LTC2320HUKG-14#PBF [Linear]

LTC2320-14 - Octal, 14-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40°C to 125°C;
LTC2320HUKG-14#PBF
型号: LTC2320HUKG-14#PBF
厂家: Linear    Linear
描述:

LTC2320-14 - Octal, 14-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40°C to 125°C

转换器
文件: 总34页 (文件大小:2053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2320-14  
Octal, 14-Bit + Sign,  
1.5Msps/Ch Simultaneous  
Sampling ADC  
FEATURES  
DESCRIPTION  
The LTC®2320-14 is a low noise, high speed octal 14-bit  
+ sign successive approximation register (SAR) ADC with  
differential inputs and wide input common mode range.  
Operating from a single 3.3V or 5V supply, the LTC2320-  
n
1.5Msps/Ch Throughput Rate  
n
Eight Simultaneously Sampling Channels  
n
Guaranteed 14-Bit, No Missing Codes  
n
8V Differential Inputs with Wide Input  
P-P  
Common Mode Range  
14 has an 8V differential input range, making it ideal  
P-P  
n
n
n
n
n
81dB SNR (Typ) at f = 500kHz  
for applications which require a wide dynamic range with  
high common mode rejection. The LTC2320-14 achieves  
1LSB INL typical, no missing codes at 14 bits and 81dB  
SNR.  
IN  
IN  
–90dB THD (Typ) at f = 500kHz  
Guaranteed Operation to 125°C  
Single 3.3V or 5V Supply  
Low Drift (20ppm/°C Max) 2.048V or 4.096V  
Internal Reference  
The LTC2320-14 has an onboard low drift (20ppm/°C  
max) 2.048V or 4.096V temperature-compensated  
reference. The LTC2320-14 also has a high speed SPI-  
compatible serial interface that supports CMOS or LVDS.  
The fast 1.5Msps per channel throughput with no latency  
makes the LTC2320-14 ideally suited for a wide variety  
of high speed applications. The LTC2320-14 dissipates  
only 20mW per channel and offers nap and sleep modes  
to reduce the power consumption to 26μW for further  
power savings during inactive periods.  
n
n
n
n
1.8V to 2.5V I/O Voltages  
CMOS or LVDS SPI-Compatible Serial I/O  
Power Dissipation 20mW/Ch (Typ)  
Small 52-Lead (7mm × 8mm) QFN Package  
APPLICATIONS  
n
High Speed Data Acquisition Systems  
n
Communications  
n
Optical Networking  
Multiphase Motor Control  
All registered trademarks and trademarks are the property of their respective owners.  
n
TYPICAL APPLICATION  
10ꢀꢁ  
1ꢀꢁ  
1ꢀꢁꢂ ꢃꢄ 2ꢀꢅꢂ  
3ꢀ3ꢁ ꢂꢃ ꢄꢁ  
32k Point FFT fSMPL = 1.5Msps,  
fIN = 500kHz  
TRUE DIFFERENTIAL INPUTS  
NO CONFIGURATION REQUIRED  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁ  
ꢂꢂ  
ꢀꢀ  
ꢁꢂ1  
ꢁꢂ1  
ꢀꢁꢂ  
CMOSꢃꢄ  
SDRꢀꢁꢁꢂ  
ꢀꢁꢂꢃꢄꢂꢁꢅ  
14ꢀꢁꢂꢃ  
ꢄ ꢅꢂꢆꢇ  
ꢅꢈꢉ ꢈꢊꢋ  
+
ꢀꢁꢂ  
IN , IN  
0
ꢀ20  
ꢀꢁꢂ ꢃ ꢄ1ꢅ1ꢆꢇ  
ꢀꢁꢂ ꢃ ꢄꢅ0ꢆ2ꢇꢈ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ0ꢇꢆꢈꢉ  
ꢀꢁꢂꢃ ꢄ ꢅ4ꢆꢇꢈꢉ  
ꢁꢂ2  
ꢁꢂ2  
ꢀꢁꢂ  
ꢁꢂ3  
ꢁꢂ3  
ꢀꢁꢂ  
ꢀꢁꢂ1  
ꢀꢁꢂ2  
ꢀꢁꢂ3  
ꢀꢁꢂ4  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
14ꢀꢁꢂꢃ  
ꢄ ꢅꢂꢆꢇ  
ꢅꢈꢉ ꢈꢊꢋ  
ꢀ40  
ꢀꢁꢂ  
ꢁꢂ4  
ꢁꢂ4  
ꢀꢁꢂ  
0
0
0
0
ꢀꢁ0  
ꢂ2320ꢃ14  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
14ꢀꢁꢂꢃ  
ꢄ ꢅꢂꢆꢇ  
ꢅꢈꢉ ꢈꢊꢋ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ100  
ꢀ120  
ꢀ140  
CNV  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢀꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
14ꢀꢁꢂꢃ  
ꢄ ꢅꢂꢆꢇ  
ꢅꢈꢉ ꢈꢊꢋ  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ1 ꢀꢁꢂꢃꢄꢅ2 ꢀꢁꢂꢃꢄꢅ3 ꢀꢁꢂꢃꢄꢅ4  
232014 ꢀꢁ01a  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
232014 ꢀꢁ01ꢂ  
ꢀꢁꢂꢃꢄ ꢅꢁꢆꢇꢊꢀꢋꢇꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢈꢉꢁꢆꢆꢊꢄꢀ  
1ꢀꢁ  
10ꢀꢁ  
10ꢀꢁ  
10ꢀꢁ  
10ꢀꢁ  
232014fa  
1
For more information www.linear.com/LTC2320-14  
LTC2320-14  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
ꢅꢆꢇ ꢈꢉꢊꢋ  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (OV )................................................3V  
DD  
Analog Input Voltage  
ꢁ2 ꢁ1 ꢁ0 4ꢄ 4ꢃ 4ꢂ 4ꢀ 4ꢁ 44 43 42 41  
+
1
2
40 ꢘꢎꢆꢃꢞꢘꢎꢆꢎ  
3ꢄ ꢘꢎꢆꢂꢞꢘꢎꢆꢎ  
ꢉꢍꢀ  
A
, A (Note 3) ................... –0.3V to (V + 0.3V)  
IN  
IN DD  
ꢉꢍꢀ  
REFOUT1,2,3,4........................ .–0.3V to (V + 0.3V)  
DD  
DD  
ꢌꢍꢎ  
ꢌꢍꢎ  
ꢆꢈ  
3
3ꢃ  
3ꢂ  
CNV........................................ –0.3V to (OV + 0.3V)  
4
ꢉꢍꢁ  
ꢎꢎ  
ꢉꢍꢁ  
3ꢀ ꢘꢎꢆꢀꢞꢘꢎꢆꢒ  
ꢘꢎꢆꢁꢞꢘꢎꢆꢒ  
3ꢁ  
Digital Input Voltage  
ꢝꢊꢚꢆꢏꢅ3  
ꢌꢍꢎ  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
34 CꢀꢁOꢂꢃꢄNꢞꢒꢔꢐꢆꢏꢅ  
ꢁ3  
ꢌꢍꢎ  
Digital Output Voltage  
ꢝꢊꢚ  
33 ꢒꢔꢐꢆꢏꢅꢞꢒꢔꢐꢆꢏꢅ  
ꢝꢊꢚꢆꢏꢅ2  
32 ꢌꢍꢎ  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
10  
11  
31 ꢆꢈ  
ꢎꢎ  
ꢉꢍ4  
Operating Temperature Range  
30 ꢘꢎꢆ4ꢞꢘꢎꢆꢟ  
2ꢄ ꢘꢎꢆ3ꢞꢘꢎꢆꢟ  
2ꢃ ꢘꢎꢆ2ꢞꢘꢎꢆꢑ  
2ꢂ ꢘꢎꢆ1ꢞꢘꢎꢆꢑ  
ꢉꢍ4  
LTC2320C................................................ 0°C to 70°C  
LTC2320I .............................................–40°C to 85°C  
LTC2320H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
ꢌꢍꢎ 12  
13  
14  
ꢉꢍ3  
ꢉꢍ3  
1ꢁ 1ꢀ 1ꢂ 1ꢃ 1ꢄ 20 21 22 23 24 2ꢁ 2ꢀ  
ꢏꢐꢌ ꢇꢑꢒꢐꢑꢌꢊ  
ꢁ2ꢓꢔꢊꢑꢎ ꢕꢂꢖꢖ × ꢃꢖꢖꢗ ꢇꢔꢑꢘꢅꢉꢒ ꢙꢚꢍ  
T
= 150°C, θ = 31°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 53) IS GND, MUST BE SOLDERED TO PCB  
http://www.linear.com/product/LTC2320-14#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC2320UKG-14  
LTC2320UKG-14  
LTC2320UKG-14  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2320CUKG-14#PBF  
LTC2320IUKG-14#PBF  
LTC2320HUKG-14#PBF  
LTC2320CUKG-14#TRPBF  
LTC2320IUKG-14#TRPBF  
LTC2320HUKG-14#TRPBF  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
232014fa  
2
For more information www.linear.com/LTC2320-14  
LTC2320-14  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
+
l
l
l
l
l
V
V
V
V
Absolute Input Range (A to A  
)
)
(Note 5)  
0
V
DD  
V
DD  
IN  
IN  
IN  
IN  
IN  
IN  
+
+
Absolute Input Range (A to A  
(Note 5)  
0
V
IN  
+
– V  
Input Differential Voltage Range  
Common Mode Input Range  
V
V
= V – V  
–REFOUT1,2,3,4  
REFOUT1,2,3,4  
V
IN  
IN  
IN  
IN  
+
= (V – V )/2  
0
V
DD  
V
CM  
CM  
IN  
IN  
I
IN  
Analog Input DC Leakage Current  
Analog Input Capacitance  
–1  
1
μA  
pF  
dB  
V
C
IN  
10  
CMRR  
Input Common Mode Rejection Ratio  
CNV High Level Input Voltage  
CNV Low Level Input Voltage  
CNV Input Current  
f
IN  
= 500kHz  
102  
l
l
l
V
V
1.5  
IHCNV  
ILCNV  
INCNV  
0.5  
10  
V
I
–10  
μA  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
14  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
14  
Bits  
Transition Noise  
0.8  
1
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero-Scale Error  
Bipolar Zero-Scale Error Drift  
Bipolar Full-Scale Error  
Bipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
–3  
–0.99  
–3  
3
0.99  
3
LSB  
DNL  
BZE  
0.4  
0
LSB  
LSB  
0.005  
0
LSB/°C  
LSB  
l
FSE  
V
V
= 4.096V (REFBUFEN Grounded) (Note 7)  
= 4.096V (REFBUFEN Grounded)  
–8  
8
REFOUT1,2,3,4  
15  
ppm/°C  
REFOUT1,2,3,4  
232014fa  
3
For more information www.linear.com/LTC2320-14  
LTC2320-14  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS (Notes 4, 8).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
80  
MAX  
UNITS  
dB  
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio f = 500kHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
75.5  
IN  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
84  
dB  
SNR  
Signal-to-Noise Ratio  
76.5  
77  
81  
dB  
82.5  
–90  
–91  
93  
dB  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–77  
dB  
dB  
SFDR  
dB  
93  
dB  
–3dB Input Bandwidth  
Aperture Delay  
55  
MHz  
ps  
500  
500  
1
Aperture Delay Matching  
Aperture Jitter  
ps  
ps  
RMS  
Transient Response  
Full-Scale Step  
3
ns  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Internal Reference Output Voltage  
4.75V < V < 5.25V  
4.078  
2.034  
4.096  
2.048  
4.115  
2.064  
V
V
REFOUT1,2,3,4  
DD  
3.13V < V < 3.47V  
DD  
l
V
Temperature Coefficient  
(Note 14)  
3
20  
ppm/°C  
REF  
REFOUT1,2,3,4 Output Impedance  
Line Regulation  
0.25  
0.3  
V
4.75V < V < 5.25V  
mV/V  
REFOUT1,2,3,4  
DD  
I
External Reference Current  
REFBUFEN = 0V  
REFOUT1,2,3,4  
REFOUT1,2,3,4 = 4.096V  
REFOUT1,2,3,4 = 2.048V  
(Notes 9, 10)  
385  
204  
μA  
μA  
232014fa  
4
For more information www.linear.com/LTC2320-14  
LTC2320-14  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
CMOS/LVDS = GND  
MIN  
0.8 • OV  
–10  
TYP  
MAX  
UNITS  
CMOS Digital Inputs and Outputs  
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
IH  
IL  
DD  
0.2 • OV  
10  
DD  
I
V
IN  
= 0V to OV  
DD  
μA  
pF  
IN  
C
IN  
Digital Input Capacitance  
5
l
l
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
OV – 0.2  
V
V
OH  
OL  
O
DD  
I = 500μA  
O
0.2  
10  
l
l
l
I
I
I
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
LVDS Digital Inputs and Outputs  
CMOS/LVDS = OV  
DD  
l
l
l
l
l
l
V
V
V
V
V
V
LVDS Differential Input Voltage  
LVDS Common Mode Input Voltage  
LVDS Differential Output Voltage  
LVDS Common Mode Output Voltage  
100Ω Differential Termination  
DD  
240  
1
600  
1.45  
600  
1.4  
mV  
V
ID  
OV = 2.5V  
100Ω Differential Termination  
OV = 2.5V  
DD  
IS  
100Ω Differential Termination  
OV = 2.5V  
DD  
220  
0.85  
100  
0.85  
350  
1.2  
200  
1.2  
mV  
V
OD  
100Ω Differential Termination  
OV = 2.5V  
DD  
OS  
Low Power LVDS Differential Output Voltage 100Ω Differential Termination  
350  
1.4  
mV  
V
OD_LP  
OS_LP  
OV = 2.5V  
DD  
Low Power LVDS Common Mode Output Voltage 100Ω Differential Termination  
OV = 2.5V  
DD  
232014fa  
5
For more information www.linear.com/LTC2320-14  
LTC2320-14  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Supply Voltage  
5V Operation  
3.3V Operation  
4.75  
3.13  
5.25  
3.47  
V
V
DD  
+
l
IV  
DD  
Supply Current  
1.5Msps Sample Rate (IN = IN = 0V)  
31  
38  
mA  
CMOS I/O Mode  
CMOS/LVDS = GND  
Supply Voltage  
l
l
l
l
OV  
1.71  
2.63  
7.0  
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
Supply Current  
1.5Msps Sample Rate (C = 5pF)  
4.4  
5.3  
20  
L
Nap Mode Current  
Sleep Mode Current  
Power Dissipation  
Conversion Done (I  
)
6.2  
VDD  
Sleep Mode (I  
+ I )  
OVDD  
110  
SLEEP  
VDD  
l
l
l
P
V
= 3.3V, 1.5Msps Sample Rate  
DD  
102  
18  
20  
130  
20.6  
355  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 1.5Msps Sample Rate  
162  
27  
30  
208  
31.2  
525  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
LVDS I/O Mode  
CMOS/LVDS = OV , OV = 2.5V  
DD DD  
l
l
l
l
OV  
Supply Voltage  
Supply Current  
2.37  
2.63  
34  
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
1.5Msps Sample Rate (C = 5pF, R = 100Ω)  
26  
5.3  
20  
L
L
Nap Mode Current  
Sleep Mode Current  
Power Dissipation  
Conversion Done (I  
)
6.2  
VDD  
Sleep Mode (I  
+ I )  
OVDD  
110  
SLEEP  
VDD  
l
l
l
P
V
= 3.3V, 1.5Msps Sample Rate  
DD  
151  
52  
80  
195  
58  
355  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 1.5Msps Sample Rate  
214  
60  
30  
280  
68.5  
525  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.667  
30  
TYP  
MAX  
1.5  
UNITS  
Msps  
µs  
l
l
l
l
f
t
t
t
t
t
Maximum Sampling Frequency  
Time Between Conversions  
Conversion Time  
SMPL  
(Note 11) t  
= t  
+ t  
+ t  
READOUT  
1000  
450  
CYC  
CYC  
CNVH  
CONV  
ns  
CONV  
CNV High Time  
ns  
CNVH  
Sampling Aperture  
(Note 11) t  
= t  
– t  
CONV  
215  
50  
ns  
ACQUISITION  
WAKE  
ACQUISITION  
CYC  
REFOUT1,2,3,4 Wake-Up Time  
C
= 10µF  
ms  
REFOUT1,2,3,4  
CMOS I/O Mode, SDR  
CMOS/LVDS = GND, SDR/ DDR = GND  
l
l
l
l
l
t
t
t
t
t
SCK Period  
(Note 13)  
9.1  
4.1  
4.1  
0
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
HSDO_SDR  
DSCKCLKOUT  
L
SCK to CLKOUT Delay  
(Note 12)  
2
232014fa  
6
For more information www.linear.com/LTC2320-14  
LTC2320-14  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 11)  
(Note 11)  
(Note 11)  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
l
t
t
t
Bus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
3
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
ns  
0
ns  
CMOS I/O Mode, DDR  
CMOS/LVDS = GND, SDR/ DDR = OV  
DD  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SCK Period  
18.2  
8.2  
8.2  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
3
HSDO_DDR  
DSCKCLKOUT  
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
(Note 11)  
(Note 11)  
2
Bus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
0
LVDS I/O Mode, SDR  
CMOS/LVDS = OV , SDR/DDR = GND  
DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
3.3  
1.5  
1.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4
HSDO_SDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
2
SCK Delay Time to CNV↑  
0
LVDS I/O Mode, DDR  
CMOS/LVDS = OV , SDR/DDR = OV = 2.5V  
DD DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
6.6  
3
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
3
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF  
0
1.5  
4
HSDO_DDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
2
SCK Delay Time to CNV↑  
(Note 11)  
0
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note 8: All specifications in dB are referred to a full-scale 4.096V input  
with REF = 4.096V.  
Note 2: All voltage values are with respect to ground.  
Note 9: When REFOUT1,2,3,4 is overdriven, the internal reference buffer  
Note 3: When these pin voltages are taken below ground, or above V or  
must be turned off by setting REFBUFEN = 0V.  
DD  
OV , they will be clamped by internal diodes. This product can handle input  
DD  
Note 10: f  
= 1.5MHz, I  
varies proportionally with sample rate.  
SMPL  
REFOUT1,2,3,4  
currents up to 100mA below ground, or above V or OV , without latch-up.  
DD  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V and OV = 2.5V.  
Note 13: t  
rising edge capture.  
Note 14: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 15: CNV is driven from a low jitter digital source, typically at OV  
logic levels.  
Note 4: V = 5V, OV = 2.5V, REFOUT1,2,3,4 = 4.096V, f = 1.5MHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
of 9.1ns allows a shift clock frequency up to 105MHz for  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 7: Bipolar zero error is the offset voltage measured from –0.5LSB  
when the output code flickers between 000 0000 0000 0000 and 111  
1111 1111 1111. Full-scale bipolar error is the worst-case of –FS or +FS  
DD  
232014fa  
7
For more information www.linear.com/LTC2320-14  
LTC2320-14  
ADC TIMING CHARACTERISTICS  
0ꢀꢁ ꢂ ꢃꢄ  
ꢅꢅ  
ꢎꢏꢅꢐꢑ  
0ꢀ2 ꢂ ꢃꢄ  
ꢅꢅ  
ꢆ0ꢇ  
ꢆ0ꢇ  
ꢅꢊꢋꢌꢍ  
ꢅꢊꢋꢌꢍ  
232014 ꢈ01  
0ꢀꢁ ꢂ ꢃꢄ  
0ꢀꢁ ꢂ ꢃꢄ  
0ꢀ2 ꢂ ꢃꢄ  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
0ꢀ2 ꢂ ꢃꢄ  
Figure 1. Voltage Levels for Timing Specifications  
232014fa  
8
For more information www.linear.com/LTC2320-14  
LTC2320-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
= 4.096V, fSMPL = 1.5Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
30  
2ꢀ0  
1ꢀꢁ  
1ꢀ0  
0ꢀꢁ  
σ ꢀ 0ꢁꢂ2  
2ꢀ  
24  
21  
1ꢀ  
1ꢀ  
12  
1ꢀ0  
0ꢀꢁ  
0
0
ꢀ0ꢁꢂ  
ꢀ1ꢁ0  
ꢀ1ꢁꢂ  
ꢀ2ꢁ0  
ꢀ0ꢁꢂ  
3
0
ꢀ1ꢁ0  
ꢀ3  
ꢀ2  
ꢀ1  
0
1
2
3
ꢀ1ꢁ3ꢂ4  
ꢀꢁ1ꢂ2  
0
ꢀ1ꢁ2  
1ꢀ3ꢁ4  
ꢀ1ꢁ3ꢂ4  
ꢀꢁ1ꢂ2  
0
ꢀ1ꢁ2  
1ꢀ3ꢁ4  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢅꢆ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢅꢆ  
232014 ꢀ03  
232014 ꢀ01  
232014 ꢀ02  
THD, Harmonics vs Input  
32k Point FFT, fSMPL = 1.5Msps,  
fIN = 500kHz  
SNR, SINAD vs Input Frequency  
(1kHz to 750kHz)  
Frequency (1kHz to 750kHz)  
ꢀ2ꢁ0  
ꢀ1ꢁꢀ  
ꢀ1ꢁꢂ  
ꢀ1ꢁ4  
ꢀ1ꢁ2  
ꢀ1ꢁ0  
ꢀ0ꢁꢀ  
ꢀ0ꢁꢂ  
ꢀ0ꢁ4  
ꢀ0ꢁ2  
ꢀ0ꢁ0  
ꢀꢁ0  
ꢀꢁ4  
0
ꢀ20  
ꢀꢁꢂ ꢃ ꢄ1ꢅ1ꢆꢇ  
ꢀꢁꢂ ꢃ ꢄꢅ0ꢆ2ꢇꢈ  
ꢀꢁꢂꢃꢄ ꢅ ꢆ0ꢇꢆꢈꢉ  
ꢀꢁꢂꢃ ꢄ ꢅ4ꢆꢇꢈꢉ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀ40  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ100  
ꢀ104  
ꢀ10ꢁ  
ꢀ112  
ꢀ11ꢁ  
ꢀ120  
ꢀꢁꢂꢃꢄ  
ꢀꢁ3  
ꢀꢁ0  
ꢀꢁ2  
ꢀ100  
ꢀ120  
ꢀ140  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
232014 ꢀ0ꢁ  
232014 ꢀ0ꢁ  
232014 ꢀ04  
THD, Harmonics vs Input Common  
Mode  
SNR, SINAD vs Reference Voltage,  
fIN = 500kHz  
32k Point FFT, IMD, fSMPL =1.5Msps,  
AIN+ = 490kHz, AIN= 510kHz  
ꢀ3  
ꢀ2  
ꢀ1  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀ4  
ꢀ3  
ꢀ2  
ꢀ1  
ꢀ0  
ꢀꢁ  
0
ꢀ20  
ꢀꢁ0  
ꢀꢁ4  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢇ  
f
ꢀ ꢁ00ꢂꢃꢄ  
f
ꢀ ꢁ00ꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀ 20ꢁꢂꢃꢄ 4ꢅ  
ꢀꢁ  
ꢆꢇꢆ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ40  
ꢀꢁ2  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ100  
ꢀ104  
ꢀ10ꢁ  
ꢀ112  
ꢀ11ꢁ  
ꢀ120  
ꢀꢁ2  
ꢀꢁ3  
ꢀꢁ0  
ꢀ100  
ꢀ120  
ꢀ140  
0ꢀꢁ  
1
1ꢀꢁ  
2
2ꢀꢁ  
3
3ꢀꢁ  
4
4ꢀꢁ  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
1ꢀꢁ 1ꢀꢁ 1ꢀꢁ 2ꢀ1 2ꢀ3 2ꢀꢁ 2ꢀꢁ 2ꢀꢁ 3ꢀ1 3ꢀ3  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁ ꢇꢆꢈꢉ ꢊꢋꢌ  
232014 ꢀ0ꢁ  
232014 ꢀ0ꢁ  
232014 ꢀ0ꢁ  
232014fa  
9
For more information www.linear.com/LTC2320-14  
LTC2320-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
= 4.096V, fSMPL = 1.5Msps, unless otherwise noted.  
