234mW/360mW, 70.5dB SNR, 85dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC2173-12/LTC2174-12/ 12-Bit, 80Msps/105Msps/125Msps 1.8V 412mW/481mW/567mW, 70.5 dB SNR, 85dB SFDR, Serial LVDS Outputs,  
LTC2175-12  
LTC2256-14/LTC2257-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2258-14 ADCs, Ultralow Power  
Quad ADCs, Ultralow Power  
7mm × 8mm QFN-52  
35mW/49mW/81mW, 74dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-36  
LTC2259-14/LTC2260-14/ 14-Bit, 80Msps/105Msps/125Msps 1.8V 89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/CMOS  
LTC2261-14  
LTC2262-14  
ADCs, Ultralow Power  
Outputs, 6mm × 6mm QFN-36  
14-Bit, 150Msps 1.8V ADC, Ultralow Power 149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-36  
LTC2263-14/LTC2264-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2265-14 Dual ADCs, Ultralow Power  
99mW/126mW/191mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-36  
LTC2263-12/LTC2264-12/ 12-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2265-12 Dual ADCs, Ultralow Power  
99mW/126mW/191mW, 70.5dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-36  
LTC2266-12/LTC2267-12/ 12-Bit, 80Msps/105Msps/125Msps 1.8V 216mW/250mW/293mW, 70.5dB SNR, 85dB SFDR, Serial LVDS Outputs,  
LTC2268-12  
Dual ADCs, Ultralow Power  
6mm × 6mm QFN-36  
RF Mixers/Demodulators  
LTC5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LTC5527  
LTC5557  
LTC5575  
400MHz to 3.7GHz High Linearity  
Downconverting Mixer  
400MHz to 3.8GHz High Linearity  
Downconverting Mixer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
23.7dBm IIP3 at 2.6GHz, 23.5dBm IIP3 at 3.5GHz, NF = 13.2dB, 3.3V Supply  
Operation, Integrated Transformer  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz, 10dB Noise  
Variable Gain Amplifier  
Figure, 4mm × 4mm QFN-24  
LTC6420-20  
LTC6421-20  
1.8GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers for 300MHz IF  
1.3GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply Current per Amplifier,  
3mm × 4mm QFN-20  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 40mA Supply Current per Amplifier,  
3mm × 4mm QFN-20  
LTC6605-7/ LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz Filters Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
LTC6605-14  
with ADC Drivers  
Pin-Programmable Gain, 6mm × 3mm DFN-22  
Receiver Subsystems  
LTM9002  
14-Bit Dual Channel IF/Baseband Receiver Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
Subsystem  
22687614fa  
LT 0611 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2267CUJ-12PBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-12TRPBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-14

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-14PBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-14TRPBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-12PBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-12TRPBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14#PBF

LTC2267-14 - 14-Bit, 105Msps Low Power Dual ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2267IUJ-14#TRPBF

LTC2267-14 - 14-Bit, 105Msps Low Power Dual ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2267IUJ-14PBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14TRPBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear