LTC2309CUF#PBF [Linear]

LTC2309 - 8-Channel, 12-Bit SAR ADC with I<sup>2</sup>C Interface; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C;
LTC2309CUF#PBF
型号: LTC2309CUF#PBF
厂家: Linear    Linear
描述:

LTC2309 - 8-Channel, 12-Bit SAR ADC with I<sup>2</sup>C Interface; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C

转换器
文件: 总26页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2309  
8-Channel, 12-Bit SAR ADC  
2
with I C Interface  
FeAtuRes  
DesCRIptIOn  
TheꢀLTC®2309ꢀisꢀaꢀlowꢀnoise,ꢀlowꢀpower,ꢀ8-channel,ꢀ12-bitꢀ  
n
12-Bit Resolution  
2
n
successiveapproximationADCwithanI Ccompatibleꢀ  
Low Power: 1.5mW at 1ksps, 35µW Sleep Mode  
n
serialꢀinterface.ꢀThisꢀADCꢀincludesꢀanꢀinternalꢀreferenceꢀ  
andꢀaꢀfullyꢀdifferentialꢀsample-and-holdꢀcircuitꢀtoꢀreduceꢀ  
commonꢀ modeꢀ noise.ꢀ Theꢀ LTC2309ꢀ operatesꢀ fromꢀ anꢀ  
internalꢀclockꢀtoꢀachieveꢀaꢀfastꢀ1.3µsꢀconversionꢀtime.  
14ksps Throughput Rate  
n
Low Noise: SNR = 73.4dB  
n
ꢀ GuaranteedꢀNoꢀMissingꢀCodes  
n
ꢀ Singleꢀ5VꢀSupply  
2
n
ꢀ 2-WireꢀI CꢀCompatibleꢀSerialꢀInterfaceꢀwithꢀNineꢀ  
Theꢀ LTC2309ꢀ operatesꢀ fromꢀ aꢀ singleꢀ 5Vꢀ supplyꢀ andꢀ  
drawsjust300µAatathroughputrateof1ksps.Theꢀ  
ADCentersnapmodewhennotconverting,reducingꢀ  
theꢀpowerꢀdissipation.  
AddressesꢀPlusꢀOneꢀGlobalꢀforꢀSynchronization  
n
ꢀ FastꢀConversionꢀTime:ꢀ1.3µs  
n
ꢀ InternalꢀReference  
n
ꢀ Internalꢀ8-ChannelꢀMultiplexer  
TheꢀLTC2309ꢀisꢀavailableꢀinꢀbothꢀaꢀsmallꢀ24-pinꢀ4mmꢀ×ꢀ  
4mmꢀQFNꢀandꢀaꢀ20-pinꢀTSSOPꢀpackage.ꢀTheꢀinternalꢀ2.5Vꢀ  
referenceꢀandꢀ8-channelꢀmultiplexerꢀfurtherꢀreduceꢀPCBꢀ  
boardꢀspaceꢀrequirements.  
n
ꢀ InternalꢀConversionꢀClock  
n
ꢀ UnipolarꢀorꢀBipolarꢀInputꢀRangesꢀ(SoftwareꢀSelectable)  
n
ꢀ GuaranteedꢀOperationꢀfromꢀ–40°Cꢀtoꢀ125°Cꢀꢀ  
(TSSOPꢀPackage)  
n
ꢀ 24-Pinꢀ4mmꢀ×ꢀ4mmꢀQFNꢀandꢀ20-PinꢀTSSOPꢀPackages  
Theꢀ lowꢀ powerꢀ consumptionꢀ andꢀ smallꢀ sizeꢀ makeꢀ theꢀ  
LTC2309ꢀidealꢀforꢀbattery-operatedꢀandꢀportableꢀapplica-  
AppLICAtIOns  
2
tions,whilethe2-wireI Ccompatibleserialinterfacemakesꢀ  
n
n
n
n
n
n
thisꢀADCꢀaꢀgoodꢀmatchꢀforꢀspace-constrainedꢀsystems.  
ꢀ IndustrialꢀProcessꢀControl  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀandꢀꢀ  
EasyꢀDriveꢀisꢀaꢀtrademarkꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀAllꢀotherꢀtrademarksꢀareꢀtheꢀ  
propertyꢀofꢀtheirꢀrespectiveꢀowners.  
ꢀ MotorꢀControl  
ꢀ AccelerometerꢀMeasurements  
ꢀ Battery-OperatedꢀInstruments  
ꢀ Isolatedꢀand/orꢀRemoteꢀDataꢀAcquisition  
ꢀ PowerꢀSupplyꢀMonitoring  
BLOCK DIAGRAM  
5V  
Integral Nonlinearity  
vs Output Code  
0.1µF  
10µF  
1.00  
V
0.75  
DD  
CH0  
CH1  
CH2  
AD1  
AD0  
LTC2309  
0.50  
0.25  
ANALOG  
CH3  
SCL  
SDA  
+
2
12-ꢁIT  
SAR ADC  
I C  
ANALOG INPUTS  
INPUT  
0
CH4  
CH5  
CH6  
CH7  
COM  
PORT  
0V TO 4.096V UNIPOLAR  
2.04ꢀV ꢁIPOLAR  
MUX  
–0.25  
–0.50  
–0.75  
–1.00  
V
REF  
INTERNAL  
2.5V REF  
2.2µF  
0
1024  
2048  
3072  
4096  
OUTPUT CODE  
REFCOMP  
2309 G01  
GND  
0.1µF  
10µF  
2309 TA01  
2309fd  
(Noteꢀ3)............................ (GNDꢀ–ꢀ0.3V)ꢀtoꢀ(V ꢀ+ꢀ0.3V)  
            
                                                       
LTC2309  
ABsOLute MAxIMuM RAtInGs (Notes 1, 2)  
SupplyꢀVoltage  
PowerꢀDissipation.............................................. 500mW  
ꢀ V .......................................................... –0.3Vꢀtoꢀ6V  
OperatingꢀTemperatureꢀRange  
D
D
AnalogꢀInputꢀVoltageꢀ(Noteꢀ3)ꢀ  
ꢀ CH0-CH7,ꢀCOM,ꢀV ,ꢀ  
ꢀ LTC2309C................................................ 0°Cꢀtoꢀ70°C  
ꢀ LTC2309I.............................................–40°Cꢀtoꢀ85°C  
ꢀ LTC2309H.......................................... –40°Cꢀtoꢀ125°C  
StorageꢀTemperatureꢀRangeꢀ.................. –65°Cꢀtoꢀ150°C  
LeadꢀTemperatureꢀ(Soldering,ꢀ10ꢀsec)  
ꢀ TSSOP..............................................................300°C  
REFꢀ  
ꢀ REFCOMP.................... (GNDꢀ–ꢀ0.3V)ꢀtoꢀ(V ꢀ+ꢀ0.3V)  
DD  
DigitalꢀInputꢀVoltageꢀ  
DD  
DD  
DigitalꢀOutputꢀVoltage...... (GNDꢀ–ꢀ0.3V)ꢀtoꢀ(V ꢀ+ꢀ0.3V)  
pIn COnFIGuRAtIOn  
TOP VIEW  
TOP VIEW  
REFCOMP  
GND  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
REF  
24 23 22 21 20 19  
COM  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
1
2
3
4
5
6
18 GND  
V
3
DD  
SDA  
SCL  
17  
16  
AD0  
AD1  
SCL  
SDA  
GND  
GND  
4
25  
5
15 AD1  
6
14  
13  
AD0  
7
V
DD  
8
7
8
9 10 11 12  
9
V
10  
DD  
F PACKAGE  
20-LEAD PLASTIC TSSOP  
UF PACKAGE  
24-LEAD (4mm s 4mm) PLASTIC QFN  
T
JMAX  
ꢀ=ꢀ150°C,ꢀθ ꢀ=ꢀ90°C/W,θ ꢀ=ꢀ20°C/W  
JA JC  
T
ꢀ=ꢀ150°C,ꢀθ ꢀ=ꢀ37°C/Wꢀ  
JMAX JA  
EXPOSEDꢀPADꢀ(PINꢀ25)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
ORDeR InFORMAtIOn  
LEAD FREE FINISH  
LTC2309CUF#PBF  
LTC2309IUF#PBF  
LTC2309CF#PBF  
LTC2309IF#PBF  
LTC2309HF#PBF  
TAPE AND REEL  
PART MARKING*  
2309  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°Cꢀtoꢀ70°C  
LTC2309CUF#TRPBF  
LTC2309IUF#TRPBF  
LTC2309CF#TRPBF  
LTC2309IF#TRPBF  
LTC2309HF#TRPBF  
24-Leadꢀ(4mmꢀ×ꢀ4mm)ꢀPlasticꢀQFN  
24-Leadꢀ(4mmꢀ×ꢀ4mm)ꢀPlasticꢀQFN  
20-LeadꢀPlasticꢀTSSOP  
2309  
–40°Cꢀtoꢀ85°C  
0°Cꢀtoꢀ70°C  
LTC2309F  
LTC2309F  
LTC2309F  
20-LeadꢀPlasticꢀTSSOP  
–40°Cꢀtoꢀ85°C  
–40°Cꢀtoꢀ125°C  
20-LeadꢀPlasticꢀTSSOP  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
2309fd  
LTC2309  
COnVeRteR AnD MuLtIpLexeR CHARACteRIstICs The l denotes the specifications  
which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 4, 5)  
PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
LSB  
LSB  
LSB  
l
l
l
l
Resolutionꢀ(NoꢀMissingꢀCodes)  
IntegralꢀLinearityꢀError  
DifferentialꢀLinearityꢀError  
BipolarꢀZeroꢀError  
(Noteꢀ6)  
0.45  
0.35  
1
1
1
8
(Noteꢀ7)  
BipolarꢀZeroꢀErrorꢀDrift  
BipolarꢀZeroꢀErrorꢀMatch  
UnipolarꢀZeroꢀError  
0.002  
0.1  
0.4  
LSB/°C  
LSB  
3
6
l
(Noteꢀ7)  
LSB  
UnipolarꢀZeroꢀErrorꢀDrift  
UnipolarꢀZeroꢀErrorꢀMatch  
BipolarꢀFull-ScaleꢀError  
0.002  
0.2  
0.5ꢀ  
0.4  
LSB/°C  
LSB  
1
10ꢀ  
9
l
l
ExternalꢀReferenceꢀ(Noteꢀ8)ꢀ  
REFCOMPꢀ=ꢀ4.096V  
LSBꢀ  
LSB  
BipolarꢀFull-ScaleꢀErrorꢀDrift  
BipolarꢀFull-ScaleꢀErrorꢀMatch  
UnipolarꢀFull-ScaleꢀError  
ExternalꢀReference  
0.05  
0.4  
0.4ꢀ  
0.5  
LSB/°C  
LSB  
3
10ꢀ  
12  
l
l
QFNꢀExternalꢀReferenceꢀ(Noteꢀ8)ꢀ  
TSSOPꢀExternalꢀReferenceꢀ(Noteꢀ8)  
LSBꢀ  
LSB  
l
REFCOMPꢀ=ꢀ4.096V  
ExternalꢀReference  
0.3  
0.05  
0.3  
6
LSB  
LSB/°C  
LSB  
UnipolarꢀFull-ScaleꢀErrorꢀDrift  
UnipolarꢀFull-ScaleꢀErrorꢀMatch  
2
AnALOG Input The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
AbsoluteꢀInputꢀRangeꢀ(CH0ꢀtoꢀCH7)  
AbsoluteꢀInputꢀRangeꢀ(CH0ꢀtoꢀCH7,ꢀCOM) Unipolarꢀ(Noteꢀ9)ꢀ  
Bipolarꢀ(Noteꢀ9)  
InputꢀDifferentialꢀVoltageꢀRange  
CONDITIONS  
(Noteꢀ9)  
MIN  
–0.05  
–0.05ꢀ  
–0.05  
TYP  
MAX  
REFCOMP  
0.25ꢀ•ꢀREFCOMPꢀ  
0.75ꢀ•ꢀREFCOMP  
UNITS  
+
l
V
V
V
Vꢀ  
V
Vꢀ  
V
IN  
IN  
l
l
+
+
l
l
V
ꢀ–ꢀV  
V ꢀ=ꢀV ꢀ–ꢀV ꢀ(Unipolar)ꢀ  
IN  
0ꢀtoꢀREFCOMPꢀ  
REFCOMP/2  
IN  
IN  
IN  
IN  
IN  
IN  
+
V ꢀ=ꢀV ꢀ–ꢀV ꢀ(Bipolar)  
IN  
l
I
C
AnalogꢀInputꢀLeakageꢀCurrent  
AnalogꢀInputꢀCapacitance  
1
µA  
pFꢀ  
pF  
IN  
SampleꢀModeꢀ  
HoldꢀMode  
55ꢀ  
5
IN  
CMRRꢀ  
InputꢀCommonꢀModeꢀRejectionꢀRatio  
70  
dB  
DYnAMIC ACCuRACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Notes 4, 10)  
SYMBOL  
SINAD  
SNR  
THD  
SFDR  
PARAMETER  
Signal-to-(Noiseꢀ+ꢀDistortion)ꢀRatio  
Signal-to-NoiseꢀRatio  
TotalꢀHarmonicꢀDistortion  
SpuriousꢀFreeꢀDynamicꢀRange  
Channel-to-ChannelꢀIsolation  
FullꢀLinearꢀBandwidth  
–3dBꢀInputꢀLinearꢀBandwidth  
ApertureꢀDelay  
CONDITIONS  
f ꢀ=ꢀ1kHz  
MIN  
71  
71  
TYP  
73.3  
73.4  
–88  
90  
–109  
700  
25  
MAX  
UNITS  
dB  
l
l
l
l
IN  
f ꢀ=ꢀ1kHz  
dB  
dB  
dB  
dB  
kHz  
MHz  
ns  
IN  
f ꢀ=ꢀ1kHz,ꢀFirstꢀ5ꢀHarmonics  
–77  
IN  
f ꢀ=ꢀ1kHz  
79  
IN  
f ꢀ=ꢀ1kHz  
IN  
(Noteꢀ11)  
13  
TransientꢀResponse  
Full-ScaleꢀStep  
240  
ns  
2309fd  
LTC2309  
InteRnAL ReFeRenCe CHARACteRIstICs The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Vꢀ  
V
ppm/°C  
kΩ  
l
l
V
ꢀOutputꢀVoltage  
REF  
I
I
ꢀ=ꢀ0ꢀ(QFN)ꢀ  
2.47ꢀ  
2.46  
2.50ꢀ  
2.50  
2.53ꢀ  
2.54  
OUT  
OUT  
ꢀ=ꢀ0ꢀ(TSSOP)  
V
V
V
V
ꢀOutputꢀTempco  
I
ꢀ=ꢀ0  
OUT  
25  
8
REF  
ꢀOutputꢀImpedance  
REF  
–0.1mAꢀ≤ꢀI ꢀ≤ꢀ0.1mA  
OUT  
ꢀOutputꢀVoltage  
REFCOMP  
I
ꢀ=ꢀ0  
OUT  
4.096  
0.8  
V
ꢀLineꢀRegulation  
REF  
V
ꢀ=ꢀ4.75Vꢀtoꢀ5.25V  
DD  
mV/V  
I2C Inputs AnD DIGItAL Outputs The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
V
V
V
HighꢀLevelꢀInputꢀVoltage  
2.85  
V
V
IH  
LowꢀLevelꢀInputꢀVoltage  
1.5  
IL  
HighꢀLevelꢀInputꢀVoltageꢀforꢀAddressꢀPinsꢀA1,ꢀA0  
LowꢀLevelꢀInputꢀVoltageꢀforꢀAddressꢀPinsꢀA1,ꢀA0  
4.75  
V
IHA  
ILA  
0.25  
10  
V
R
R
R
ResistanceꢀfromꢀA1,ꢀA0,ꢀtoꢀV ꢀtoꢀSetꢀChipꢀ  
AddressꢀBitꢀtoꢀ1  
kΩ  
INH  
INL  
INF  
DD  
l
l
ResistanceꢀfromꢀA1,ꢀA0ꢀtoꢀGNDꢀtoꢀSetꢀChipꢀ  
AddressꢀBitꢀtoꢀ0  
10  
kΩ  
ResistanceꢀfromꢀA1,ꢀA0ꢀtoꢀGNDꢀorꢀV ꢀtoꢀSetꢀ  
ChipꢀAddressꢀBitꢀtoꢀFloat  
2
MΩ  
DD  
l
l
l
l
l
l
I
DigitalꢀInputꢀCurrent  
V ꢀ=ꢀV  
DD  
–10  
10  
µA  
V
I
IN  
V
V
HysteresisꢀofꢀSchmittꢀTriggerꢀInputs  
LowꢀLevelꢀOutputꢀVoltageꢀ(SDA)  
(Noteꢀ9)  
Iꢀ=ꢀ3mA  
(Noteꢀ12)  
0.25  
HYS  
OL  
0.4  
250  
50  
V
t
t
OutputꢀFallꢀTimeꢀV ꢀtoꢀV  
20ꢀ+ꢀ0.1C  
B
ns  
ns  
pF  
OF  
SP  
H
IL(MAX)  
InputꢀSpikeꢀSuppression  
C
ExternalꢀCapacitanceꢀLoadꢀOn-ChipꢀAddressꢀPinsꢀ  
(A1,ꢀA0)ꢀforꢀValidꢀFloat  
10  
CAX  
pOWeR ReQuIReMents The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
SupplyꢀVoltage  
SupplyꢀCurrentꢀ  
NapꢀMode  
CONDITIONS  
MIN  
TYP  
5
MAX  
5.25  
3
UNITS  
V
l
l
l
l
l
l
l
V
4.75  
DD  
I
14kspsꢀSampleꢀRate  
2.3  
210  
7
mA  
µA  
DD  
SLPꢀBitꢀ=ꢀ0,ꢀConversionꢀDone  
SLPꢀBitꢀ=ꢀ1,ꢀConversionꢀDone  
14kspsꢀSampleꢀRate  
350  
15  
SleepꢀMode  
µA  
P
PowerꢀDissipation  
NapꢀMode  
11.5  
1.05  
35  
15  
mW  
mW  
µW  
D
SLPꢀBitꢀ=ꢀ0,ꢀConversionꢀDone  
SLPꢀBitꢀ=ꢀ1,ꢀConversionꢀDone  
1.75  
75  
SleepꢀMode  
2309fd  
LTC2309  
I2C tIMInG CHARACteRIstICs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCLꢀClockꢀFrequency  
400  
SCL  
HoldꢀTimeꢀ(Repeated)ꢀSTARTꢀCondition  
LOWꢀPeriodꢀofꢀtheꢀSCLꢀPin  
0.6  
1.3  
HD(SDA)  
LOW  
µs  
HIGHꢀPeriodꢀofꢀtheꢀSCLꢀPin  
0.6  
µs  
HIGH  
Set-UpꢀTimeꢀforꢀaꢀRepeatedꢀSTARTꢀCondition  
DataꢀHoldꢀTime  
0.6  
µs  
SU(STA)  
HD(DAT)  
0
0.9  
µs  
DataꢀSet-UpꢀTime  
100  
ns  
SU(DAT)  
RiseꢀTimeꢀforꢀSDA/SCLꢀSignals  
FallꢀTimeꢀforꢀSDA/SCLꢀSignals  
Set-UpꢀTimeꢀforꢀSTOPꢀCondition  
BusꢀFreeꢀTimeꢀBetweenꢀaꢀSTOPꢀandꢀSTARTꢀCondition  
(Noteꢀ12)  
(Noteꢀ12)  
20ꢀ+ꢀ0.1C  
20ꢀ+ꢀ0.1C  
0.6  
300  
300  
ns  
r
B
B
ns  
f
µs  
SU(STO)  
BUF  
1.3  
µs  
ADC tIMInG CHARACteRIstICs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
14  
UNITS  
ksps  
µs  
l
l
l
f
t
t
t
ThroughputꢀRateꢀ(SuccessiveꢀReads)  
ConversionꢀTime  
SMPL  
CONV  
(Noteꢀ9)  
(Noteꢀ9)  
1.3  
1.8  
AcquisitionꢀTime  
240  
ns  
ACQ  
REFCOMPꢀWake-UpꢀTimeꢀ(Noteꢀ13)  
C
ꢀ=ꢀ10µF,ꢀC ꢀ=ꢀ2.2µF  
REFCOMP  
200  
ms  
REFWAKE  
REF  
1111.ꢀUnipolarꢀzeroꢀerrorꢀisꢀtheꢀoffsetꢀvoltageꢀmeasuredꢀfromꢀ+0.5LSBꢀ  
whenꢀtheꢀoutputꢀcodeꢀflickersꢀbetweenꢀ0000ꢀ0000ꢀ0000ꢀandꢀ0000ꢀ0000ꢀ  
0001.  
Note 8:ꢀFull-scaleꢀbipolarꢀerrorꢀisꢀtheꢀworst-caseꢀofꢀ–FSꢀorꢀ+FSꢀuntrimmedꢀ  
deviationꢀfromꢀidealꢀfirstꢀandꢀlastꢀcodeꢀtransitionsꢀandꢀincludesꢀtheꢀeffectꢀ  
ofꢀoffsetꢀerror.ꢀUnipolarꢀfull-scaleꢀerrorꢀisꢀtheꢀdeviationꢀofꢀtheꢀlastꢀcodeꢀ  
transitionꢀfromꢀidealꢀandꢀincludesꢀtheꢀeffectꢀofꢀoffsetꢀerror.ꢀ  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
Note 2:ꢀAllꢀvoltageꢀvaluesꢀareꢀwithꢀrespectꢀtoꢀground.  
Note 3:ꢀWhenꢀtheseꢀpinꢀvoltagesꢀareꢀtakenꢀbelowꢀgroundꢀorꢀaboveꢀV ,ꢀ  
DD  
theyꢀwillꢀbeꢀclampedꢀbyꢀinternalꢀdiodes.ꢀTheseꢀproductsꢀcanꢀhandleꢀinputꢀ  
Note 9:ꢀGuaranteedꢀbyꢀdesign,ꢀnotꢀsubjectꢀtoꢀtest.  
currentsꢀgreaterꢀthanꢀ100mAꢀbelowꢀgroundꢀorꢀaboveꢀV ꢀwithoutꢀlatchup.  
DD  
Note 10:ꢀAllꢀspecificationsꢀinꢀdBꢀareꢀreferredꢀtoꢀaꢀfull-scaleꢀ 2.048Vꢀinputꢀ  
Note 4:ꢀV ꢀ=ꢀ5V,ꢀf  
ꢀ=ꢀ14kspsꢀinternalꢀreferenceꢀunlessꢀotherwiseꢀ  
SMPL  
DD  
withꢀaꢀ2.5Vꢀreferenceꢀvoltage.  
noted.  
Note 11:ꢀFullꢀlinearꢀbandwidthꢀisꢀdefinedꢀasꢀtheꢀfull-scaleꢀinputꢀfrequencyꢀ  
Note 5:ꢀLinearity,ꢀoffsetꢀandꢀfull-scaleꢀspecificationsꢀapplyꢀforꢀaꢀꢀ  
atꢀwhichꢀtheꢀSINADꢀdegradesꢀtoꢀ60dBꢀorꢀ10ꢀbitsꢀofꢀaccuracy.  
single-endedꢀanalogꢀinputꢀwithꢀrespectꢀtoꢀCOM.  
Note 12:ꢀC ꢀ=ꢀcapacitanceꢀofꢀoneꢀbusꢀlineꢀinꢀpFꢀ(10pFꢀ≤ꢀC ꢀ≤ꢀ400pF).ꢀ  
Note 6:ꢀIntegralꢀnonlinearityꢀisꢀdefinedꢀasꢀtheꢀdeviationꢀofꢀaꢀcodeꢀfromꢀaꢀ  
straightꢀlineꢀpassingꢀthroughꢀtheꢀactualꢀendpointsꢀofꢀtheꢀtransferꢀcurve.ꢀ  
Theꢀdeviationꢀisꢀmeasuredꢀfromꢀtheꢀcenterꢀofꢀtheꢀquantizationꢀband.  
B
B
Note 13:ꢀREFCOMPꢀwake-upꢀtimeꢀisꢀtheꢀtimeꢀrequiredꢀforꢀtheꢀREFCOMPꢀ  
pinꢀtoꢀsettleꢀwithinꢀ0.5LSBꢀatꢀ12-bitꢀresolutionꢀofꢀitsꢀfinalꢀvalueꢀafterꢀ  
wakingꢀupꢀfromꢀSLEEPꢀmode.  
Note 7:ꢀBipolarꢀzeroꢀerrorꢀisꢀtheꢀoffsetꢀvoltageꢀmeasuredꢀfromꢀ–0.5LSBꢀ  
whenꢀtheꢀoutputꢀcodeꢀflickersꢀbetweenꢀ0000ꢀ0000ꢀ0000ꢀandꢀ1111ꢀ1111ꢀ  
2309fd  
LTC2309  
tYpICAL peRFORMAnCe CHARACteRIstICs  
TA = 25°C, VDD = 5V, fSMPL = 14ksps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
1kHz Sine Wave  
8192 Point FFT Plot  
0
–20  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
SNR = 73.4dB  
SINAD = 73.3dB  
THD = –88dB  
–40  
–60  
–80  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
–100  
–120  
–140  
2048  
0
1
2
4
5
6
7
0
1024  
3072  
4096  
3
2048  
0
1024  
3072  
4096  
FREQUENCY (kHz)  
OUTPUT CODE  
OUTPUT CODE  
2309 G01  
2309 G02  
2309 G03  
Supply Current  
vs Sampling Frequency  
Offset Error vs Temperature  
Full-Scale Error vs Temperature  
4
2
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
UNIPOLAR  
BIPOLAR  
0.5  
0
0
UNIPOLAR  
BIPOLAR  
–2  
–4  
–6  
–0.5  
–1.0  
–0.5  
–2.0  
–50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (ksps)  
TEMPERATURE (°C)  
2309 G06  
3209 G04  
2309 G05  
Analog Input Leakage Current  
vs Temperature  
Supply Current vs Temperature  
Sleep Current vs Temperature  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
10  
8
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
4
CH (ON)  
CH (OFF)  
2
0
–50  
0
25  
50  
75 100 125  
50  
TEMPERATURE (°C)  
125  
–25  
–50 –25  
0
25  
75 100  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2309 G07  
2309 G08  
2309 G09  
2309fd  
LTC2309  
pIn FunCtIOns (QFN)  
CH3-CH7 (Pins 1-5):ꢀChannelꢀ3ꢀtoꢀChannelꢀ7ꢀAnalogꢀ  
Inputs.CH3-CH7canbeconfiguredassingle-endedꢀ  
orꢀ differentialꢀ inputꢀ channels.ꢀ Seeꢀ theꢀ Analogꢀ Inputꢀ  
Multiplexerꢀsection.  
AD1 (Pin 15):ChipAddressControlPin.Thispinisꢀ  
configuredꢀ asꢀ aꢀ three-stateꢀ (LOW,ꢀ HIGH,ꢀ floating)ꢀ  
2
addressꢀ controlꢀ bitꢀ forꢀ theꢀ deviceꢀ I Cꢀ address.ꢀ Seeꢀ  
Tableꢀ2ꢀforꢀaddressꢀselection.  
2
COM (Pin 6):CommonInput.Thisisthereferenceꢀ  
pointforallsingle-endedinputs.Itmustbefreeofꢀ  
noiseꢀandꢀshouldꢀbeꢀconnectedꢀtoꢀgroundꢀforꢀunipolarꢀ  
conversionsꢀandꢀmidwayꢀbetweenꢀGNDꢀandꢀREFCOMPꢀ  
forꢀbipolarꢀconversions.  
SCL (Pin 16):ꢀSerialꢀClockꢀPinꢀofꢀtheꢀI CꢀInterface.ꢀTheꢀ  
LTC2309ꢀcanꢀonlyꢀactꢀasꢀaꢀslaveꢀandꢀtheꢀSCLꢀpinꢀonlyꢀ  
acceptsanexternalserialclock.Dataisshiftedintoꢀ  
theꢀSDAꢀpinꢀonꢀtheꢀrisingꢀedgesꢀofꢀtheꢀSCLꢀclockꢀandꢀ  
outputꢀthroughꢀtheꢀSDAꢀpinꢀonꢀtheꢀfallingꢀedgesꢀofꢀtheꢀ  
SCLꢀclock.  
V
(Pin 7):ꢀ2.5VꢀReferenceꢀOutput.ꢀBypassꢀtoꢀGNDꢀ  
REF  
2
withꢀaꢀminimumꢀ2.2µFꢀceramicꢀcapacitor.ꢀTheꢀinternalꢀ  
referenceꢀmayꢀbeꢀoverdrivenꢀbyꢀanꢀexternalꢀ2.5Vꢀrefer-  
enceꢀatꢀthisꢀpin.ꢀ  
SDA (Pin 17):ꢀBidirectionalꢀSerialꢀDataꢀLineꢀofꢀtheꢀI Cꢀ  
Interface.ꢀInꢀtransmitterꢀmodeꢀ(read),ꢀtheꢀconversionꢀ  
resultꢀisꢀoutputꢀatꢀtheꢀSDAꢀpin,ꢀwhileꢀinꢀreceiverꢀmodeꢀ  
(write),ꢀtheꢀD ꢀwordꢀisꢀinputꢀatꢀtheꢀSDAꢀpinꢀtoꢀcon-  
IN  
REFCOMP (Pin 8):ꢀReferenceꢀBufferꢀOutput.ꢀBypassꢀ  
toꢀ GNDꢀ withꢀ 10µFꢀ andꢀ 0.1µFꢀ ceramicꢀ capacitorsꢀ inꢀ  
parallel.ꢀNominalꢀoutputꢀvoltageꢀisꢀ4.096V.ꢀTheꢀinternalꢀ  
referenceꢀbufferꢀdrivingꢀthisꢀpinꢀisꢀdisabledꢀbyꢀground-  
figureꢀtheꢀADC.ꢀTheꢀpinꢀisꢀhighꢀimpedanceꢀduringꢀtheꢀ  
dataꢀinputꢀmodeꢀandꢀisꢀanꢀopen-drainꢀoutputꢀ(requiresꢀ  
anꢀappropriateꢀpull-upꢀdeviceꢀtoꢀV )ꢀduringꢀtheꢀdataꢀ  
DD  
outputꢀmode.  
ingꢀV ,ꢀallowingꢀREFCOMPꢀtoꢀbeꢀoverdrivenꢀbyꢀanꢀ  
REFꢀ  
externalꢀsource.  
CH0-CH2 (Pins 22-24):ꢀChannelꢀ0ꢀtoꢀChannelꢀ2ꢀAnalogꢀ  
Inputs.CH0-CH2canbeconfiguredassingle-endedꢀ  
orꢀ differentialꢀ inputꢀ channels.ꢀ Seeꢀ theꢀ Analogꢀ Inputꢀ  
Multiplexerꢀsection.  
GND (Pins 9-11, 18-20):ꢀGround.ꢀAllꢀGNDꢀpinsꢀmustꢀ  
beꢀconnectedꢀtoꢀaꢀsolidꢀgroundꢀplane.ꢀ  
V
(Pins 12, 13, 21):ꢀ5VꢀSupply.ꢀTheꢀrangeꢀofꢀV ꢀisꢀ  
DD  
DD  
Exposed Pad (Pin 25):ꢀ Ground.ꢀ Mustꢀ beꢀ solderedꢀ  
4.75Vto5.25V.BypassV ꢀtoGNDwitha10µFceramicꢀ  
DD  
directlyꢀtoꢀgroundꢀplane.  
capacitorinparallelwiththree0.1µFceramiccapacitors,ꢀ  
oneꢀlocatedꢀasꢀcloseꢀasꢀpossibleꢀtoꢀeachꢀpin.ꢀ  
AD0 (Pin 14):ChipAddressControlPin.Thispinisꢀ  
configuredꢀasꢀaꢀthree-stateꢀ(LOW,ꢀHIGH,ꢀfloating)ꢀad-  
2
dresscontrolbitforthedeviceI Caddress.SeeTableꢀ2ꢀ  
forꢀaddressꢀselection.  
2309fd  
LTC2309  
pIn FunCtIOns (TSSOP)  
2
REFCOMP (Pin 1):ꢀReferenceꢀBufferꢀOutput.ꢀBypassꢀ  
toꢀ GNDꢀ withꢀ 10µFꢀ andꢀ 0.1µFꢀ ceramicꢀ capacitorsꢀ inꢀ  
parallel.ꢀNominalꢀoutputꢀvoltageꢀisꢀ4.096V.ꢀTheꢀinternalꢀ  
referenceꢀbufferꢀdrivingꢀthisꢀpinꢀisꢀdisabledꢀbyꢀground-  
SDA (Pin 7):ꢀBidirectionalꢀSerialꢀDataꢀLineꢀofꢀtheꢀI Cꢀ  
Interface.ꢀInꢀtransmitterꢀmodeꢀ(read),ꢀtheꢀconversionꢀ  
resultꢀisꢀoutputꢀatꢀtheꢀSDAꢀpin,ꢀwhileꢀinꢀreceiverꢀmodeꢀ  
(write),ꢀtheꢀD ꢀwordꢀisꢀinputꢀatꢀtheꢀSDAꢀpinꢀtoꢀcon-  
IN  
ingꢀV ,ꢀallowingꢀREFCOMPꢀtoꢀbeꢀoverdrivenꢀbyꢀanꢀ  
figureꢀtheꢀADC.ꢀTheꢀpinꢀisꢀhighꢀimpedanceꢀduringꢀtheꢀ  
REFꢀ  
externalꢀsource.  
dataꢀinputꢀmodeꢀandꢀisꢀanꢀopen-drainꢀoutputꢀ(requiresꢀ  
anꢀappropriateꢀpull-upꢀdeviceꢀtoꢀV )ꢀduringꢀtheꢀdataꢀ  
DD  
GND (Pins 2, 8 , 9):ꢀGround.ꢀAllꢀGNDꢀpinsꢀmustꢀbeꢀ  
connectedꢀtoꢀaꢀsolidꢀgroundꢀplane.ꢀ  
outputꢀmode.  
CH0-CH7 (Pins 11-18):ꢀChannelꢀ0ꢀtoꢀChannelꢀ7ꢀAnalogꢀ  
Inputs.CH0-CH7canbeconfiguredassingle-endedꢀ  
orꢀ differentialꢀ inputꢀ channels.ꢀ Seeꢀ theꢀ Analogꢀ Inputꢀ  
Multiplexerꢀsection.ꢀꢀ  
V
(Pins 3, 10):ꢀ5VꢀSupply.ꢀTheꢀrangeꢀofꢀV ꢀisꢀ4.75Vꢀ  
DD  
DD  
toꢀ5.25V.ꢀBypassꢀV ꢀtoꢀGNDꢀwithꢀaꢀ10µFꢀceramicꢀca-  
DD  
pacitorꢀinꢀparallelꢀwithꢀtwoꢀ0.1µFꢀceramicꢀcapacitors,ꢀ  
oneꢀlocatedꢀasꢀcloseꢀasꢀpossibleꢀtoꢀeachꢀpin.  
COM (Pin 19):ꢀCommonꢀInput.ꢀThisꢀisꢀtheꢀreferenceꢀ  
pointforallsingle-endedinputs.Itmustbefreeofꢀ  
noiseꢀandꢀshouldꢀbeꢀconnectedꢀtoꢀgroundꢀforꢀunipolarꢀ  
conversionsꢀandꢀmidwayꢀbetweenꢀGNDꢀandꢀREFCOMPꢀ  
forꢀbipolarꢀconversions.  
AD0 (Pin 4):ꢀChipꢀAddressꢀControlꢀPin.ꢀThisꢀpinꢀisꢀcon-  
figuredꢀasꢀaꢀthree-stateꢀ(LOW,ꢀHIGH,ꢀfloating)ꢀaddressꢀ  
2
controlꢀbitꢀforꢀtheꢀdeviceꢀI Cꢀaddress.ꢀSeeꢀTableꢀ2ꢀforꢀ  
addressꢀselection.  
AD1 (Pin 5):ChipAddressControlPin.Thispinisꢀ  
V
(Pin 20):ꢀ2.5VꢀReferenceꢀOutput.ꢀBypassꢀtoꢀGNDꢀ  
REF  
configuredꢀ asꢀ aꢀ three-stateꢀ (LOW,ꢀ HIGH,ꢀ floating)ꢀ  
withꢀaꢀminimumꢀ2.2µFꢀceramicꢀcapacitor.ꢀTheꢀinternalꢀ  
referenceꢀmayꢀbeꢀoverdrivenꢀbyꢀanꢀexternalꢀ2.5Vꢀrefer-  
enceꢀatꢀthisꢀpin.ꢀꢀ  
2
addressꢀ controlꢀ bitꢀ forꢀ theꢀ deviceꢀ I Cꢀ address.ꢀ Seeꢀ  
Tableꢀ2ꢀforꢀaddressꢀselection.  
2
SCL (Pin 6):ꢀSerialꢀClockꢀPinꢀofꢀtheꢀI CꢀInterface.ꢀTheꢀ  
LTC2309ꢀcanꢀonlyꢀactꢀasꢀaꢀslaveꢀandꢀtheꢀSCLꢀpinꢀonlyꢀ  
acceptsanexternalserialclock.Dataisshiftedintoꢀ  
theꢀSDAꢀpinꢀonꢀtheꢀrisingꢀedgesꢀofꢀtheꢀSCLꢀclockꢀandꢀ  
outputꢀthroughꢀtheꢀSDAꢀpinꢀonꢀtheꢀfallingꢀedgesꢀofꢀtheꢀ  
SCLꢀclock.  
2309fd  
LTC2309  
FunCtIOnAL BLOCK DIAGRAM  
V
DD  
LTC2309  
CH0  
CH1  
CH2  
AD1  
AD0  
ANALOG  
INPUT  
MUX  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SCL  
SDA  
+
2
12-BIT  
SAR ADC  
I C  
PORT  
V
REF  
8k  
INTERNAL  
2.5V REF  
GAIN = 1.6384x  
REFCOMP  
2308 BD  
GND  
tIMInG DIAGRAM  
Definition of Timing for Fast/Standard Mode Devices on the I2C Bus  
SDA  
SCL  
t
t
SU(DAT)  
t
t
BUF  
r
LOW  
HD(SDA)  
t
t
f
t
SP  
t
t
f
r
t
t
t
SU(STO)  
HD(SDA)  
SU(STA)  
t
t
HIGH  
S
Sr  
P
S
HD(DAT)  
2309 TD  
S = START, Sr = REPEATED START, P = STOP  
2309fd  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Overview  
Programming the LTC2309  
ThevariousmodesofoperationoftheLTC2309areꢀ  
TheꢀLTC2309ꢀisꢀaꢀlowꢀnoise,ꢀ8-channel,ꢀ12-bitꢀsucces-  
siveapproximationregister(SAR)A/Dconverterwithanꢀ  
programmedꢀbyꢀaꢀ6-bitꢀD ꢀword.ꢀTheꢀSDIꢀinputꢀdataꢀ  
IN  
2
bitsꢀareꢀloadedꢀonꢀtheꢀrisingꢀedgeꢀofꢀSCLꢀduringꢀaꢀwriteꢀ  
operation,withtheS/Dbitloadedonthefirstrisingedgeꢀ  
andꢀtheꢀSLPꢀbitꢀonꢀtheꢀsixthꢀrisingꢀedgeꢀ(seeꢀFigureꢀ8bꢀ  
I Ccompatibleserialinterface.TheLTC2309includesaꢀ  
precisioninternalreferenceandaconfigurable8-chan-  
nelꢀanalogꢀinputꢀmultiplexerꢀ(MUX).ꢀTheꢀADCꢀmayꢀbeꢀ  
configuredtoacceptsingle-endedordifferentialsignalsꢀ  
andꢀcanꢀoperateꢀinꢀeitherꢀunipolarꢀorꢀbipolarꢀmode.ꢀAꢀ  
sleepꢀmodeꢀoptionꢀisꢀalsoꢀprovidedꢀtoꢀfurtherꢀreduceꢀ  
powerꢀduringꢀinactiveꢀperiods.  
2
intheI CInterfacesection).Theinputdatawordisꢀ  
definedꢀasꢀfollows:  
S/D O/S S1 S0 UNI SLP  
2
ꢀ S/Dꢀ=ꢀSINGLE-ENDED/DIFFERENTIALꢀBIT  
ꢀ O/Sꢀ=ꢀODD/SIGNꢀBIT  
Theꢀ LTC2309ꢀ communicatesꢀ throughꢀ aꢀ 2-wireꢀ I Cꢀ  
compatibleꢀserialꢀinterface.ꢀConversionsꢀareꢀinitiatedꢀ  
byꢀsignalingꢀaꢀSTOPꢀconditionꢀafterꢀtheꢀpartꢀhasꢀbeenꢀ  
successfullyꢀaddressedꢀforꢀaꢀread/writeꢀoperation.ꢀTheꢀ  
devicewillnotacknowledge(NACK)anexternalrequestꢀ  
untilꢀtheꢀconversionꢀisꢀfinished.ꢀAfterꢀaꢀconversionꢀisꢀ  
finished,ꢀ theꢀ deviceꢀ isꢀ readyꢀ toꢀ acceptꢀ aꢀ read/writeꢀ  
request.OncetheLTC2309isaddressedforareadꢀ  
operation,ꢀ theꢀ deviceꢀ beginsꢀ outputtingꢀ theꢀ conver-  
sionꢀresultꢀunderꢀtheꢀcontrolꢀofꢀtheꢀserialꢀclockꢀ(SCL).ꢀ  
Thereꢀisꢀnoꢀlatencyꢀinꢀtheꢀconversionꢀresult.ꢀThereꢀareꢀ  
12ꢀbitsꢀofꢀoutputꢀdataꢀfollowedꢀbyꢀ4ꢀtrailingꢀzeros.ꢀDataꢀ  
isupdatedonthefallingedgesofSCL,allowingtheꢀ  
userꢀtoꢀreliablyꢀlatchꢀdataꢀonꢀtheꢀrisingꢀedgeꢀofꢀSCL.ꢀAꢀ  
writeꢀoperationꢀmayꢀfollowꢀtheꢀreadꢀoperationꢀbyꢀusingꢀ  
aꢀrepeatꢀSTARTꢀorꢀaꢀSTOPꢀconditionꢀmayꢀbeꢀgivenꢀtoꢀ  
startꢀaꢀnewꢀconversion.ꢀByꢀselectingꢀaꢀwriteꢀoperation,ꢀ  
ꢀ S1ꢀ=ꢀCHANNELꢀSELECTꢀBITꢀ1  
ꢀ S0ꢀ=ꢀCHANNELꢀSELECTꢀBITꢀ0  
ꢀ UNIꢀ=ꢀUNIPOLAR/BIPOLARꢀBIT  
ꢀ SLPꢀ=ꢀSLEEPꢀMODEꢀBIT  
Analog Input Multiplexer  
Theꢀ analogꢀ inputꢀ MUXꢀ isꢀ programmedꢀ byꢀ theꢀ S/D,ꢀ  
O/S,ꢀS1ꢀandꢀS0ꢀbitsꢀofꢀtheꢀD ꢀword.ꢀTableꢀ1ꢀlistsꢀtheꢀ  
IN  
MUXꢀconfigurationsꢀforꢀallꢀcombinationsꢀofꢀtheꢀcon-  
figurationꢀbits.ꢀFigureꢀ1aꢀshowsꢀseveralꢀpossibleꢀMUXꢀ  
configurationsꢀandꢀFigureꢀ1bꢀshowsꢀhowꢀtheꢀMUXꢀcanꢀ  
beꢀreconfiguredꢀfromꢀoneꢀconversionꢀtoꢀtheꢀnext.  
theꢀADCꢀcanꢀbeꢀprogrammedꢀwithꢀaꢀ6-bitꢀD ꢀword.ꢀTheꢀ  
D ꢀwordꢀconfiguresꢀtheꢀMUXꢀandꢀprogramsꢀvariousꢀ  
IN  
Driving the Analog Inputs  
IN  
TheanaloginputsoftheLTC2309areeasytodrive.ꢀ  
Eachoftheanaloginputscanbeusedasasingle-endedꢀ  
inputꢀrelativeꢀtoꢀtheꢀCOMꢀpinꢀ(CH0-COM,ꢀCH1-COM,ꢀ  
etc.)ꢀorꢀinꢀdifferentialꢀinputꢀpairsꢀ(CH0ꢀandꢀCH1,ꢀCH2ꢀ  
andꢀCH3,ꢀCH4ꢀandꢀCH5,ꢀCH6ꢀandꢀCH7).ꢀFigureꢀ2ꢀshowsꢀ  
howꢀtoꢀdriveꢀCOMꢀforꢀsingle-endedꢀinputsꢀinꢀunipolarꢀ  
andꢀbipolarꢀmodes.ꢀRegardlessꢀofꢀtheꢀMUXꢀconfigura-  
tion,ꢀtheꢀ“+”ꢀandꢀ“–”ꢀinputsꢀareꢀsampledꢀatꢀtheꢀsameꢀ  
instant.ꢀAnyꢀunwantedꢀsignalꢀthatꢀisꢀcommonꢀtoꢀbothꢀ  
inputsꢀwillꢀbeꢀreducedꢀbyꢀtheꢀcommonꢀmodeꢀrejectionꢀ  
ofꢀtheꢀsample-and-holdꢀcircuit.ꢀTheꢀinputsꢀdrawꢀonlyꢀ  
onesmallcurrentspikewhilechargingthesample-and-  
holdcapacitorsduringtheacquiremode.Inconversionꢀ  
modesꢀofꢀoperationꢀofꢀtheꢀADC.  
Duringꢀ aꢀ conversion,ꢀ theꢀ internalꢀ 12-bitꢀ capacitiveꢀ  
chargeredistributionDACoutputissequencedthroughꢀ  
asuccessiveapproximationalgorithmbytheSARstart-  
ingfromthemostsignificantbit(MSB)totheleastꢀ  
significantbit(LSB).Thesampledinputissuccessivelyꢀ  
comparedꢀwithꢀbinaryꢀweightedꢀchargesꢀsuppliedꢀbyꢀ  
theꢀcapacitiveꢀDACꢀusingꢀaꢀdifferentialꢀcomparator.ꢀAtꢀ  
theꢀendꢀofꢀaꢀconversion,ꢀtheꢀDACꢀoutputꢀbalancesꢀtheꢀ  
analogꢀinput.ꢀTheꢀSARꢀcontentsꢀ(aꢀ12-bitꢀdataꢀword)ꢀ  
thatꢀrepresentꢀtheꢀsampledꢀanalogꢀinputꢀareꢀloadedꢀintoꢀ  
12ꢀoutputꢀlatchesꢀthatꢀallowꢀtheꢀdataꢀtoꢀbeꢀshiftedꢀoutꢀ  
2
viaꢀtheꢀI Cꢀinterface.  
2309fd  
ꢀ0  
LTC2309  
AppLICAtIOns InFORMAtIOn  
4 Differential  
8 Single-Ended  
1st Conversion  
2nd Conversion  
CH0  
CH1  
+ (  
)
)
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
+
+
+
+
+
+
+
+
{
{
{
{
(
+
+
+
CH2  
CH3  
+
CH2  
CH3  
{
{
{
{
+ (  
)
)
CH2  
CH3  
(
+
CH4  
CH5  
+
+
CH4  
CH5  
+ (  
)
)
CH4  
CH5  
(
+
COM  
(UNUSED)  
COM (  
)
CH6  
CH7  
+ (  
)
)
2328 F01b  
(
+
COM (  
)
Figure 1b. Changing the MUX Assignments “On the Fly”  
Combinations of Differential  
and Single-Ended  
CH0  
+
{
CH1  
Unipolar Mode  
Bipolar Mode  
CH2  
{
CH3  
+
COM  
COM  
+
+
+
+
CH4  
CH5  
CH6  
CH7  
+
REFCOMP/2  
2328 F02  
COM (  
)
Figure 2. Driving COM in Unipolar and Bipolar Modes  
2309 F01a  
Figure 1a. Example of MUX Configurations  
mode,ꢀtheꢀanalogꢀinputsꢀdrawꢀonlyꢀaꢀsmallꢀleakageꢀcur-  
rent.ꢀIfꢀtheꢀsourceꢀimpedanceꢀofꢀtheꢀdrivingꢀcircuitꢀisꢀ  
low,ꢀtheꢀADCꢀinputsꢀcanꢀbeꢀdrivenꢀdirectly.ꢀOtherwise,ꢀ  
moreꢀacquisitionꢀtimeꢀshouldꢀbeꢀallowedꢀforꢀaꢀsourceꢀ  
withꢀhigherꢀimpedance.  
Table 1. Channel Configuration  
S/D O/S S1 S0  
0
1
2
3
4
5
6
+
+
7
+
COM  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
+
+
+
Input Filtering  
+
+
Theꢀ noiseꢀ andꢀ distortionꢀ ofꢀ theꢀ inputꢀ amplifierꢀ andꢀ  
otherꢀcircuitryꢀmustꢀbeꢀconsideredꢀsinceꢀtheyꢀwillꢀaddꢀ  
toꢀtheꢀADCꢀnoiseꢀandꢀdistortion.ꢀTherefore,ꢀnoisyꢀinputꢀ  
circuitryꢀshouldꢀbeꢀfilteredꢀpriorꢀtoꢀtheꢀanalogꢀinputsꢀtoꢀ  
minimizeꢀnoise.ꢀAꢀsimpleꢀ1-poleꢀRCꢀfilterꢀisꢀsufficientꢀ  
forꢀmanyꢀapplications.  
+
+
+
+
TheꢀanalogꢀinputsꢀofꢀtheꢀLTC2309ꢀcanꢀbeꢀmodeledꢀasꢀ  
aꢀ55pFꢀcapacitorꢀ(C )ꢀinꢀseriesꢀwithꢀaꢀ100Ωꢀresistorꢀ  
IN  
(R ),ꢀasꢀshownꢀinꢀFigureꢀ3a.ꢀC ꢀgetsꢀswitchedꢀtoꢀtheꢀ  
ON  
IN  
+
selectedinputonceduringeachconversion.Largefilterꢀ  
RCꢀtimeꢀconstantsꢀwillꢀslowꢀtheꢀsettlingꢀofꢀtheꢀinputs.ꢀ  
ItꢀisꢀimportantꢀthatꢀtheꢀoverallꢀRCꢀtimeꢀconstantsꢀbeꢀ  
shortꢀenoughꢀtoꢀallowꢀtheꢀanalogꢀinputsꢀtoꢀcompletelyꢀ  
settleꢀtoꢀ12-bitꢀresolutionꢀwithinꢀtheꢀacquisitionꢀtimeꢀ  
+
+
+
(t )ꢀifꢀDCꢀaccuracyꢀisꢀimportant.ꢀ  
ACQ  
2309fd  
ꢀꢀ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
WhenꢀusingꢀaꢀfilterꢀwithꢀaꢀlargeꢀC  
ꢀvalueꢀ(e.g.ꢀ1µF),ꢀ  
50Ω  
FILTER  
ANALOG  
INPUT  
CH0  
theꢀinputsꢀdoꢀnotꢀcompletelyꢀsettleꢀandꢀtheꢀcapacitiveꢀ  
LTC2309  
2000pF  
10µF  
inputswitchingcurrentsareaveragedintoanetDCꢀ  
COM  
current(I ).Inthiscase,theanaloginputcanbemod-  
DC  
eledꢀbyꢀanꢀequivalentꢀresistanceꢀ(R ꢀ=ꢀ1/(f  
inꢀseriesꢀwithꢀanꢀidealꢀvoltageꢀsourceꢀ(V  
ꢀ•ꢀC ))ꢀ  
REFCOMP  
EQ  
SMPL  
IN  
/2),ꢀasꢀ  
REFCOMP  
0.1µF  
2309 F04a  
shownꢀinꢀFigureꢀ3b.ꢀTheꢀmagnitudeꢀofꢀtheꢀDCꢀcurrentꢀ  
isꢀthenꢀapproximatelyꢀI ꢀ=ꢀ(V ꢀ–ꢀV /2)/R ,ꢀ  
DC  
IN  
REFCOMP  
EQ  
Figure 4a. Optional RC Input Filtering for Single-Ended Input  
whichꢀisꢀroughlyꢀproportionalꢀtoꢀV .ꢀToꢀpreventꢀlargeꢀ  
IN  
DCdropsacrosstheresistorR  
,afilterwithasmallꢀ  
FILTER  
resistorꢀandꢀlargeꢀcapacitorꢀshouldꢀbeꢀchosen.ꢀWhenꢀ  
1000pF  
50Ω  
runningꢀatꢀtheꢀmaximumꢀthroughputꢀrateꢀofꢀ14ksps,ꢀ  
CH0  
theꢀinputꢀcurrentꢀequalsꢀ1.5µAꢀatꢀV ꢀ=ꢀ4.096V,ꢀwhichꢀ  
DIFFERENTIAL  
IN  
LTC2309  
ANALOG  
INPUTS  
1000pF  
1000pF  
amountsꢀtoꢀaꢀfull-scaleꢀerrorꢀofꢀ0.5LSBꢀwhenꢀusingꢀaꢀ  
50Ω  
CH1  
filterꢀresistorꢀ(R  
)ꢀofꢀ333Ω.ꢀApplicationsꢀrequiringꢀ  
FILTER  
lowerꢀsampleꢀratesꢀcanꢀtolerateꢀaꢀlargerꢀfilterꢀresistorꢀ  
REFCOMP  
forꢀtheꢀsameꢀamountꢀofꢀfull-scaleꢀerror.ꢀ  
0.1µF  
10µF  
2309 F04b  
INPUT  
CH0-CH7  
R
LTC2309  
ON  
Figure 4b. Optional RC Input Filtering for Differential Inputs  
R
SOURCE  
100Ω  
V
IN  
C
IN  
C
FILTER  
55pF  
selfꢀheatingꢀandꢀfromꢀdamageꢀthatꢀmayꢀoccurꢀduringꢀ  
soldering.Metalfilmsurfacemountresistorsaremuchꢀ  
lessꢀsusceptibleꢀtoꢀbothꢀproblems.  
2309 F03a  
Figure 3a. Analog Input Equivalent Circuit  
Dynamic Performance  
INPUT  
I
DC CH0-CH7  
R
FILTER  
FastFourierTransform(FFT)testtechniquesareusedtoꢀ  
testtheADC’sfrequencyresponse,distortionandnoiseꢀ  
atꢀtheꢀratedꢀthroughput.ꢀByꢀapplyingꢀaꢀlowꢀdistortionꢀ  
sineꢀwaveꢀandꢀanalyzingꢀtheꢀdigitalꢀoutputꢀusingꢀanꢀFFTꢀ  
algorithm,ꢀtheꢀADC’sꢀspectralꢀcontentꢀcanꢀbeꢀexaminedꢀ  
forꢀfrequenciesꢀoutsideꢀtheꢀfundamental.  
V
IN  
LTC2309  
R
EQ  
SMPL  
C
FILTER  
1/(f  
• C )  
IN  
+
V
/2  
REFCOMP  
2309 F03b  
Figure 3b. Analog Input Equivalent  
Circuit for Large Filter Capacitances  
Signal-to-Noise and Distortion Ratio (SINAD)  
Figuresꢀ4aꢀandꢀ4bꢀshowꢀexamplesꢀofꢀinputꢀfilteringꢀforꢀ Theꢀsignal-to-noiseꢀandꢀdistortionꢀratioꢀ(SINAD)ꢀisꢀtheꢀ  
single-endedꢀ andꢀ differentialꢀ inputs.ꢀ Forꢀ theꢀ single- ratioꢀbetweenꢀtheꢀRMSꢀamplitudeꢀofꢀtheꢀfundamentalꢀ  
endedꢀcaseꢀinꢀFigureꢀ4a,ꢀaꢀ50Ωꢀsourceꢀresistorꢀandꢀaꢀ inputꢀfrequencyꢀtoꢀtheꢀRMSꢀamplitudeꢀofꢀallꢀotherꢀfre-  
2000pFꢀcapacitorꢀtoꢀgroundꢀonꢀtheꢀinputꢀwillꢀlimitꢀtheꢀ quencyꢀcomponentsꢀatꢀtheꢀA/Dꢀoutput.ꢀTheꢀoutputꢀisꢀ  
inputbandwidthto1.6MHz.Highqualitycapacitorsandꢀ band-limitedꢀtoꢀfrequenciesꢀfromꢀaboveꢀDCꢀandꢀbelowꢀ  
resistorsꢀshouldꢀbeꢀusedꢀinꢀtheꢀRCꢀfilterꢀsinceꢀtheseꢀ halfꢀtheꢀsamplingꢀfrequency.ꢀFigureꢀ5ꢀshowsꢀaꢀtypicalꢀ  
componentsꢀcanꢀaddꢀdistortion.ꢀNPOꢀandꢀsilverꢀmicaꢀ SINADof73.3dBwitha14kHzsamplingrateandaꢀ  
typedielectriccapacitorshaveexcellentlinearity.Carbonꢀ 1kHzꢀinput.ꢀAnꢀSNRꢀofꢀ73.4dBꢀcanꢀbeꢀachievedꢀwithꢀ  
surfaceꢀmountꢀresistorsꢀcanꢀgenerateꢀdistortionꢀfromꢀ theꢀLTC2309.  
2309fd  
ꢀꢁ  
referenceamplifierandisavailableatV  
                                 
.V ꢀshouldꢀ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
0
internalꢀreferenceꢀbufferꢀcanꢀalsoꢀbeꢀoverdrivenꢀfromꢀ  
1VꢀtoꢀV ,ꢀasꢀshownꢀinꢀFigureꢀ6c.ꢀToꢀdoꢀso,ꢀV ꢀmustꢀ  
SNR = 73.4dB  
SINAD = 73.3dB  
THD = –88dB  
DD  
REF  
–20  
beꢀgroundedꢀtoꢀdisableꢀtheꢀreferenceꢀbuffer.  
–40  
–60  
–80  
R1  
8k  
V
REF  
BANDGAP  
REFERENCE  
2.5V  
2.2µF  
0.1µF  
–100  
–120  
–140  
REFCOMP  
4.096V  
10µF  
REFERENCE  
AMP  
0
1
2
3
4
5
6
7
FREQUENCY (kHz)  
R2  
2309 G03  
R3  
GND  
Figure 5. 1kHz Sine Wave 8192 Point FFT Plot  
LTC2309  
2309 F06a  
Total Harmonic Distortion (THD)  
Figure 6a. LTC2309 Reference Circuit  
Totalꢀ harmonicꢀ distortionꢀ (THD)ꢀ isꢀ theꢀ ratioꢀ ofꢀ theꢀ  
RMSꢀsumꢀofꢀallꢀharmonicsꢀofꢀtheꢀinputꢀsignalꢀtoꢀtheꢀ  
fundamentalitself.Theout-of-bandharmonicsaliasintoꢀ  
theꢀfrequencyꢀbandꢀbetweenꢀDCꢀandꢀhalfꢀtheꢀsamplingꢀ  
5V  
0.1µF  
V
IN  
frequencyꢀ(  
/2).ꢀTHDꢀisꢀexpressedꢀas:  
fSMPL  
LT1790A-2.5  
V
V 2 + V 2 + V42...+ V 2  
V
OUT  
REF  
2
3
N
2.2µF  
0.1µF  
THD= 20log  
LTC2309  
V
1
REFCOMP  
10µF  
whereV ꢀistheRMSamplitudeofthefundamentalꢀ  
1
GND  
frequencyꢀandꢀV ꢀthroughꢀV ꢀareꢀtheꢀamplitudesꢀofꢀtheꢀ  
2
N
secondꢀthroughꢀNthꢀharmonics.ꢀ  
2309 F06b  
Figure 6b. Using the LT®1790A-2.5 as an External Reference  
Internal Reference  
TheLTC2309hasanon-chip,temperaturecompen-  
satedꢀ bandgapꢀ referenceꢀ thatꢀ isꢀ factoryꢀ trimmedꢀ toꢀ  
2.5Vꢀ(ReferꢀtoꢀFigureꢀ6a).ꢀItꢀisꢀinternallyꢀconnectedꢀtoꢀaꢀ  
5V  
REF REF  
V
REF  
0.1µF  
V
IN  
beꢀbypassedꢀtoꢀGNDꢀwithꢀaꢀ2.2μFꢀceramicꢀcapacitorꢀtoꢀ  
minimizenoise.An8kresistorisinserieswiththeoutputꢀ  
soꢀthatꢀitꢀcanꢀbeꢀeasilyꢀoverdrivenꢀbyꢀanꢀexternalꢀrefer-  
enceꢀifꢀmoreꢀaccuracyꢀand/orꢀlowerꢀdriftꢀareꢀrequired,ꢀ  
asꢀshownꢀinꢀFigureꢀ6b.ꢀTheꢀreferenceꢀamplifierꢀgainsꢀ  
LTC2309  
LT1790A-4.096  
V
REFCOMP  
OUT  
10µF  
0.1µF  
GND  
2309 F06c  
theꢀV ꢀvoltageꢀbyꢀ1.638ꢀtoꢀ4.096VꢀatꢀREFCOMP.Toꢀ  
REF  
compensateꢀtheꢀreferenceꢀamplifier,ꢀbypassꢀREFCOMPꢀ  
withꢀaꢀ10μFꢀceramicꢀcapacitorꢀinꢀparallelꢀwithꢀaꢀ0.1μFꢀ  
ceramicꢀ capacitorꢀ forꢀ bestꢀ noiseꢀ performance.ꢀ Theꢀ  
Figure 6c. Overdriving REFCOMP Using the LT1790A-4.096  
2309fd  
ꢀꢂ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Internal Conversion Clock  
The START and STOP Conditions  
ReferringꢀtoꢀFigureꢀ7,ꢀaꢀSTARTꢀ(S)ꢀconditionꢀisꢀgener-  
atedbytransitioningSDAfromHIGHtoLOWwhileꢀ  
SCLꢀisꢀHIGH.ꢀTheꢀbusꢀisꢀconsideredꢀtoꢀbeꢀbusyꢀafterꢀtheꢀ  
STARTꢀcondition.ꢀWhenꢀtheꢀdataꢀtransferꢀisꢀfinished,ꢀaꢀ  
STOPꢀ(P)ꢀconditionꢀisꢀgeneratedꢀbyꢀtransitioningꢀSDAꢀ  
fromꢀLOWꢀtoꢀHIGHꢀwhileꢀSCLꢀisꢀHIGH.ꢀTheꢀbusꢀisꢀfreeꢀ  
afterꢀaꢀSTOPꢀconditionꢀisꢀgenerated.ꢀSTARTꢀandꢀSTOPꢀ  
conditionsꢀareꢀalwaysꢀgeneratedꢀbyꢀtheꢀmaster.  
Theinternalconversionclockisfactorytrimmedtoꢀ  
achieveꢀaꢀtypicalꢀconversionꢀtimeꢀ(t  
)ꢀofꢀ1.3μsꢀandꢀ  
CONV  
aꢀ maximumꢀ conversionꢀ timeꢀ ofꢀ 1.8μsꢀ overꢀ theꢀ fullꢀ  
operatingꢀtemperatureꢀrange.  
2
I C Interface  
2
TheꢀLTC2309ꢀcommunicatesꢀthroughꢀanꢀI Cꢀinterface.ꢀ  
2
TheꢀI Cꢀinterfaceꢀisꢀaꢀ2-wireꢀopen-drainꢀinterfaceꢀsup-  
portingꢀ multipleꢀ devicesꢀ andꢀ multipleꢀ mastersꢀ onꢀ aꢀ  
singlebus.Theconnecteddevicescanonlypulltheꢀ  
serialꢀdataꢀlineꢀ(SDA)ꢀLOWꢀandꢀcanꢀneverꢀdriveꢀitꢀHIGH.ꢀ  
SDAꢀisꢀrequiredꢀtoꢀbeꢀexternallyꢀconnectedꢀtoꢀtheꢀsup-  
plyꢀthroughꢀaꢀpull-upꢀresistor.ꢀWhenꢀtheꢀdataꢀlineꢀisꢀnotꢀ  
Whenthebusisinuse,itstaysbusyifarepeatedꢀ  
STARTꢀ(Sr)ꢀisꢀgeneratedꢀinsteadꢀofꢀaꢀSTOPꢀcondition.ꢀ  
TheꢀrepeatedꢀSTARTꢀtimingꢀisꢀfunctionallyꢀidenticalꢀtoꢀ  
theꢀSTARTꢀandꢀisꢀusedꢀforꢀwritingꢀandꢀreadingꢀfromꢀtheꢀ  
deviceꢀbeforeꢀtheꢀinitiationꢀofꢀaꢀnewꢀconversion.  
2
beingꢀdrivenꢀLOW,ꢀitꢀisꢀHIGH.ꢀDataꢀonꢀtheꢀI Cꢀbusꢀcanꢀ  
beꢀtransferredꢀatꢀratesꢀupꢀtoꢀ100kbits/sꢀinꢀtheꢀstandardꢀ  
START Condition  
STOP Condition  
modeꢀandꢀupꢀtoꢀ400kbits/sꢀinꢀtheꢀfastꢀmode.ꢀTheꢀV ꢀ  
DD  
SDA  
powerꢀshouldꢀnotꢀbeꢀremovedꢀfromꢀtheꢀLTC2309ꢀwhenꢀ  
2
2
SDA  
SCL  
theꢀI CꢀbusꢀisꢀactiveꢀtoꢀavoidꢀloadingꢀtheꢀI Cꢀbusꢀlinesꢀ  
throughꢀtheꢀinternalꢀESDꢀprotectionꢀdiodes.  
S
P
2309 F07  
SCL  
2
EachꢀdeviceꢀonꢀtheꢀI Cꢀbusꢀisꢀrecognizedꢀbyꢀaꢀuniqueꢀ  
addressstoredinthedeviceandcanonlyoperateeitherꢀ  
asꢀaꢀtransmitterꢀorꢀreceiver,ꢀdependingꢀonꢀtheꢀfunctionꢀ  
ofthedevice.Adevicecanalsobeconsideredasaꢀ  
masterꢀorꢀaꢀslaveꢀwhenꢀperformingꢀdataꢀtransfers.ꢀAꢀ  
masterꢀisꢀtheꢀdeviceꢀwhichꢀinitiatesꢀaꢀdataꢀtransferꢀonꢀ  
theꢀbusꢀandꢀgeneratesꢀtheꢀclockꢀsignalsꢀtoꢀpermitꢀtheꢀ  
transfer.ꢀDevicesꢀaddressedꢀbyꢀtheꢀmasterꢀareꢀconsid-  
eredꢀslaves.  
Figure 7. Timing Diagrams of START and STOP Conditions  
Data Transferring  
2
AfterꢀtheꢀSTARTꢀcondition,ꢀtheꢀI Cꢀbusꢀisꢀbusyꢀandꢀ  
dataꢀtransferꢀcanꢀbeginꢀbetweenꢀtheꢀmasterꢀandꢀtheꢀ  
addressedꢀslave.ꢀDataꢀisꢀtransferredꢀoverꢀtheꢀbusꢀinꢀ  
groupsꢀ ofꢀ nineꢀ bits,ꢀ oneꢀ byteꢀ followedꢀ byꢀ oneꢀ ac-  
knowledge(ACK)bit.ThemasterreleasestheSDAꢀ  
lineꢀduringꢀtheꢀninthꢀSCLꢀclockꢀcycle.ꢀTheꢀslaveꢀdeviceꢀ  
canꢀissueꢀanꢀACKꢀbyꢀpullingꢀSDAꢀLOWꢀorꢀissueꢀaꢀNotꢀ  
Acknowledge(NACK)byleavingtheSDAlinehighꢀ  
impedanceꢀ(theꢀexternalꢀpull-upꢀresistorꢀwillꢀholdꢀtheꢀ  
lineꢀhigh).ꢀChangeꢀofꢀdataꢀonlyꢀoccursꢀwhileꢀtheꢀSCLꢀ  
lineꢀisꢀLOW.  
TheLTC2309canonlybeaddressedasaslave(seeꢀ  
Tableꢀ2).ꢀOnceꢀaddressed,ꢀitꢀcanꢀreceiveꢀconfigurationꢀ  
bits(D word)ortransmitthelastconversionresult.Theꢀ  
IN  
serialclockline(SCL)isalwaysaninputtotheLTC2309ꢀ  
andtheserialdataline(SDA)isbidirectional.Thedeviceꢀ  
supportsꢀtheꢀstandardꢀmodeꢀandꢀtheꢀfastꢀmodeꢀforꢀdataꢀ  
transferspeedsupto400kbits/s(seetheTimingDiagramꢀ  
2
sectionꢀforꢀdefinitionꢀofꢀtheꢀI Cꢀtiming).  
Data Format  
Afterꢀ aꢀ STARTꢀ condition,ꢀ theꢀ masterꢀ sendsꢀ aꢀ 7-bitꢀ  
addressꢀfollowedꢀbyꢀaꢀread/writeꢀ(R/W)ꢀbit.ꢀTheꢀR/Wꢀ  
bitꢀisꢀ1ꢀforꢀaꢀreadꢀrequestꢀandꢀ0ꢀforꢀaꢀwriteꢀrequest.ꢀ  
Ifꢀ theꢀ 7-bitꢀ addressꢀ matchesꢀ oneꢀ ofꢀ theꢀ LTC2309’sꢀ  
9ꢀpin-selectableꢀaddresses,ꢀtheꢀADCꢀisꢀselected.ꢀWhenꢀ  
2309fd  
ꢀꢃ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
theꢀADCꢀisꢀaddressedꢀduringꢀaꢀconversion,ꢀitꢀwillꢀnotꢀ  
acknowledgeꢀR/WꢀrequestsꢀandꢀwillꢀissueꢀaꢀNACKꢀbyꢀ  
leavingꢀtheꢀSDAꢀlineꢀHIGH.ꢀIfꢀtheꢀconversionꢀisꢀcom-  
plete,ꢀtheꢀLTC2309ꢀissuesꢀanꢀACKꢀbyꢀpullingꢀtheꢀSDAꢀ  
lineꢀLOW.ꢀTheꢀLTC2309ꢀhasꢀtwoꢀregisters.ꢀTheꢀ12-bitꢀ  
wideoutputregistercontainsthelastconversionresult.ꢀ  
aꢀ readꢀ operation,ꢀ itꢀ acknowledgesꢀ byꢀ pullingꢀ SDAꢀ  
LOWandactsasatransmitter.Themaster/receiverꢀ  
canreaduptotwobytesfromtheLTC2309.Afteraꢀ  
completeꢀreadꢀoperationꢀofꢀ2ꢀbytes,ꢀaꢀSTOPꢀconditionꢀ  
isꢀneededꢀtoꢀinitiateꢀaꢀnewꢀconversion.ꢀTheꢀdeviceꢀwillꢀ  
NACKꢀsubsequentꢀreadꢀoperationsꢀwhileꢀaꢀconversionꢀ  
Theꢀ6-bitꢀwideꢀinputꢀregisterꢀconfiguresꢀtheꢀinputꢀMUXꢀ isꢀbeingꢀperformed.  
andꢀtheꢀoperatingꢀmodeꢀofꢀtheꢀADC.  
Theꢀdataꢀoutputꢀstreamꢀisꢀ16ꢀbitsꢀlongꢀandꢀisꢀshiftedꢀ  
outꢀonꢀtheꢀfallingꢀedgesꢀofꢀSCLꢀ(seeꢀFigureꢀ8a).ꢀTheꢀ  
firstꢀbitꢀisꢀtheꢀMSBꢀandꢀtheꢀ12thꢀbitꢀisꢀtheꢀLSBꢀofꢀtheꢀ  
conversionresult.Theremainingfourbitsarezero.ꢀ  
Figuresꢀ14ꢀandꢀ15ꢀareꢀtheꢀtransferꢀcharacteristicsꢀforꢀ  
theꢀbipolarꢀandꢀunipolarꢀmodes.ꢀDataꢀisꢀoutputꢀonꢀtheꢀ  
SDAꢀlineꢀinꢀ2’sꢀcomplementꢀformatꢀforꢀbipolarꢀreadingsꢀ  
orꢀinꢀstraightꢀbinaryꢀforꢀunipolarꢀreadings.  
Output Data Format  
Theꢀoutputꢀregisterꢀcontainsꢀtheꢀlastꢀconversionꢀresult.ꢀ  
Afterꢀeachꢀconversionꢀisꢀcompleted,ꢀtheꢀdeviceꢀauto-  
maticallyꢀentersꢀeitherꢀnapꢀorꢀsleepꢀmodeꢀdependingꢀ  
onꢀtheꢀsettingꢀofꢀtheꢀSLPꢀbitꢀ(seeꢀNapꢀModeꢀandꢀSleepꢀ  
Modeꢀsections).ꢀWhenꢀtheꢀLTC2309ꢀisꢀaddressedꢀforꢀ  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
• • •  
• • •  
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0 R/W  
B11 B10 B9  
B8  
B7  
B6  
B5 B4  
START BY  
MASTER  
ACK BY  
ADC  
ACK BY  
MASTER  
MOST SIGNIFICANT DATA BYTE  
READ 1 BYTE  
ADDRESS FRAME  
1
2
3
4
5
6
7
8
9
SCL  
• • •  
• • •  
(CONTINUED)  
CONVERSION  
INITIATED  
SDA  
(CONTINUED)  
STOP  
BY MASTER  
B3  
B2  
B1  
B0  
NACK BY  
MASTER  
LEAST SIGNIFICANT DATA BYTE  
READ 1 BYTE  
2309 F08a  
Figure 8a. Timing Diagram for Reading from the LTC2309  
2309fd  
ꢀꢄ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Input Data Format  
read/writeꢀoperationꢀwillꢀalsoꢀinitiateꢀnewꢀconversion,ꢀ  
butꢀtheꢀoutputꢀresultꢀmayꢀnotꢀbeꢀvalidꢀdueꢀtoꢀlackꢀofꢀ  
adequateꢀacquisitionꢀtimeꢀ(seeꢀAcquisitionꢀsection).ꢀ  
WhenꢀtheꢀLTC2309ꢀisꢀaddressedꢀforꢀaꢀwriteꢀoperation,ꢀ  
itꢀacknowledgesꢀbyꢀpullingꢀSDAꢀLOWꢀduringꢀtheꢀLOWꢀ  
periodꢀbeforeꢀtheꢀ9thꢀcycleꢀandꢀactsꢀasꢀaꢀreceiver.ꢀTheꢀ  
master/transmittercanthensend1bytetoprogramtheꢀ  
LTC2309 Address  
TheꢀLTC2309ꢀhasꢀtwoꢀaddressꢀpinsꢀ(AD0ꢀandꢀAD1)ꢀthatꢀ  
mayꢀbeꢀtiedꢀHIGH,ꢀLOW,ꢀorꢀleftꢀfloatingꢀtoꢀenableꢀoneꢀ  
ofꢀ9ꢀpossibleꢀaddressesꢀ(seeꢀTableꢀ2).  
device.ꢀTheꢀinputꢀbyteꢀconsistsꢀofꢀtheꢀ6-bitꢀD ꢀwordꢀ  
IN  
followedꢀbyꢀtwoꢀbitsꢀthatꢀareꢀignoredꢀbyꢀtheꢀADCꢀandꢀ  
areconsidereddon’tcares(X)(seeFigureꢀ8b).Theꢀ  
inputꢀbitsꢀareꢀlatchedꢀonꢀtheꢀrisingꢀedgeꢀofꢀSCLꢀduringꢀ  
theꢀwriteꢀoperation.  
Inꢀ additionꢀ toꢀ theꢀ configurableꢀ addressesꢀ listedꢀ inꢀ  
Tableꢀ2,theLTC2309alsocontainsaglobaladdressꢀ  
(1101011)ꢀwhichꢀmayꢀbeꢀusedꢀforꢀsynchronizingꢀmul-  
Afterꢀ power-up,ꢀ theꢀ ADCꢀ initiatesꢀ anꢀ internalꢀ resetꢀ  
2
tipleꢀLTC2309sꢀorꢀotherꢀI CꢀLTC230XꢀSARꢀADCsꢀ(seeꢀ  
cycleꢀwhichꢀsetsꢀtheꢀD ꢀwordꢀtoꢀallꢀ0sꢀ(S/Dꢀ=ꢀO/Sꢀ=ꢀ  
IN  
SynchronizingꢀMultipleꢀLTC2309sꢀwithꢀGlobalꢀAddressꢀ  
Callꢀsection).  
S0ꢀ=ꢀS1ꢀ=ꢀUNIꢀ=ꢀSLPꢀ=ꢀ0).ꢀAꢀwriteꢀoperationꢀmayꢀbeꢀ  
performedifthedefaultstateoftheADC’sconfigurationꢀ  
isꢀnotꢀdesired.ꢀOtherwise,ꢀtheꢀADCꢀmustꢀbeꢀproperlyꢀ  
addressedꢀandꢀfollowedꢀbyꢀaꢀSTOPꢀconditionꢀtoꢀinitiateꢀ  
aꢀconversion.  
Table 2. Address Assignment  
AD1  
LOW  
LOW  
LOW  
Float  
Float  
Float  
HIGH  
HIGH  
HIGH  
AD0  
LOW  
Float  
HIGH  
HIGH  
Float  
LOW  
LOW  
Float  
HIGH  
ADDRESS  
0001000  
0001001  
0001010  
0001011  
0011000  
0011001  
0011010  
0011011  
0101000  
Initiating a New Conversion  
TheꢀLTC2309ꢀawakensꢀfromꢀeitherꢀnapꢀorꢀsleepꢀwhenꢀ  
properlyꢀaddressedꢀforꢀaꢀread/writeꢀoperation.ꢀAꢀSTOPꢀ  
commandmaythenbeissuedafterperformingtheꢀ  
read/writeꢀoperationꢀtoꢀtriggerꢀaꢀnewꢀconversion.ꢀ  
IssuingꢀaꢀSTOPꢀcommandꢀafterꢀtheꢀ8thꢀSCLꢀclockꢀpulseꢀ  
ofꢀtheꢀaddressꢀframeꢀandꢀbeforeꢀtheꢀcompletionꢀofꢀaꢀ  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
SDA  
CONVERSION  
INITIATED  
A6  
A5  
A4  
A3  
A2  
A1  
A0 R/W  
S/D O/S S1  
S0 UNI SLP  
WORD  
X
X
STOP BY  
MASTER  
START BY  
MASTER  
ACK BY  
ADC  
ACK BY  
ADC  
D
IN  
2309 F08b  
ADDRESS FRAME  
WRITE 1 BYTE  
Figure 8b. Timing Diagram for Writing to the LTC2309  
2309fd  
ꢀꢅ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Continuous Read  
atesꢀaꢀNACKꢀsignalꢀindicatingꢀtheꢀconversionꢀcycleꢀisꢀ  
inꢀprogress.  
Inapplicationswherethesameinputchannelissampledꢀ  
eachcycle,conversionscanbecontinuouslyperformedꢀ  
Continuous Read/Write  
andꢀreadꢀwithoutꢀaꢀwriteꢀcycleꢀ(seeꢀFigureꢀ9).ꢀTheꢀD ꢀ  
IN  
Onceꢀtheꢀconversionꢀcycleꢀisꢀcomplete,ꢀtheꢀLTC2309ꢀ  
canbewrittentoandthenreadfromusingtherepeatedꢀ  
STARTꢀ(Sr)ꢀcommand.ꢀFigureꢀ10ꢀshowsꢀaꢀcycleꢀwhichꢀ  
beginsꢀwithꢀaꢀdataꢀwrite,ꢀaꢀrepeatedꢀSTART,ꢀfollowedꢀ  
byꢀaꢀreadꢀandꢀconcludedꢀwithꢀaꢀSTOPꢀcommand.ꢀAfterꢀ  
allꢀ16ꢀbitsꢀareꢀreadꢀout,ꢀaꢀconversionꢀmayꢀbeꢀinitiatedꢀ  
byꢀissuingꢀaꢀSTOPꢀcommand.ꢀTheꢀfollowingꢀconver-  
sionꢀwillꢀbeꢀperformedꢀusingꢀtheꢀnewlyꢀprogrammedꢀ  
data.  
wordꢀremainsꢀunchangedꢀfromꢀtheꢀlastꢀvalueꢀwrittenꢀ  
intoꢀtheꢀdevice.ꢀIfꢀtheꢀdeviceꢀhasꢀnotꢀbeenꢀwrittenꢀtoꢀ  
sinceꢀpower-up,ꢀtheꢀD ꢀwordꢀdefaultsꢀtoꢀallꢀ0sꢀ(S/Dꢀ=ꢀ  
IN  
O/Sꢀ=ꢀS0ꢀ=ꢀS1ꢀ=ꢀUNIꢀ=ꢀSLPꢀ=ꢀ0).ꢀAtꢀtheꢀendꢀofꢀaꢀreadꢀ  
operation,aSTOPconditionmaybegiventostartanewꢀ  
conversion.ꢀAtꢀtheꢀconclusionꢀofꢀtheꢀconversionꢀcycle,ꢀ  
thenextresultmaybereadusingthemethoddescribedꢀ  
above.ꢀIfꢀtheꢀconversionꢀcycleꢀisꢀnotꢀconcludedꢀandꢀaꢀ  
validꢀaddressꢀselectsꢀtheꢀdevice,ꢀtheꢀLTC2309ꢀgener-  
S
7-BIT ADDRESS R ACK READ  
P
S
7-BIT ADDRESS R ACK READ  
P
CONVERSION  
NAP  
DATA OUTPUT CONVERSION  
NAP  
DATA  
OUTPUT  
CONVERSION  
2309 F09  
Figure 9. Consecutive Reading with the Same Configuration  
S
7-BIT ADDRESS W ACK WRITE Sr 7-BIT ADDRESS R ACK READ  
P
CONVERSION  
NAP  
DATA INPUT  
ADDRESS  
DATA  
OUTPUT  
CONVERSION  
2309 F10  
Figure 10. Write, Read, START Conversion  
2309fd  
ꢀꢆ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Synchronizing Multiple LTC2309s with a Global  
Address Call  
Nap Mode  
TheꢀADCꢀentersꢀnapꢀmodeꢀafterꢀaꢀconversionꢀisꢀcom-  
2
InapplicationswhereseveralLTC2309sorotherI CSARꢀ pleteꢀ(t  
)ꢀifꢀtheꢀSLPꢀbitꢀisꢀsetꢀtoꢀaꢀlogicꢀ0.ꢀTheꢀsup-  
CONV  
ADCsꢀfromꢀLinearꢀTechnologyꢀCorporationꢀareꢀusedꢀonꢀ plyꢀcurrentꢀdecreasesꢀtoꢀ210μAꢀinꢀnapꢀmodeꢀbetweenꢀ  
2
theꢀsameꢀI Cꢀbus,ꢀallꢀconvertersꢀcanꢀbeꢀsynchronizedꢀ conversions,ꢀ therebyꢀ reducingꢀ theꢀ averageꢀ powerꢀ  
throughꢀtheꢀuseꢀofꢀaꢀglobalꢀaddressꢀcall.ꢀPriorꢀtoꢀissu- dissipationꢀasꢀtheꢀsampleꢀrateꢀdecreases.ꢀForꢀexample,ꢀ  
ingꢀtheꢀglobalꢀaddressꢀcall,ꢀallꢀconvertersꢀmustꢀhaveꢀ theꢀLTC2309drawsanaverageof300µAata1kspsꢀ  
completedꢀaꢀconversionꢀcycle.ꢀTheꢀmasterꢀthenꢀissuesꢀ samplingꢀrate.ꢀTheꢀLTC2309ꢀkeepsꢀonlyꢀtheꢀreferenceꢀ  
aꢀSTART,ꢀfollowedꢀbyꢀtheꢀglobalꢀaddressꢀ1101011,ꢀandꢀ (V )andreferencebuffer(REFCOMP)circuitryactiveꢀ  
REF  
aꢀwriteꢀrequest.ꢀAllꢀconvertersꢀwillꢀbeꢀselectedꢀandꢀac- whenꢀinꢀnapꢀmode.  
knowledgeꢀtheꢀrequest.ꢀTheꢀmasterꢀthenꢀsendsꢀaꢀwriteꢀ  
Sleep Mode  
byte(optional)followedbytheSTOPcommand.Thiswillꢀ  
updateꢀtheꢀchannelꢀselectionꢀ(optional)ꢀandꢀsimultane-  
ouslyꢀinitiateꢀaꢀconversionꢀforꢀallꢀADCsꢀonꢀtheꢀbusꢀ(seeꢀ  
Figureꢀ11).ꢀInꢀorderꢀtoꢀsynchronizeꢀmultipleꢀconvertersꢀ  
withoutꢀchangingꢀtheꢀchannel,ꢀaꢀSTOPꢀcommandꢀmayꢀ  
beꢀissuedꢀafterꢀacknowledgementꢀofꢀtheꢀglobalꢀwriteꢀ  
command.ꢀGlobalꢀreadꢀcommandsꢀareꢀnotꢀallowedꢀandꢀ  
theꢀconvertersꢀwillꢀNACKꢀaꢀglobalꢀreadꢀrequest.  
TheꢀADCꢀentersꢀsleepꢀmodeꢀafterꢀaꢀconversionꢀisꢀcom-  
pleteꢀ(t )ꢀifꢀtheꢀSLPꢀbitꢀisꢀsetꢀtoꢀaꢀlogicꢀ1.ꢀTheꢀADCꢀ  
CONV  
drawsꢀonlyꢀ7µAꢀinꢀsleepꢀmode,ꢀprovidedꢀthatꢀnoneꢀofꢀ  
theꢀdigitalꢀinputsꢀareꢀswitching.ꢀWhenꢀtheꢀLTC2309ꢀisꢀ  
properlyaddressed,theADCisreleasedfromsleepmodeꢀ  
andꢀrequiresꢀ200msꢀ(t  
theꢀrespectiveꢀ2.2μFꢀandꢀ10μFꢀbypassꢀcapacitorsꢀonꢀtheꢀ  
)ꢀtoꢀwakeꢀupꢀandꢀchargeꢀ  
REFWAKE  
V
ꢀandꢀREFCOMPꢀpins.ꢀAꢀnewꢀconversionꢀshouldꢀnotꢀ  
REF  
beꢀinitiatedꢀbeforeꢀthisꢀtime,ꢀasꢀshownꢀinꢀFigureꢀ12.  