Step Response  
(Large Signal Settling)  
1ꢀ3ꢁ4  
CMRR vs Input Frequency  
Crosstalk vs Input Frequency  
120  
11ꢀ  
110  
10ꢀ  
100  
ꢀꢁ  
ꢀꢁ0  
ꢀꢁ1  
ꢀꢁ2  
ꢀꢁ3  
ꢀꢁ4  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀ100  
ꢀ 4ꢁ  
ꢂꢃꢂ  
ꢀꢁ  
122ꢀꢀ  
ꢀ1ꢁ2  
4ꢀ0ꢁꢂꢃ ꢄꢅꢆꢇꢈ  
40ꢀꢁ  
0
ꢀꢁꢂ ꢃ 1ꢄꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎ ꢏꢌꢐꢎ  
ꢀꢁꢂ ꢃ 0ꢄ  
ꢀ0  
ꢀ40ꢁꢂ  
0
ꢀ00  
1000  
1ꢀ00  
ꢀ20 ꢀ10  
0
10 20 30 40 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
0
100 200 300 400 ꢀ00 ꢀ00 ꢀ00  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢂꢃꢄꢅꢆ ꢂꢄꢇꢁ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
232014 ꢀ10  
232014 ꢀ12  
232014 ꢀ11  
Step Response  
(Fine Settling)  
External Reference Supply  
Current vs Sample Frequency  
REF Output vs Temperature  
400  
3ꢀ0  
300  
2ꢀ0  
200  
1ꢀ0  
100  
ꢀ0  
1ꢀ0  
0ꢀꢁ  
12ꢀ  
100  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢂꢁꢅ ꢆ 0ꢇ  
ꢀꢁꢂꢃ ꢄꢁꢅ ꢆꢇꢅ  
ꢀ 3ꢁ3ꢂ  
ꢀꢀ  
ꢀꢁꢂꢃꢄꢃꢅꢁꢅꢆꢇ ꢃꢂꢈ ꢉꢊꢈꢋ  
0
ꢀ0  
ꢀ0ꢁꢂ  
ꢀ1ꢁ0  
ꢀ1ꢁꢂ  
ꢀ2ꢁ0  
ꢀ2ꢁꢂ  
ꢀ3ꢁ0  
2ꢀ  
ꢀ 4ꢁ0ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅ1ꢆ2ꢆ3ꢆ4  
0
ꢀ ꢁꢂ  
ꢀꢀ  
ꢀ2ꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀ100  
ꢀ12ꢁ  
4ꢀ0ꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂ ꢃ 1ꢄꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎ ꢏꢌꢐꢎ  
ꢀ 2ꢁ04ꢂꢃ  
ꢀꢁꢂꢃꢄꢅ1ꢆ2ꢆ3ꢆ4  
ꢀꢁꢂ ꢃ 0ꢄ  
0
0
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
1ꢀ2  
1ꢀꢁ  
ꢀꢁꢁ ꢀ3ꢁ ꢀ1ꢁ  
2ꢀ 4ꢀ ꢀꢁ ꢀꢁ 10ꢀ 12ꢀ  
ꢀ20 ꢀ10  
0
10 20 30 40 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢅꢈꢉꢅꢊꢋꢌ ꢍꢂꢎꢏꢎꢐ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢂꢃꢄꢅꢆ ꢂꢄꢇꢁ ꢈꢉꢊꢋ  
232014 ꢀ14  
232014 ꢀ1ꢁ  
232014 ꢀ13  
Supply Current  
vs Sample Frequency  
OVDD Current vs SCK Frequency,  
CLOAD = 10pF  
Offset Error vs Temperature  
33  
31  
2ꢀ  
2ꢀ  
2ꢀ  
23  
21  
1ꢀ  
1ꢀꢁ  
1
4
3
2
1
0
32  
ꢀꢁꢂꢂ ꢃꢄꢅꢂꢆ ꢃꢇꢈꢁꢃꢉꢇꢊꢅꢂ ꢇꢈꢋꢁꢌ  
30  
ꢂꢃ ꢄ4 ꢀꢅꢆꢇꢃꢈ 2ꢀ  
2ꢀ  
24  
22  
20  
1ꢀ  
1ꢀ  
14  
12  
0ꢀꢁ  
0
ꢀꢁꢂꢃ ꢄ2ꢅꢆ ꢈ ꢉ ꢊꢋꢌꢍꢃꢎ  
ꢀꢁꢂꢃꢄ1ꢅꢆ ꢈ ꢆ ꢉꢊꢋꢌꢃꢍ  
ꢀ ꢁꢂ  
ꢀꢀ  
ꢀ 3ꢁ3ꢂ  
ꢀꢀ  
ꢀ0ꢁꢂ  
ꢀ1  
ꢀꢁꢂ ꢃꢁꢂꢄꢅ ꢇꢈ ꢉ4 ꢀꢊꢋꢄꢈꢌ  
ꢀ1ꢁꢂ  
0
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
1ꢀ2  
1ꢀꢁ  
ꢀꢁꢁ ꢀ3ꢁ ꢀ1ꢁ  
2ꢀ 4ꢀ ꢀꢁ ꢀꢁ 10ꢀ 12ꢀ  
0
ꢀ0  
100  
1ꢀ0  
200  
2ꢀ0  
300  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢅꢈꢉꢅꢊꢋꢌ ꢍꢂꢎꢏꢎꢐ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂ ꢃꢄꢅꢆꢇꢅꢈꢁꢉ ꢊꢋꢌꢍꢎ  
232014 ꢀ1ꢁ  
232014 ꢀ1ꢁ  
232014 ꢀ1ꢁ  
232014fa  
10  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
PIN FUNCTIONS  
Pins that are the same for all digital I/O modes.  
V (Pins 15, 21, 44, 52): Power Supply. Bypass V to  
DD DD  
GND with a 10µF ceramic capacitor and a 0.1µF ceramic  
capacitor close to the part. The VDD pins should be shorted  
together and driven from the same supply.  
+
A
, A  
(Pins 2, 1): Analog Differential Input Pins.  
IN6  
IN6  
Full-scale range (AIN6 – AIN6) is REFOUT3 voltage.  
These pins can be driven from V to GND.  
+
DD  
AIN2+, AIN2(Pins 17, 16): Analog Differential Input Pins.  
GND (Pins 3, 7, 12, 18, 26, 32, 38, 46, 49): Ground.  
These pins and exposed pad (Pin 53) must be tied directly  
to a solid ground plane.  
+
Full-scale range (AIN2 – AIN2) is REFOUT1 voltage.  
These pins can be driven from V to GND.  
DD  
AIN1+, AIN1(Pins 20, 19): Analog Differential Input Pins.  
+
A
, A  
(Pins 5, 4): Analog Differential Input Pins.  
IN5  
IN5  
+
Full-scale range (AIN1 – AIN1) is REFOUT1 voltage.  
Full-scale range (AIN5 – AIN5) is REFOUT3 voltage.  
+
These pins can be driven from V to GND.  
DD  
These pins can be driven from V to GND.  
DD  
REFOUT1 (Pin 22): Reference Buffer 1 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
REFOUT3 (Pin 6): Reference Buffer 3 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
SDR/DDR (Pin 23): Double Data Rate Input. Controls the  
frequency of SCK and CLKOUT. Tie to GND for the falling  
edge of SCK to shift each serial data output (Single Data  
Rate, SDR). Tie to OV to shift serial data output on each  
edge of SCK (DoubleDDData Rate, DDR). CLKOUT will be a  
delayed version of SCK for both pin states.  
REF (Pin 8): Common 4.096V reference output. Decouple  
to GND with a 1μF low ESR ceramic capacitor. May be  
overdriven with a single external reference to establish a  
common reference for ADC cores 1 through 4.  
REFOUT2 (Pin 9): Reference Buffer 2 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
CNV (Pin 24): Convert Input. This pin, when high, defines  
the acquisition phase. When this pin is driven low, the  
conversion phase is initiated and output data is clocked  
out. This input must be driven at OV levels with a low  
DD  
jitter pulse. This pin is unaffected by the CMOS/LVDS pin.  
CMOS/LVDS (Pin 25): I/O Mode Select. Ground this pin  
AIN4+, AIN4(Pins 11, 10): Analog Differential Input Pins.  
to enable CMOS mode, tie to OV to enable LVDS mode.  
+
Full-scale range (AIN4 – AIN4) is REFOUT2 voltage.  
DD  
Float this pin to enable low power LVDS mode.  
These pins can be driven from V to GND.  
DD  
OVDD (Pins 31, 37): I/O Interface Digital Power. The range  
AIN3+, AIN3(Pins 14, 13): Analog Differential Input Pins.  
of OV is 1.71V to 2.63V. This supply is nominally set  
+
Full-scale range (AIN3 – AIN3) is REFOUT2 voltage.  
DD  
to the same supply as the host interface (CMOS: 1.8V or  
These pins can be driven from V to GND.  
DD  
2.5V, LVDS: 2.5V). Bypass OV to GND (Pins 32 and 38)  
DD  
with 0.1µF capacitors.  
232014fa  
11  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
PIN FUNCTIONS  
REFBUFEN (Pin 43): Reference Buffer Output Enable. Tie  
SDO3 (Pin 29): CMOS Serial Data Output for ADC Channel  
3. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
to V when using the internal reference. Tie to ground  
DD  
to disable the internal REFOUT1–4 buffers for use with  
external voltage references. This pin has a 500k internal  
pull-up to V .  
data to be read from A on SDO3 in SDR mode, 16 SCK  
DD  
IN3  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH4, CH5, CH6, CH7, CH8,  
CH1, CH2).  
REFOUT4 (Pin 45): Reference Buffer 4 Output. An  
onboard buffer nominally outputs 4.096V to this pin. This  
pin is referred to GND and should be decoupled closely to  
the pin with a 10µF (X5R, 0805 size) ceramic capacitor.  
The internal buffer driving this pin may be disabled by  
grounding the REFBUFEN pin. If the buffer is disabled,  
an external reference may drive this pin in the range of  
1.25V to 5V.  
SDO4 (Pin 30): CMOS Serial Data Output for ADC Channel  
4. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from A on SDO4 in SDR mode, 16 SCK  
IN4  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH5, CH6, CH7, CH8, CH1,  
CH2, CH3).  
AIN8+, AIN8(Pins 48, 47): Analog Differential Input Pins.  
+
Full-scale range (AIN8 – AIN8) is REFOUT4 voltage.  
These pins can be driven from V to GND.  
DD  
CLKOUT (Pin 33): Serial Data Clock Output. CLKOUT pro-  
AIN7+, AIN7(Pins 51, 50): Analog Differential Input Pins.  
vides a skew-matched clock to latch the SDO output at the  
+
Full-scale range (AIN7 – AIN7) is REFOUT4 voltage.  
receiver (FPGA). The logic level is determined by OV .  
DD  
These pins can be driven from V to GND.  
DD  
This pin echoes the input at SCK with a small delay.  
Exposed Pad (Pin 53): Ground. Solder this pad to ground.  
CLKOUTEN (Pin 34): CLKOUT can be disabled by tying  
Pin 34 to OV for a small power savings. If CLKOUT is  
DD  
CMOS DATA OUTPUT OPTION (CMOS/LVDS = LOW)  
used, ground this pin.  
SDO1 (Pin 27): CMOS Serial Data Output for ADC Channel  
1. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
SDO5 (Pin 35): CMOS Serial Data Output for ADC Channel  
5. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from A on SDO1 in SDR mode, 16 SCK  
IN1  
data to be read from A on SDO5 in SDR mode, 16 SCK  
IN5  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH2, CH3, CH4, CH5, CH6,  
CH7, CH8).  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH6, CH7, CH8, CH1, CH2,  
CH3, CH4).  
SDO2 (Pin 28): CMOS Serial Data Output for ADC Channel  
2. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
SDO6 (Pin 36): CMOS Serial Data Output for ADC Channel  
6. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from A on SDO2 in SDR mode, 16 SCK  
IN2  
data to be read from A on SDO6 in SDR mode, 16 SCK  
IN6  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH3, CH4, CH5, CH6, CH7,  
CH8, CH1).  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH7, CH8, CH1, CH2, CH3,  
CH4, CH5).  
232014fa  
12  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
PIN FUNCTIONS  
SDO7 (Pin 39): CMOS Serial Data Output for ADC Channel  
7. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
mode and each SCK edge in DDR mode. 32 SCK edges  
are required for 14-bit conversion data to be read from  
A
and A on SDOB in SDR mode, 16 SCK edges in  
IN3  
IN4  
DDR mode. Supplying more clocks will yield data from  
subsequent channels (CH5, CH6, CH7, CH8, CH1, CH2).  
Terminate with a 100Ω resistor at the receiver (FPGA).  
CLKOUT+, CLKOUT(Pins 33, 34): Serial Data Clock  
Output. CLKOUT provides a skew-matched clock to latch  
the SDO output at the receiver. These pins echo the input  
at SCK with a small delay. These pins must be differ-  
entially terminated by an external 100Ω resistor at the  
receiver (FPGA).  
data to be read from A on SDO7 in SDR mode, 16 SCK  
IN7  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH8, CH1, CH2, CH3, CH4,  
CH5, CH6).  
SDO8 (Pin 40): CMOS Serial Data Output for ADC Channel  
8. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from A on SDO8 in SDR mode, 16 SCK  
+
IN8  
SDOC , SDOC (Pins 35, 36): LVDS Serial Data Output  
for ADC channels 5 and 6. The conversion result is  
shifted CH5 MSB first on each falling edge of SCK in SDR  
mode and each SCK edge in DDR mode. 32 SCK edges  
are required for 14-bit conversion data to be read from  
edges in DDR mode. Supplying more clocks will yield data  
from subsequent channels (CH1, CH2, CH3, CH4, CH5,  
CH6, CH7).  
SCK (Pin 41): Serial Data Clock Input. The falling edge  
of this clock shifts the conversion result MSB first onto  
the SDO pins in SDR mode (DDR = LOW). In DDR mode  
(SDR/DDR = HIGH) each edge of this clock shifts the  
conversion result MSB first onto the SDO pins. The logic  
A
and A on SDOA in SDR mode, 16 SCK edges in  
IN5  
IN6  
DDR mode. Supplying more clocks will yield data from  
subsequent channels (CH7, CH8, CH1, CH2, CH3, CH4).  
Terminate with a 100Ω resistor at the receiver (FPGA).  
level is determined by OV .  
+
DD  
SDOD , SDOD (Pins 39, 40): LVDS Serial Data Output  
for ADC Channels 7 and 8. The conversion result is  
shifted CH7 MSB first on each falling edge of SCK in SDR  
mode and each SCK edge in DDR mode. 32 SCK edges  
are required for 14-bit conversion data to be read from  
DNC (Pin 42): In CMOS mode do not connect this pin.  
LVDS DATA OUTPUT OPTION (CMOS/LVDS = HIGH OR  
FLOAT)  
A
and A on SDOA in SDR mode, 16 SCK edges in  
IN7  
IN8  
+
SDOA , SDOA (Pins 27, 28): LVDS Serial Data Output  
for ADC Channels 1 and 2. The conversion result is  
shifted CH1 MSB first on each falling edge of SCK in SDR  
mode and each SCK edge in DDR mode. 32 SCK edges  
are required for 14-bit conversion data to be read from  
DDR mode. Supplying more clocks will yield data from  
subsequent channels (CH1, CH2, CH3, CH4, CH5, CH6).  
Terminate with a 100Ω resistor at the receiver (FPGA).  
+
SCK , SCK (Pins 41, 42): Serial Data Clock Input. The  
falling edge of this clock shifts the conversion result MSB  
first onto the SDO pins in SDR mode (SDR/DDR = LOW).  
In DDR mode (SDR/DDR = HIGH) each edge of this clock  
shifts the conversion result MSB first onto the SDO pins.  
These pins must be differentially terminated by an external  
100Ω resistor at the receiver (ADC).  
A
and A on SDOA in SDR mode, 16 SCK edges in  
IN1  
IN2  
DDR mode. Supplying more clocks will yield data from  
subsequent channels (CH3, CH4, CH5, CH6, CH7, CH8).  
Terminate with a 100Ω resistor at the receiver (FPGA).  
+
SDOB , SDOB (Pins 29, 30): LVDS Serial Data Output  
for ADC Channels 3 and 4. The conversion result is  
shifted CH3 MSB first on each falling edge of SCK in SDR  
232014fa  
13  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
FUNCTIONAL BLOCK DIAGRAM  
CMOS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
+
A
A
IN1  
+
20  
19  
S/H  
IN1  
SDO1  
SDO2  
27  
28  
CMOS  
I/O  
14-BIT+ SIGN  
SAR ADC  
+
MUX  
A
A
IN2  
+
17  
16  
S/H  
IN2  
REFOUT1  
×1  
REF  
22  
+
A
A
IN3  
+
14  
13  
S/H  
IN3  
SDO3  
SDO4  
29  
30  
CMOS  
I/O  
14-BIT+ SIGN  
SAR ADC  
MUX  
+
A
A
IN4  
+
11  
10  
S/H  
IN4  
REFOUT2  
×1  
REF  
9
CLKOUT  
SCK  
41  
42  
33  
34  
CMOS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
DNC  
CꢀꢁOꢂꢃꢄN  
+
SDR/DDR  
23  
A
A
IN5  
+
5
4
S/H  
IN5  
SDO6  
SDO6  
35  
36  
CMOS  
I/O  
14-BIT+ SIGN  
SAR ADC  
+
MUX  
A
A
IN6  
+
2
1
S/H  
IN6  
REFOUT3  
×1  
REF  
6
+
A
A
IN7  
+
51  
50  
S/H  
IN7  
SDO7  
SDO8  
39  
40  
CMOS  
I/O  
14-BIT+ SIGN  
SAR ADC  
MUX  
+
A
A
IN8  
+
48  
47  
S/H  
IN8  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232014 BDa  
232014fa  
14  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
FUNCTIONAL BLOCK DIAGRAM  
LVDS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
A
A
+
IN1  
+
20  
19  
S/H  
IN1  
+
SDOA  
27  
LVDS  
I/O  
14-BIT+ SIGN  
SAR ADC  
MUX  
SDOA  
A
A
+
IN2  
28  
+
17  
16  
S/H  
IN2  
REFOUT1  
22  
×1  
REF  
A
A
+
IN3  
+
14  
13  
S/H  
IN3  
+
SDOB  
29  
LVDS  
I/O  
14-BIT+ SIGN  
SAR ADC  
MUX  
SDOB  
A
A
+
IN4  
30  
+
11  
10  
S/H  
IN4  
REFOUT2  
9
×1  
REF  
+
+
CLKOUT  
SCK  
SCK  
41  
42  
33  
LVDS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
CLKOUT  
34  
SDR/DDR  
23  
A
A
+
IN5  
+
5
4
S/H  
IN5  
+
SDOC  
35  
36  
LVDS  
I/O  
14-BIT+ SIGN  
SAR ADC  
SDOC  
MUX  
A
A
+
IN6  
+
2
1
S/H  
IN6  
REFOUT3  
×1  
REF  
6
A
A
+
IN7  
+
51  
50  
S/H  
IN7  
+
SDOD  
39  
40  
LVDS  
I/O  
14-BIT+ SIGN  
SAR ADC  
MUX  
SDOD  
A
A
+
IN8  
+
48  
47  
S/H  
IN8  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232014 BDb  
232014fa  
15  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
TIMING DIAGRAM  
ꢀꢁꢂꢃꢄꢅ ꢆ  
SDR Mode, CMOS (Reading 1 Channel per SDO)  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ1  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
1
2
3
4
10 11 12 13 14 1ꢀ 1ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ1  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 2  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
232014 ꢀꢁ01  
DDR Mode, CMOS (Reading 1 Channel per SDO)  
ꢀꢁꢂꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ1  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
1
2
3
4
10 11 12 13 14 1ꢀ 1ꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ1  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 2  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
232014 ꢀꢁ02  
232014fa  
16  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
TIMING DIAGRAM  
SDR Mode, LVDS (Reading 2 Channels per SDO Pair)  
ꢀꢁꢂꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ1  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
1
2
3
4
10 11 12 13 14 1ꢀ 1ꢀ 1ꢀ 1ꢀ 1ꢀ 20 21 22 23 24 2ꢀ 2ꢀ 2ꢀ 2ꢀ 2ꢀ 30 31 32  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 2  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 3  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
232014 ꢀꢁ03  
DDR Mode, LVDS (Reading 2 Channels per SDO Pair)  
ꢀꢁꢂꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ1  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
1
2
3
4
10 11 12 13 14 1ꢀ 1ꢀ 1ꢀ 1ꢀ 1ꢀ 20 21 22 23 24 2ꢀ 2ꢀ 2ꢀ 2ꢀ 2ꢀ 30 31 32  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 2  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 3  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14 ꢀ13 ꢀ12 ꢀ11 ꢀ10 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
0
ꢀ14  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ ꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
ꢀꢁꢂꢃꢃꢄꢅ 1  
ꢀꢁꢂꢃꢄꢅꢆꢇꢁꢂ ꢂ  
232014 ꢀꢁ04  
232014fa  
17  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
OVERVIEW  
inputs, the transfer function spans 215 codes. When  
driven by pseudo differential inputs, the transfer func-  
The LTC2320-14 is a low noise, high speed 14-bit succes-  
sive approximation register (SAR) ADC with differential  
inputs and a wide input common mode range. Operating  
from a single 3.3V or 5V supply, the LTC2320-14 has a  
4V or 8V differential input range, making it ideal for  
14  
tion spans 2 codes.  