SCL  
SDA  
LTC2309  
LTC2309  
LTC2309  
S
GLOBAL ADDRESS W ACK WRITE (OPTIONAL)  
P
CONVERSION  
NAP  
DATA OUTPUT  
CONVERSION OF ALL LTC2309s  
2309 F11  
Figure 11. Synchronous Multiple LTC2309s with a Global Address Call  
S
7-BIT ADDRESS R/W ACK  
P
CONVERSION  
SLEEP  
t
CONVERSION  
2309 F12  
REFWAKE  
Figure 12. Exiting Sleep Mode and Starting a New Conversion  
2309fd  
ꢀꢇ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Acquisition  
Ifꢀaꢀwriteꢀoperationꢀisꢀbeingꢀperformed,ꢀacquisitionꢀofꢀ  
theꢀinputꢀsignalꢀbeginsꢀonꢀtheꢀfallingꢀedgeꢀofꢀtheꢀsixthꢀ  
TheꢀLTC2309ꢀbeginsꢀacquiringꢀtheꢀinputꢀsignalꢀatꢀdif-  
ferentꢀinstancesꢀdependingꢀonꢀwhetherꢀaꢀreadꢀorꢀwriteꢀ  
operationisbeingperformed.Ifareadoperationisꢀ  
beingꢀperformed,ꢀacquisitionꢀofꢀtheꢀinputꢀsignalꢀbeginsꢀ  
onꢀtheꢀrisingꢀedgeꢀofꢀtheꢀ9thꢀclockꢀpulseꢀfollowingꢀtheꢀ  
addressꢀframe,ꢀasꢀshownꢀinꢀFigureꢀ13a.ꢀ  
clockꢀcycleꢀafterꢀtheꢀD ꢀwordꢀhasꢀbeenꢀshiftedꢀin,ꢀasꢀ  
IN  
showninFigure13b.TheLTC2309willacquiretheꢀ  
signalꢀfromꢀtheꢀinputꢀchannelꢀthatꢀwasꢀmostꢀrecentlyꢀ  
programmedꢀbyꢀtheꢀD ꢀword.ꢀAꢀminimumꢀofꢀ240nsꢀisꢀ  
IN  
requiredꢀtoꢀacquireꢀtheꢀinputꢀsignalꢀbeforeꢀinitiatingꢀaꢀ  
newꢀconversion.ꢀ  
1
2
3
4
5
6
7
8
9
1
2
SCL  
SDA  
ACQUISITION BEGINS  
A6  
A5  
A4  
A3  
A2  
A1  
A0 R/W  
B11 B10  
2309 F13a  
t
ACQ  
Figure 13a. Timing Diagram Showing Acquisition During a Read Operation  
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
SDA  
ACQUISITION BEGINS  
A2  
A1  
A0 R/W  
S/D O/S S1 S0 UNI SLP  
X
X
2309 F13b  
t
ACQ  
Figure 13b. Timing Diagram Showing Acquisition During a Write Operation  
111...111  
011...111  
011...110  
111...110  
BIPOLAR  
ZERO  
100...001  
100...000  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
UNIPOLAR  
ZERO  
FS = 4.096V  
1LSB = FS/2  
000...001  
000...000  
FS = 4.096V  
1LSB = FS/2  
100...001  
100...000  
12  
12  
1LSB = 1mV  
1LSB = 1mV  
–1 0V  
1
0V  
FS – 1LSB  
–FS/2  
FS/2 – 1LSB  
LSB  
LSB  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2309 F15  
2309 F14  
Figure 14. Bipolar Transfer Characteristics (2s Complement)  
Figure 15. Unipolar Transfer Characteristics (Straight Binary)  
2309fd  
ꢀꢈ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
Board Layout and Bypassing  
andꢀV ꢀshouldꢀbeꢀbypassedꢀtoꢀtheꢀgroundꢀplaneꢀasꢀcloseꢀ  
DD  
toꢀtheꢀpinꢀasꢀpossible.ꢀMaintainingꢀaꢀlowꢀimpedanceꢀpathꢀ  
forꢀ theꢀ commonꢀ returnꢀ ofꢀ theseꢀ bypassꢀ capacitorsꢀ isꢀ  
essentialtothelownoiseoperationoftheADC.Theseꢀ  
tracesꢀshouldꢀbeꢀasꢀwideꢀasꢀpossible.ꢀSeeꢀFiguresꢀ16a-eꢀ  
forꢀaꢀsuggestedꢀlayout.  
Toꢀobtainthebestperformance,aprintedcircuitboardwithꢀ  
aꢀsolidꢀgroundꢀplaneꢀisꢀrequired.ꢀLayoutꢀforꢀtheꢀprintedꢀ  
boardꢀshouldꢀensureꢀdigitalꢀandꢀanalogꢀsignalꢀlinesꢀareꢀ  
separatedꢀasꢀmuchꢀasꢀpossible.ꢀCareꢀshouldꢀbeꢀtakenꢀnotꢀ  
toꢀrunꢀanyꢀdigitalꢀsignalsꢀalongsideꢀanꢀanalogꢀsignal.ꢀAllꢀ  
analoginputsshouldbeshieldedbyGND.V ,REFCOMPꢀ  
REFꢀ  
2309 F16a  
Figure 16a. Top Silkscreen  
2309fd  
ꢁ0  
LTC2309  
AppLICAtIOns InFORMAtIOn  
2309 F16b  
Figure 16b. Layer 1 Component Side  
2309 F16c  
Figure 16c. Layer 2 Ground Plane  
2309fd  
ꢁꢀ  
LTC2309  
AppLICAtIOns InFORMAtIOn  
2309 F16d  
Figure 16d. Layer 3 Power Plane  
2309 F16e  
Figure 16e. Layer Back Solder Side  
2309fd  
ꢁꢁ  
LTC2309  
pACKAGe DesCRIptIOn  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1697)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.ꢀꢀ5  
PIN ꢀ NOTCH  
R = 0.20 TYP OR  
0.35 s 45° CHAMFER  
0.75 0.05  
4.00 0.ꢀ0  
(4 SIDES)  
TYP  
23 24  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
0.40 0.ꢀ0  
2
2.45 0.ꢀ0  
(4-SIDES)  
(UF24) QFN 0ꢀ05  
0.200 REF  
0.25 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2309fd  
ꢁꢂ  
LTC2309  
pACKAGe DesCRIptIOn  
F Package  
20-Lead Plastic TSSOP (4.4mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1650)  
6.40 – 6.60*  
(.252 – .260)  
1.05 0.10  
4.50 0.10  
20 19 18 17 16 15 14 13 12 11  
6.60 0.10  
6.40  
(.252)  
BSC  
0.45 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
1.10  
(.0433)  
MAX  
4.30 – 4.50**  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
0.50 – 0.75  
0.05 – 0.15  
(.0035 – .0079)  
(.020 – .030)  
(.002 – .006)  
0.19 – 0.30  
(.0075 – .0118)  
TYP  
F20 TSSOP 0204  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
2309fd  
ꢁꢃ  
LTC2309  
ReVIsIOn HIstORY (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
7/10  
RevisedꢀBlockꢀDiagram  
1
2,ꢀ4-9,ꢀ20  
5
ChangedꢀAV ꢀandꢀDV ꢀpinsꢀtoꢀV ꢀonly  
DD  
DD  
DD  
RevisedꢀNoteꢀ2  
ConsolidatedꢀAV ꢀandꢀDV ꢀintoꢀV ꢀandꢀrevisedꢀV ꢀandꢀREFCOMPꢀpinꢀdescriptionsꢀinꢀPinꢀFunctionsꢀsection  
7,ꢀ8  
DD  
DD  
DD  
REF  
2
RevisedꢀFiguresꢀ6bꢀandꢀ6cꢀandꢀInternalꢀReferenceꢀparagraph,ꢀandꢀaddedꢀtextꢀtoꢀI CꢀInterfaceꢀinꢀApplicationsꢀ  
Informationꢀsection  
13,ꢀ14  
ChangedꢀNAKꢀtoꢀNACKꢀinꢀFigureꢀ8a  
RevisedꢀTypicalꢀApplication  
15  
26  
2309fd  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢁꢄ  
LTC2309  
tYpICAL AppLICAtIOn  
Driving the LTC2309 with 10V Input Signals Using a Precision Attenuator  
5V  
IN  
OUT  
1µF  
0.1µF  
LT1790-2.5  
GND  
10V  
7
5V  
450k  
50k  
8
9
150k  
10µF  
0.1µF  
+
10  
4pF  
100Ω  
47pF  
450k  
450k  
V
AD1 AD0  
6
CH0  
1.7k 1.7k  
DD  
LT1991  
1
2
3
LTC2309  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
450k  
150k  
50k  
SCL  
SDA  
CONTROL  
LOGIC  
ANALOG  
INPUT  
MUX  
10V  
INPUT  
SIGNAL  
+
2
12-BIT  
SAR ADC  
I C  
4pF  
PORT  
(FPGA, CPLD,  
DSP, ETC)  
4
5
–10V  
INTERNAL  
2.5V REF  
V
REF  
2.2µF  
REFCOMP  
GND  
0.1µF  
10µF  
2309 TA02  
ReLAteD pARts  
PART NUMBER  
LTC1417  
DESCRIPTION  
14-Bit,ꢀ400kspsꢀSerialꢀADC  
COMMENTS  
20mW,ꢀUnipolarꢀorꢀBipolar,ꢀInternalꢀReference,ꢀSSOP-16ꢀPackage  
LowꢀInputꢀOffset:ꢀ75µV/125µV  
LTC1468/LTC1469  
Single/Dualꢀ90MHz,ꢀ22V/µs,ꢀ16-BitꢀAccurateꢀꢀ  
OpꢀAmps  
LTC1609  
16-Bit,ꢀ200kspsꢀSerialꢀADC  
65mW,ꢀConfigurableꢀBipolarꢀandꢀUnipolarꢀInputꢀRanges,ꢀ5VꢀSupply  
60µAꢀSupplyꢀCurrent,ꢀ10ppm/°C,ꢀSOT-23ꢀPackage  
LTC1790  
MicropowerꢀLowꢀDropoutꢀReference  
10-Bit/12-Bit,ꢀ8-Channel,ꢀ1.25MspsꢀADCs  
10-Bit/12-Bit,ꢀ8-Channel,ꢀ400kspsꢀADCs  
12-Bit,ꢀ1-/2-Channelꢀ250kspsꢀADCsꢀinꢀMSOP  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
ParallelꢀOutput,ꢀProgrammableꢀMUXꢀandꢀSequencer,ꢀ5VꢀSupply  
ParallelꢀOutput,ꢀProgrammableꢀMUXꢀandꢀSequencer,ꢀ3Vꢀorꢀ5VꢀSupply  
850µAꢀatꢀ250ksps,ꢀ2µAꢀatꢀ1ksps,ꢀSO-8ꢀandꢀMSOPꢀPackages  
450µAꢀatꢀ150ksps,ꢀ10µAꢀatꢀ1ksps,ꢀSO-8ꢀandꢀMSOPꢀPackages  
6.5mW,ꢀUnipolarꢀorꢀBipolar,ꢀInternalꢀReference,ꢀSSOP-16ꢀPackage  
2mW,ꢀUnipolarꢀorꢀBipolar,ꢀInternalꢀReference,ꢀSSOP-16ꢀPackage  
850µAꢀatꢀ250ksps,ꢀ2µAꢀatꢀ1ksps,ꢀSO-8ꢀandꢀMSOPꢀPackages  
450µAꢀatꢀ150ksps,ꢀ10µAꢀatꢀ1ksps,ꢀSO-8ꢀandꢀMSOPꢀPackages  
14mWꢀatꢀ500ksps,ꢀSingleꢀ5VꢀSupply,ꢀSoftwareꢀCompatibleꢀwithꢀLTC2308  
LTC1860L/LTC1861L 3V,ꢀ12-bit,ꢀ1-/2-Channelꢀ150kspsꢀADCs  
LTC1863/LTC1867 12-/16-Bit,ꢀ8-Channelꢀ200kspsꢀADCs  
LTC1863L/LTC1867L 3V,ꢀ12-/16-bit,ꢀ8-Channelꢀ175kspsꢀADCs  
LTC1864/LTC1865 16-Bit,ꢀ1-/2-Channelꢀ250kspsꢀADCsꢀinꢀMSOP  
LTC1864L/LTC1865L 3V,ꢀ16-Bit,ꢀ1-/2-Channelꢀ150kspsꢀADCsꢀinꢀMSOP  
LTC2302/LTC2306  
12-Bit,ꢀ1-/2-Channelꢀ500kspsꢀSPIꢀADCsꢀinꢀꢀ  
3mmꢀ×ꢀ3mmꢀDFN  
LTC2308  
12-Bit,ꢀ8-Channelꢀ500kspsꢀSPIꢀADC  
5V,ꢀInternalꢀReference,ꢀ4mmꢀ×ꢀ4mmꢀQFNꢀPackage,ꢀSoftwareꢀCompatibleꢀwithꢀ  
LTC2302/LTC2306  
2
LTC2453  
Easy-to-Use,ꢀUltratinyꢀ16-BitꢀI CꢀDeltaꢀSigmaꢀADC  
2LSBꢀINL,ꢀ50nAꢀSleepꢀCurrent,ꢀ60HzꢀOutputꢀRate,ꢀ3mmꢀ×ꢀ2mmꢀDFNꢀPackage  
2
LTC2487/LTC2489/ 2-/4-ChannelꢀEasyꢀDrive™ꢀI CꢀDeltaꢀSigmaꢀADCs  
LTC2493  
16-/24ꢀBits,ꢀPGAꢀandꢀTemperatureꢀSensor,ꢀ15HzꢀOutputꢀRate,ꢀ4mmꢀ×ꢀ3mmꢀ  
DFNꢀPackages  
2
LTC2495/LTC2497/ 8-/16-ChannelꢀEasyꢀDriveꢀI CꢀDeltaꢀSigmaꢀADCs  
16-/24-Bits,ꢀPGAꢀandꢀTemperatureꢀSensor,ꢀ15HzꢀOutputꢀRate,ꢀ5mmꢀ×ꢀ7mmꢀ  
QFNꢀPackages  
LTC2499  
2309fd  
LT 0710 REV D • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢁꢅ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2008  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

LTC2309CUF-PBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CUF-TRPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CUFXPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CUFXTRPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309IUF#PBF

暂无描述
Linear

LTC2309IUF-PBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309IUF-TRPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309IUFXPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309IUFXTRPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2310-12

Octal, 12-Bit Sign, 1.5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2310-14

Octal, 12-Bit Sign, 1.5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2310-16

Octal, 12-Bit Sign, 1.5Msps/Ch Simultaneous Sampling ADC
Linear