Table 1: Code Ranges for the Analog Input Operational Modes  
+
MODE  
Span (V – V ) Min Code  
Max Code  
IN  
IN  
Fully Differential  
–REFOUT to  
+REFOUT  
100 0000 0000 011 1111 1111  
P-P  
P-P  
0000  
1111  
applications which require a wide dynamic range. The  
LTC2320-14 achieves 1LSB INL typical, no missing  
codes at 14 bits and 81dB SNR.  
Pseudo-Differential –REFOUT/2 to  
Bipolar +REFOUT/2  
110 0000 0000 001 1111 1111  
0000 1111  
Pseudo-Differential 0 to REFOUT  
Unipolar  
000 0000 0000 011 1111 1111  
0000  
1111  
The LTC2320-14 has an onboard reference buffer and  
low drift (20ppm/°C max) 4.096V temperature-compen-  
sated reference. The LTC2320-14 also has a high speed  
SPI-compatible serial interface that supports CMOS or  
LVDS. The fast 1.5Msps per channel throughput with no  
latency makes the LTC2320-14 ideally suited for a wide  
variety of high speed applications. The LTC2320-14 dis-  
sipates only 20mW per channel. Nap and sleep modes  
are also provided to reduce the power consumption  
of the LTC2320-14 during inactive periods for further  
power savings.  
011 1111 1111 1111  
011 1111 1111 1110  
000 0000 0000 0001  
000 0000 0000 0000  
111 1111 1111 1111  
1ꢇꢑꢒ ꢘ 2 ꢙ ꢎꢊꢏꢆꢃꢄ  
32ꢚꢛꢜ  
100 0000 0000 0001  
100 0000 0000 0000  
CONVERTER OPERATION  
ꢍꢎꢊꢏꢆꢃꢄꢐ2  
ꢍ1  
ꢇꢑꢒ  
0
1
ꢇꢑꢒ  
ꢎꢊꢏꢆꢃꢄꢐ2  
ꢍ1ꢇꢑꢒ  
The LTC2320-14 operates in two phases. During the  
acquisition phase, the sample capacitor is connected to  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢄꢈꢉꢊ ꢋꢅꢌ  
232014 ꢏ02  
Figure 2. LTC2320-14 Transfer Function  
+
the analog input pins A and A to sample the differ-  
IN  
IN  
Analog Input  
ential analog input voltage, as shown in Figure 3. A falling  
edge on the CNV pin initiates a conversion. During the  
conversion phase, the 14-bit CDAC is sequenced through  
a successive approximation algorithm effectively com-  
paring the sampled input with binary-weighted fractions  
of the reference voltage (e.g., VREFOUT/2, VREFOUT/4 …  
The differential inputs of the LTC2320-14 provide great  
flexibility to convert a wide variety of analog signals with  
no configuration required. The LTC2320-14 digitizes the  
+
difference voltage between the A and A pins while  
IN  
IN  
supporting a wide common mode input range. The analog  
V
/32768) using a differential comparator. At the  
REFOUT  
input signals can have an arbitrary relationship to each  
end of conversion, a CDAC output approximates the sam-  
pled analog input. The ADC control logic then prepares  
the 14-bit digital output code for serial transfer.  
other, provided that they remain between V and GND.  
DD  
The LTC2320-14 can also digitize more limited classes  
of analog input signals such as pseudo-differential uni-  
polar/bipolar and fully differential with no configuration  
required.  
TRANSFER FUNCTION  
The LTC2320-14 digitizes the full-scale voltage of 2 •  
The analog inputs of the LTC2320-14 can be modeled  
by the equivalent circuit shown in Figure 3. The back-to-  
back diodes at the inputs form clamps that provide ESD  
15  
REFOUT into 2 levels, resulting in a 15-bit resolution  
size of 250µV with REFBUF = 4.096V. The ideal trans-  
fer function is shown in Figure 2. The output data is in  
2’s complement format. When driven by fully differential  
protection. In the acquisition phase, 10pF (C ) from  
IN  
the sampling capacitor in series with approximately  
232014fa  
18  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
wide common mode input range relaxes the accuracy  
requirements of any signal conditioning circuits prior  
to the analog inputs.  
V
DD  
C
IN  
R
15Ω  
ON  
10pF  
+
A
IN  
Pseudo-Differential Bipolar Input Range  
BIAS  
VOLTAGE  
V
The pseudo-differential bipolar configuration represents  
driving one of the analog inputs at a fixed voltage, typi-  
DD  
C
IN  
R
15Ω  
ON  
10pF  
cally V /2, and applying a signal to the other A pin. In  
REF  
IN  
232014 F03  
IN  
A
this case the analog input swings symmetrically around  
the fixed input yielding bipolar two’s complement output  
codes with an ADC span of half of full-scale. This con-  
figuration is illustrated in Figure 4, and the corresponding  
transfer function in Figure 5. The fixed analog input pin  
Figure 3. The Equivalent Circuit for the Differential  
Analog Input of the LTC2320-14  
need not be set at V /2, but at some point within the  
REF  
15Ω (RON) from the on-resistance of the sampling  
switch is connected to the input. Any unwanted signal  
that is common to both inputs will be reduced by the  
common mode rejection of the ADC sampler. The inputs  
of the ADC core draw a small current spike while charg-  
V
rails allowing the alternate input to swing symmetri-  
cally around this voltage. If the input signal (A – A  
DD  
+
)
IN  
IN  
swings beyond REFOUT1,2,3,4/2, valid codes will be  
generated by the ADC and must be clamped by the user,  
if necessary.  
ing the C capacitors during acquisition.  
IN  
Pseudo-Differential Unipolar Input Range  
Single-Ended Signals  
The pseudo-differential unipolar configuration represents  
driving one of the analog inputs at ground and applying a  
Single-ended signals can be directly digitized by the  
LTC2320-14. These signals should be sensed pseudo-  
differentially for improved common mode rejection. By  
connecting the reference signal (e.g., ground sense) of  
signal to the other A pin. In this case, the analog input  
IN  
swings between ground and V yielding unipolar two’s  
REF  
complement output codes with an ADC span of half of full-  
scale. This configuration is illustrated in Figure 6, and the  
corresponding transfer function in Figure 7. If the input  
the main analog signal to the other A pin, any noise or  
IN  
disturbance common to the two signals will be rejected  
by the high CMRR of the ADC. The LTC2320-14 flex-  
ibility handles both pseudo-differential unipolar and  
bipolar signals, with no configuration required. The  
+
signal (A – A ) swings negative, valid codes will be  
IN  
IN  
generated by the ADC and must be clamped by the user,  
if necessary.  
V
V
REF  
REF  
LT1819  
LTC2320-14  
+
25Ω  
+
0V  
0V  
A
REFOUT1  
IN1  
IN1  
10µF  
1µF  
V
REF  
REF  
220pF  
10k  
V
/2  
REF  
25Ω  
+
V
/2  
REF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
SDO1  
CLKOUT  
SCK  
10k  
1µF  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232014 F04  
Figure 4. Pseudo-Differential Bipolar Application Circuit  
232014fa  
19  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
ꢐꢉꢖ ꢖꢊꢉꢅ  
ꢓ2ꢗꢘ ꢖꢊꢙꢚꢑꢅꢙꢅꢎꢋꢕ  
1ꢈ3ꢆ3  
ꢆ1ꢇ1  
ꢍꢎ  
ꢓꢐ ꢂ ꢐ  
ꢍꢎ  
ꢍꢎ  
ꢂꢃ  
ꢂꢃ ꢛ2  
ꢄꢅꢀ  
0
ꢄꢅꢀ  
ꢛ2  
ꢄꢅꢀ  
ꢄꢅꢀ  
ꢉꢊꢋꢋꢅꢉ ꢄꢅꢌꢍꢊꢎꢏ ꢐꢃꢐꢍꢑꢐꢒꢑꢅ  
ꢂꢆ1ꢇ2  
ꢂ1ꢈ3ꢆ4  
232014 ꢀ0ꢁ  
Figure 5. Pseudo-Differential Bipolar Transfer Function  
V
REF  
LT1818  
LTC2320-14  
+
V
REF  
25Ω  
25Ω  
+
0V  
A
REFOUT1  
IN1  
0V  
10µF  
1µF  
REF  
220pF  
TO CONTROL  
LOGIC  
A
SDO1  
CLKOUT  
SCK  
IN1  
(FPGA, CPLD,  
DSP, ETC.)  
232014 F06  
Figure 6. Pseudo-Differential Unipolar Application Circuit  
ꢍꢆꢓ ꢓꢇꢆꢅ  
ꢐ2ꢔꢕ ꢓꢇꢖꢗꢎꢅꢖꢅꢋꢈꢒ  
1ꢛ3ꢙ3  
ꢙ1ꢚ1  
ꢊꢋ  
ꢐꢍ ꢂ ꢍ  
ꢊꢋ  
ꢊꢋ  
ꢂꢃ  
ꢂꢃ ꢘ2  
ꢄꢅꢀ  
0
ꢄꢅꢀ  
ꢘ2  
ꢄꢅꢀ  
ꢄꢅꢀ  
ꢆꢇꢈꢈꢅꢆ ꢄꢅꢉꢊꢇꢋꢌ ꢍꢃꢍꢊꢎꢍꢏꢎꢅ  
ꢂꢙ1ꢚ2  
ꢂ1ꢛ3ꢙ4  
232014 ꢀ0ꢁ  
Figure 7. Pseudo-Differential Unipolar Transfer Function  
232014fa  
20  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Single-Ended-to-Differential Conversion  
REFOUT1,2,3,4. The common mode input voltage can  
span the entire supply range up to VDD, limited by the  
input signal swing. The fully-differential configuration is  
illustrated in Figure 10, with the corresponding transfer  
function illustrated in Figure 11.  
While single-ended signals can be directly digitized as  
previously discussed, single-ended to differential conver-  
sion circuits may also be used when higher dynamic range  
is desired. By producing a differential signal at the inputs  
of the LTC2320-14, the signal swing presented to the ADC  
is maximized, thus increasing the achievable SNR.  
INPUT DRIVE CIRCUITS  
The LT®1819 high speed dual operational amplifier is  
recommended for performing single-ended-to-differen-  
tial conversions, as shown in Figure 8. In this case, the  
first amplifier is configured as a unity-gain buffer and the  
single-ended input signal directly drives the high imped-  
ance input of this amplifier.  
A low impedance source can directly drive the high imped-  
ance inputs of the LTC2320-14 without gain error. A high  
impedance source should be buffered to minimize set-  
tling time during acquisition and to optimize the distor-  
tion performance of the ADC. Minimizing settling time is  
important even for DC inputs, because the ADC inputs  
draw a current spike during acquisition.  
Fully-Differential Inputs  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2320-14. The amplifier  
provides low output impedance to minimize gain error  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC inputs, which draw a small  
current spike during acquisition.  
To achieve the best distortion performance of the  
LTC2320-14, we recommend driving a fully-differential  
signal through LT1819 amplifiers configured as two unity-  
gain buffers, as shown in Figure 9. This circuit achieves  
the full data sheet THD specification of –90dB at input  
frequencies up to 500kHz. A fully-differential input sig-  
nal can span the maximum full-scale of the ADC, up to  
ꢁꢂꢃ  
0ꢀ  
1ꢈ1ꢉ  
V
REF  
LT1819  
ꢁꢂꢃ  
V
REF  
+
0V  
0ꢀ  
0V  
ꢁꢂꢃ  
0ꢀ  
ꢁꢂꢃ  
V
REF  
V
REF  
/2  
+
200Ω  
0ꢀ  
0V  
232014 ꢃ0ꢉ  
200Ω  
232014 F08  
Figure 8. Single-Ended to Differential Driver  
Figure 9. LT1819 Buffering a Fully-Differential Signal Source  
232014fa  
21  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
V
V
REF  
REF  
0V  
LT1819  
LTC2320-14  
+
25Ω  
25Ω  
+
0V  
A
A
REFOUT1  
IN1  
10µF  
1µF  
REF  
220pF  
V
V
REF  
0V  
REF  
+
0V  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
SDO1  
CLKOUT  
SCK  
IN1  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232014 F10  
Figure 10. Fully-Differential Application Circuit  
ꢅꢋꢌ ꢌꢍꢋꢄ  
ꢈ2ꢎꢏ ꢌꢍꢐꢑꢒꢄꢐꢄꢇꢓꢊ  
1ꢗ3ꢕ3  
ꢕ1ꢖ2  
ꢆꢇ  
ꢈꢅ  
ꢁ ꢅ  
ꢆꢇn  
ꢆꢇn  
ꢁꢂ  
ꢁꢂ ꢔ2  
ꢃꢄꢀ  
0
ꢃꢄꢀ  
ꢔ2  
ꢃꢄꢀ  
ꢃꢄꢀ  
ꢁꢕ1ꢖ2  
ꢁ1ꢗ3ꢕ4  
232014 ꢀ11  
Figure 11. Fully-Differential Transfer Function  
232014fa  
22  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Input Filtering  
ADC REFERENCE  
The noise and distortion of the buffer amplifier and signal  
source must be considered since they add to the ADC  
noise and distortion. Noisy input signals should be filtered  
prior to the buffer amplifier input with a low bandwidth  
filter to minimize noise. The simple 1-pole RC lowpass fil-  
ter shown in Figure 12 is sufficient for many applications.  
Internal Reference  
The LTC2320-14 has an on-chip, low noise, low  
drift (20ppm/°C max), temperature compensated band-  
gap reference. It is internally buffered and is available  
at REF (Pin 8). The reference buffer gains the internal  
reference voltage to 4.096V for supply voltages V = 5V  
and to 2.048V for V = 3.3V. The REF pin also drives  
the four internal reference buffers with a current limited  
output (250μA) so it may be easily overdriven with an  
external reference in the range of 1.25V to 5V. Bypass  
REF to GND with a 1μF (X5R, 0805 size) ceramic capacitor  
to compensate the reference buffer and minimize noise.  
The 1μF capacitor should be as close as possible to the  
LTC2320-14 package to minimize wiring inductance. The  
voltage on the REF pin must be externally buffered if used  
for external circuitry.  
DD  
The sampling switch on-resistance (R ) and the sample  
capacitor (C ) form a second lowpaOsNs filter that limits  
DD  
IN  
the input bandwidth to the ADC core to 110MHz. A buffer  
amplifier with a low noise density must be selected to  
minimize the degradation of the SNR over this bandwidth.  
High quality capacitors and resistors should be used in  
the RC filters since these components can add distor-  
tion. NPO and silver mica type dielectric capacitors have  
excellent linearity. Carbon surface mount resistors can  
generate distortion from self heating and from damage  
that may occur during soldering. Metal film surface mount  
resistors are much less susceptible to both problems.  
SINGLE-ENDED  
INPUT SIGNAL  
50Ω  
+
IN  
LTC2320  
IN  
3.3nF  
SINGLE-ENDED  
TO DIFFERENTIAL  
232014 F12  
DRIVER  
BW = 1MHz  
Figure 12. Input Signal Chain  
Table 2. Reference Configurations and Ranges  
REFOUT1,2,3,4  
PIN  
DIFFERENTIAL INPUT  
RANGE PIN  
REFERENCE CONFIGURATION  
V
REFBUFEN  
5V  
REF PIN  
4.096V  
DD  
Internal Reference with Internal Buffers  
5V  
3.3V  
5V  
4.096V  
4.096V  
3.3V  
5V  
2.048V  
2.048V  
2.048V  
Common External Reference with Internal Buffer (REF Pin  
Externally Overdriven)  
1.25V to 5V  
1.25V to 5V  
4.096V  
1.25V to 3.3V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
3.3V  
5V  
3.3V  
0V  
External Reference with REF Buffers Disabled  
3.3V  
0V  
2.048V  
232014fa  
23  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
External Reference  
recommended when overdriving REFOUT. The LTC6655-5  
offers the same small size, accuracy, drift and extended  
temperature range as the LTC6655-4.096. By using a 5V  
reference, a higher SNR can be achieved. We recommend  
bypassing the LTC6655-5 with a 10μF ceramic capacitor  
(X5R, 0805 size) close to each of the REFOUT1,2,3,4 pins.  
If the REF pin voltage is used as a REFOUT reference when  
REFBUFEN is connected to GND, it should be buffered  
externally.  
The internal REFOUT1,2,3,4 buffers can also be over-  
driven from 1.25V to 5V with an external reference at  
REFOUT1,2,3,4 as shown in Figure 13 (c). To do so,  
REFBUFEN must be grounded to disable the REF buffers.  
A 55k internal resistance loads the REFOUT1,2,3,4 pins  
when the REF buffers are disabled. To maximize the input  
signal swing and corresponding SNR, the LTC6655-5 is  
3ꢉ3ꢀ ꢃꢊ ꢋꢀ  
ꢁꢁ  
ꢐꢄꢈ  
ꢌꢌ  
ꢄꢈ ꢁꢉ  
13ꢆ2ꢈ  
ꢌꢍꢈꢏꢎꢈꢍꢇ  
ꢌꢍꢈ  
ꢑꢒꢋꢔꢓꢋꢒꢎ  
ꢑꢒꢋ  
ꢂꢃꢃꢄꢄꢅ4ꢆ0ꢇꢃ  
ꢉꢓꢁꢘꢋ  
ꢕꢎ  
1ꢐꢈ  
ꢖꢗꢌꢎ  
ꢄ2320ꢅ14  
ꢉꢓꢁꢘꢖ  
ꢂ2320ꢅ14  
10ꢊꢋ  
10ꢊꢋ  
0ꢆ1ꢊꢋ  
ꢌꢍꢈꢊꢎꢃ1  
ꢑꢒꢋꢉꢓꢁ1  
ꢑꢒꢋꢉꢓꢁ2  
ꢑꢒꢋꢉꢓꢁ3  
ꢑꢒꢋꢉꢓꢁ4  
10ꢐꢈ  
ꢌꢍꢈꢊꢎꢃ2  
10ꢐꢈ  
10ꢊꢋ  
ꢌꢍꢈꢊꢎꢃ3  
10ꢐꢈ  
10ꢊꢋ  
ꢌꢍꢈꢊꢎꢃ4  
10ꢐꢈ  
10ꢊꢋ  
ꢆꢇꢁ  
ꢍꢎꢌ  
232014 ꢈ13a  
232014 ꢋ13ꢏ  
(13a) LTC2320-14 Internal Reference Circuit  
(13b) LTC2320-14 with a Shared External Reference Circuit  
ꢎꢀꢁ  
ꢇꢇ  
ꢏꢐꢆꢒꢑꢆꢐꢌ  
ꢏꢐꢆ  
1ꢅꢆ  
ꢀꢁ ꢂꢃ 13ꢄ2ꢁ  
ꢀꢁ ꢂꢃ 13ꢄ2ꢁ  
ꢀꢁ ꢂꢃ 13ꢄ2ꢁ  
ꢀꢁ ꢂꢃ 13ꢄ2ꢁ  
ꢉꢓꢓꢀꢀꢊ4ꢄ0ꢔꢓ  
ꢕꢌ  
ꢃꢑꢂꢘꢆ  
ꢃꢑꢂꢘꢖ  
ꢏꢐꢆꢃꢑꢂ1  
ꢖꢗꢇꢌ  
10ꢅꢆ  
10ꢅꢆ  
10ꢅꢆ  
10ꢅꢆ  
0ꢄ1ꢅꢆ  
0ꢄ1ꢅꢆ  
0ꢄ1ꢅꢆ  
0ꢄ1ꢅꢆ  
ꢉ2320ꢊ14  
ꢉꢓꢓꢀꢀꢊ2ꢄ04ꢙ  
ꢏꢐꢆꢃꢑꢂ2  
ꢏꢐꢆꢃꢑꢂ3  
ꢕꢌ  
ꢃꢑꢂꢘꢆ  
ꢃꢑꢂꢘꢖ  
ꢖꢗꢇꢌ  
ꢉꢓꢓꢀꢀꢊ2ꢄꢀ  
ꢕꢌ  
ꢃꢑꢂꢘꢆ  
ꢖꢗꢇꢌ  
ꢃꢑꢂꢘꢖ  
ꢉꢓꢓꢀꢀꢊ3  
ꢕꢌ  
ꢃꢑꢂꢘꢆ  
ꢃꢑꢂꢘꢖ  
ꢏꢐꢆꢃꢑꢂ4  
ꢖꢗꢇꢌ  
ꢋꢌꢇ  
232014 ꢆ13ꢍ  
(13c) LTC2320-14 with Different External Reference Voltages  
Figure 13. Reference Connections  
232014fa  
24  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Internal Reference Buffer Transient Response  
The REFOUT1,2,3,4 pins of the LTC2320-14 draw charge  
DYNAMIC PERFORMANCE  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2320-14 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
(Q  
) from the external bypass capacitors during each  
CONV  
conversion cycle. If the internal reference buffer is over-  
driven, the external reference must provide all of this charge  
with a DC current equivalent to IREF = QCONV/tCYC  
.
Thus, the DC current draw of IREFOUT1,2,3,4 depends  
on the sampling rate and output code. In applications  
where a burst of samples is taken after idling for long  
periods, as shown in Figure 14 , IREFBUF quickly goes from  
approximately ~75µA to a maximum of 500µA for REFOUT  
= 5V at 1.5Msps. This step in DC current draw triggers a  
transient response in the external reference that must be  
considered since any deviation in the voltage at REFOUT  
will affect the accuracy of the output code. If an external  
reference is used to overdrive REFOUT1,2,3,4, the fast  
settling LTC6655 reference is recommended.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratio between the RMS amplitude of the fundamental input  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is bandlimited  
to frequencies from above DC and below half the sampling  
frequency. Figure 16 shows that the LTC2320-14 achieves  
a typical SINAD of 80dB at a 1.5MHz sampling rate with  
a 500kHz input.  
CNV  
Signal-to-Noise Ratio (SNR)  
ꢁꢂꢃꢄ  
ꢅꢄꢆꢁꢇꢂ  
232014 ꢀ14  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 16 shows  
that the LTC2320-14 achieves a typical SNR of 81dB at a  
1.5MHz sampling rate with a 500kHz input.  
Figure 14. CNV Waveform Showing Burst Sampling  
1ꢀ3ꢁ4  
122ꢀꢀ  
0
ꢀꢁꢂ ꢃ ꢄ1ꢅ1ꢆꢇ  
ꢀꢁꢂ ꢃ ꢄꢅ0ꢆ2ꢇꢈ  
ꢀ20  
ꢀ40  
ꢀꢁꢂꢃꢄ ꢅ ꢆ0ꢇꢆꢈꢉ  
ꢀꢁꢂꢃ ꢄ ꢅ4ꢆꢇꢈꢉ  
ꢀ1ꢁ2  
4ꢀ0ꢁꢂꢃ ꢄꢅꢆꢇꢈ  
40ꢀꢁ  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ ꢃ 1ꢄꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎ ꢏꢌꢐꢎ  
ꢀ100  
ꢀ120  
ꢀ140  
ꢀꢁ ꢃ 0ꢄ  
ꢀ40ꢁꢂ  
ꢀ20 ꢀ10  
0
10 20 30 40 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀꢁꢂꢂꢃꢄꢅꢆ ꢂꢄꢇꢁ ꢈꢉꢊꢋ  
232014 ꢀ1ꢁ  
0
0ꢀ1 0ꢀ2 0ꢀ3 0ꢀ4 0ꢀꢁ 0ꢀꢁ 0ꢀꢁ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
Figure 15. Transient Response of the LTC2320-14  
232014 ꢀ1ꢁ  
Figure 16. 32k Point FFT of the LTC2320-14  
232014fa  
25  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Total Harmonic Distortion (THD)  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 10ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
Total harmonic distortion (THD) is the ratio of the  
RMS sum of all harmonics of the input signal to the  
fundamental itself. The out-of-band harmonics alias into  
the frequency band between DC and half the sampling  
frequency (f  
/2). THD is expressed as:  
SMPL  
2
2
2
2
V2 + V3 + V4 + …+V  
N
TIMING AND CONTROL  
THD= 20log  
V1  
CNV Timing  
where V1 is the RMS amplitude of the fundamental  
The LTC2320-14 sampling and conversion is controlled  
by CNV. A rising edge on CNV will start sampling and the  
falling edge starts the conversion and readout process.  
The conversion process is timed by the SCK input clock.  
For optimum performance, CNV should be driven by a  
clean low jitter signal. The Typical Application at the back  
of the data sheet illustrates a recommended implemen-  
tation to reduce the relatively large jitter from an FPGA  
CNV pulse source. Note the low jitter input clock times  
the falling edge of the CNV signal. The rising edge jitter  
of CNV is much less critical to performance. The typical  
pulse width of the CNV signal is 30ns with < 1.5ns rise  
and fall times at a 1.5Msps conversion rate.  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics.  
POWER CONSIDERATIONS  
The LTC2320-14 requires two power supplies: the 3.3V  
to 5V power supply (VDD), and the digital input/output  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2320-14 to communicate with any digital  
logic operating between 1.8V and 2.5V. When using LVDS  
I/O, the OV supply must be set to 2.5V.  
DD  
Power Supply Sequencing  
The LTC2320-14 does not have any specific power sup-  
ply sequencing requirements. Care should be taken to  
adhere to the maximum voltage relationships described in  
the Absolute Maximum Ratings section. The LTC2320-14  
has a power-on-reset (POR) circuit that will reset the  
LTC2320-14 at initial power-up or whenever the power  
SCK Serial Data Clock Input  
In SDR mode (SDR/DDR Pin 23 = GND), the falling edge  
of this clock shifts the conversion result MSB first onto  
the SDO pins. A 100MHz external clock must be applied at  
the SCK pin to achieve 1.5Msps throughput using all eight  
SDO outputs. In DDR mode (SDR/DDR Pin 23 = OV ),  
DD  
33  
31  
2ꢀ  
each input edge of SCK shifts the conversion result MSB  
first onto the SDO pins. A 50MHz external clock must be  
applied at the SCK pin to achieve 1.5Msps throughput  
using all eight SDO1 through SDO8 outputs.  
ꢀ ꢁꢂ  
ꢀꢀ  
2ꢀ  
2ꢀ  
23  
21  
1ꢀ  
CLKOUT Serial Data Clock Output  
ꢀ 3ꢁ3ꢂ  
ꢀꢀ  
The CLKOUT output provides a skew-matched clock to  
latch the SDO output at the receiver. The timing skew  
of the CLKOUT and SDO outputs are matched. For high  
throughput applications, using CLKOUT instead of SCK to  
capture the SDO output eases timing requirements at the  
receiver. For low throughput speed applications, CLKOUT  
0
0ꢀ3  
0ꢀꢁ  
0ꢀꢁ  
1ꢀ2  
1ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢅꢈꢉꢅꢊꢋꢌ ꢍꢂꢎꢏꢎꢐ  
232014 ꢀ1ꢁ  
can be disabled by tying Pin 34 to OV .  
Figure 17. Power Supply Current of the LTC2320-14  
Versus Sampling Rate  
DD  
232014fa  
26  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Nap/Sleep Modes  
conversion result MSB first on the SDO pins. CLKOUT  
provides a skew-matched clock to latch the SDO output  
at the receiver. The timing skew of the CLKOUT and SDO  
outputs are matched. For high throughput applications,  
using CLKOUT instead of SCK to capture the SDO output  
eases timing requirements at the receiver. In CMOS mode,  
use the SDO1 – SDO8, and CLKOUT pins as outputs. Use  
Nap mode is a method to save power without sacrificing  
power-up delays for subsequent conversions. Sleep mode  
has substantial power savings, but a power-up delay is  
incurred to allow the reference and power systems to  
become valid. To enter nap mode on the LTC2320-14,  
the SCK signal must be held high or low and a series  
of two CNV pulses must be applied. This is the case for  
both CMOS and LVDS modes. The second rising edge of  
CNV initiates the nap state. The nap state will persist until  
either a single rising edge of SCK is applied, or further  
CNV pulses are applied. The SCK rising edge will put the  
LTC2320-14 back into the operational (full-power) state.  
When in nap mode, two additional pulses will put the  
LTC2320-14 in sleep mode. When configured for CMOS  
I/O operation, a single rising edge of SCK can return the  
LTC2320-14 into operational mode. A 10ms delay is nec-  
essary after exiting sleep mode to allow the reference buf-  
fer to recharge the external filter capacitor. In LVDS mode,  
exit sleep mode by supplying a fifth CNV pulse. The fifth  
pulse will return the LTC2320-14 to operational mode,  
and further SCK pulses will keep the part from re-entering  
nap and sleep modes. The fifth SCK pulse also works in  
CMOS mode as a method to exit sleep. In the absence of  
SCK pulses, repetitive CNV pulses will cycle the LTC2320-  
14 between operational, nap and sleep modes indefinitely.  
+
the SCK pin as an input. In LVDS mode, use the SDOA /  
+
+
SDOA through SDOD /SDOD and CLKOUT /CLKOUT  
pins as differential outputs. Each LVDS lane yields two  
channels worth of data: SDOA yields CH1 and CH2 data,  
SDOB yields CH3 and CH4 data, SDOC yields CH5 and  
CH6 data and SDOD yields CH7 and CH8 data. These pins  
must be differentially terminated by an external 100Ω  
+
resistor at the receiver (FPGA). The SCK /SCK pins are  
differential inputs and must be terminated differentially by  
an external 100Ω resistor at the receiver(ADC).  
SDR/DDR Modes  
The LTC2320-14 has an SDR (single data rate) and DDR  
(double data rate) mode for reading conversion data from  
the SDO pins. In both modes, CLKOUT is a delayed ver-  
sion of SCK. In SDR mode, each negative edge of SCK  
shifts the conversion data out the SDO pins. In DDR  
mode, each edge of the SCK input shifts the conversion  
data out. In DDR mode, the required SCK frequency is half  
of what is required in SDR mode. Tie SDR/DDR to ground  
RefertothetimingdiagramsinFigure18,Figure19,Figure20  
and Figure 21 for more detailed timing information about  
sleep and nap modes.  
to configure for SDR mode and to OV for DDR mode.  
DD  
The CLKOUT signal is a delayed version of the SCK input  
and is phase aligned with the SDO data. In SDR mode, the  
SDO transitions on the falling edge of CLKOUT as illus-  
trated in Figure 21. We recommend using the rising edge  
of CLKOUT to latch the SDO data into the FPGA register  
in SDR mode. In DDR mode, The SDO transitions on each  
input edge of SCK. We recommend using the CLKOUT ris-  
ing and falling edges to latch the SDO data into the FPGA  
registers in DDR mode. Since CLKOUT and SDO data is  
phase aligned, the SDO signals will need to be digitally  
delayed in the FPGA to provide adequate setup and hold  
timing margins in DDR mode.  
DIGITAL INTERFACE  
The LTC2320-14 features a serial digital interface that  
is simple and straightforward to use. The flexible OV  
DD  
supply allows the LTC2320-14 to communicate with any  
digital logic operating between 1.8V and 2.5V. In addi-  
tion to a standard CMOS SPI interface, the LTC2320-14  
provides an optional LVDS SPI interface to support low  
noise digital design. The CMOS /LVDS pin is used to select  
the digital interface mode. The SCK input clock shifts the  
232014fa  
27  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
CNV  
1
2
ꢒꢏꢃ ꢈꢄꢉꢆ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢇ ꢈꢄꢉꢆ  
ꢊꢋꢌ  
ꢍꢄꢂꢉ ꢊꢎꢏꢎꢐꢋ ꢍꢐꢑꢍ ꢄꢇ ꢂꢄꢅ  
ꢅꢏꢌꢆ ꢄꢒ 1ꢊꢎ ꢊꢋꢌ ꢆꢉꢑꢆ  
ꢊꢉꢄ1 ꢓ ꢔ  
232014 ꢀ1ꢔ  
Figure 18. CMOS and LVDS Mode NAP and WAKE Using SCK  
ꢇꢆꢀꢄꢁꢎ  
ꢇꢆꢏꢄꢍꢆꢇꢐ  
ꢇꢆꢀꢄꢁꢎ1 ꢑ 4  
4ꢊ0ꢋꢌꢍ  
4ꢊ0ꢋꢌꢍ  
ꢅꢕꢓꢆ  
CNV  
1
2
3
4
ꢘꢕꢃ ꢈꢄꢉꢆ  
ꢒꢂꢆꢆꢃ ꢈꢄꢉꢆ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢇ ꢈꢄꢉꢆ  
ꢒꢏꢓ  
ꢔꢄꢂꢉ ꢒꢎꢕꢎꢖꢏ ꢔꢖꢗꢔ ꢄꢇ ꢂꢄꢅ  
ꢅꢕꢓꢆ ꢄꢘ 1ꢒꢎ ꢒꢏꢓ ꢆꢉꢗꢆ  
ꢒꢉꢄ1 ꢑ ꢙ  
232014 ꢀ1ꢋ  
Figure 19. CMOS Mode SLEEP and WAKE Using SCK  
ꢅꢆꢇꢈꢉꢊ  
ꢅꢆꢋꢈꢄꢆꢅꢌ  
ꢅꢆꢇꢈꢉꢊ1 ꢛ 4  
4ꢁ0ꢂꢃꢄ  
4ꢁ0ꢂꢃꢄ  
ꢕꢒꢎꢆ  
ꢕꢒꢎꢆ ꢈꢖ ꢀꢊꢏ  
CNV ꢆꢑꢔꢆ  
CNV  
1
2
3
4
ꢖꢒꢗ ꢘꢈꢑꢆ  
ꢍꢐꢆꢆꢗ ꢘꢈꢑꢆ  
ꢇꢉꢐꢐ ꢗꢈꢕꢆꢅ ꢘꢈꢑꢆ  
ꢍꢋꢎ  
ꢏꢈꢐꢑ ꢍꢊꢒꢊꢓꢋ ꢏꢓꢔꢏ ꢈꢅ ꢐꢈꢕ  
ꢍꢑꢈ1 ꢛ ꢜ  
232014 ꢇ20  
Figure 20. LVDS and CMOS Mode SLEEP and WAKE Using CNV  
232014fa  
28  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
SDR MODE TIMING  
DDR MODE TIMING  
ꢀꢁꢀ  
ꢀꢁꢀ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢂꢄꢅꢆ  
ꢀꢁꢂꢃꢂꢄꢅꢆ  
CNV  
CNV  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
1
2
3
14  
1ꢀ  
1ꢀ  
1
2
3
14  
1ꢀ  
1ꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
1
2
3
14  
1ꢀ  
1ꢀ  
1
2
3
14  
1ꢀ  
1ꢀ  
ꢀꢁꢂꢃꢂꢄꢃꢅꢆꢇ  
ꢀꢁꢂꢃꢂꢄꢃꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢀꢅꢃ  
ꢀꢁꢂꢃꢄꢀꢅꢆ  
ꢀꢁꢂꢃꢄꢀꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢀꢅꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ1ꢁ  
ꢀ14  
ꢀ13  
ꢀ2  
ꢀ1  
ꢀ0 ꢀ1ꢁ  
ꢀꢁꢂ  
ꢀ1ꢁ  
ꢀ14  
ꢀ13  
ꢀ2  
ꢀ1  
ꢀ0 ꢀ1ꢁ  
232014 21  
Figure 21. LTC2320-14 Timing Diagram  
232014fa  
29  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
Multiple Data Lanes  
a sequential circular manner. For example, the first conver-  
sion result on SDO1 corresponds to analog input channel 1,  
followed by the conversion results for channels 2 through  
8. The data output on SDO1 then wraps back to channel  
1 and this pattern repeats indefinitely. Other SDO lanes  
follow a similar circular pattern except the first conversion  
result presented on each lane corresponds to its associated  
analog input channel.  
The LTC2320-14 has up to eight SDO data lanes in CMOS  
mode and four SDO lanes in LVDS mode. In CMOS mode,  
the number of possible data lanes range from eight  
(SDO1 – SDO8), four (SDO1, SDO3, SDO5 and SDO7), two  
(SDO1 and SDO5) and one (SDO1). Generally, the more  
data lanes used, the lower the required SCK frequency.  
When using less than eight lanes in CMOS mode, there is a  
limit on the maximum possible conversion frequency (see  
Table 3). Each SDO pin will hold the MSB of the conversion  
data. In DDR mode you can use a SCK frequency half of  
SDR mode. See Table 3 for examples of various possibili-  
ties and the resulting SCK frequency required.  
Applications that cannot accommodate the full eight lanes  
of serial data may employ fewer lanes without reconfigur-  
ing the LTC2320-14. For example, capturing the first two  
conversion results (32 SCK cycles total in SDR mode and  
32 SCK edges in DDR mode) from SDO1, SDO3, SDO5, and  
SDO7 provides data for analog input channels 1 and 2, 3  
and 4, 5 and 6, and 7 and 8, respectively, using four output  
lanes. Similarly, capturing the first four conversion results  
(64 SCK cycles total in SDR mode and 64 SCK edges in  
DDR mode) from SDO1 and SDO5 provides data for ana-  
log input channels 1 to 4 and 5 to 8, respectively, using  
two output lanes. If only one lane can be accommodated,  
capturing the first eight conversion results (128 SCK cycles  
total in SDR mode and 128 SCK edges in DDR mode)  
from SDO1 provides data for all analog input channels.  
Generally, the more data lanes used, the lower the required  
SCK frequency. When using less than eight lanes in CMOS  
mode, there is a limit on the maximum possible conversion  
Multiple Data Lanes  
The LTC2320-14 has up to eight serial data output data  
lanes in CMOS mode and four serial data output lane pairs  
in LVDS mode. The data on each lane consists of 14-bit  
conversion results presented MSB first.  
CMOS  
In CMOS mode, the number of possible data lanes range  
from eight (SDO1 – SDO8), four (SDO1, SDO3, SDO5 and  
SDO7), two (SDO1 and SDO5) and one (SDO1). As sug-  
gested in the CMOS Timing Diagrams, each SDO lane out-  
puts the conversion results for all analog input channels in  
2.5V  
2.5V  
LTC2320-14  
FPGA OR DSP  
LTC2320-14  
FPGA OR DSP  
OV  
DD  
OV  
DD  
+
+
+
+
SCK  
SCK  
SCK  
SCK  
100Ω  
100Ω  
100Ω  
+
+
+
SDOD  
SDOD  
SDOD  
SDOD  
+
+
+
SDOC  
SDOC  
SDOC  
SDOC  
100Ω  
100Ω  
100Ω  
100Ω  
2.5V  
2.5V  
CMOS/LVDS  
CMOS/LVDS  
+
+
+
+
CLKOUT  
CLKOUT  
CLKOUT  
CLKOUT  
100Ω  
100Ω  
+
+
+
SDOB  
SDOB  
SDOB  
SDOB  
+
+
+
+
SDOA  
SDOA  
SDOA  
SDOA  
RETIMING  
FLIP-FLOP  
RETIMING  
FLIP-FLOP  
CNV  
CNV  
232014 F22  
232014 F23  
Figure 22. LTC2320-14 Using the LVDS Interface  
Figure 23. LTC2320-14 Using the LVDS Interface with One Lane  
232014fa  
30  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
APPLICATIONS INFORMATION  
frequency. See Table 3 for examples of various possibilities  
and the resulting SCK frequency required.  
and 128 SCK edges in DDR mode) from SDOA provides  
data for all analog input channels. Generally, the more  
data lanes used, the lower the required SCK frequency.  
When using less than four lanes in LVDS mode, there is  
a limit on the maximum possible conversion frequency.  
See Table 3 for examples of various possibilities and the  
resulting SCK frequency required.  
LVDS  
In LVDS mode, the number of possible data lane pairs  
range from four (SDOA – SDOD), two (SDOA and SDOC)  
and one (SDOA). As suggested in the LVDS Timing  
Diagrams, each SDO lane pair outputs the conversion  
results for all analog input channels in a sequential cir-  
cular manner. For example, the first conversion result on  
SDOA corresponds to analog input channel pair 1 and 2,  
followed by the conversion results for channels 3 through  
8. The data output on SDOA then wraps back to channel  
1 and this pattern repeats indefinitely. Other SDO lanes  
follow a similar circular pattern except the first conversion  
result presented on each lane corresponds to its associ-  
ated analog input channel pairs (SDOA: analog inputs 1  
and 2, SDOB: analog inputs 3 and 4, SDOC: analog inputs  
5 and 6 and SDOD: analog inputs 7 and 8).  
BOARD LAYOUT  
To obtain the best performance from the LTC2320-14,  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals adjacent to analog signals or underneath  
the ADC.  
Supply bypass capacitors should be placed as close as  
possible to the supply pins. Low impedance common  
returns for these bypass capacitors are essential to the  
low noise operation of the ADC. A single solid ground  
plane is recommended for this purpose. When possible,  
screen the analog input traces using ground.  
Applications that cannot accommodate the full four lanes  
of serial data may employ fewer lanes without reconfigur-  
ing the LTC2320-14. For example, capturing the first four  
conversion results (64 SCK cycles total in SDR mode  
and 64 SCK edges in DDR mode) from SDOA and SDOC  
provides data for analog input channels 1 through 4, and  
5 through 8, respectively, using two output lanes. If only  
one lane can be accommodated, capturing the first eight  
conversion results (128 SCK cycles total in SDR mode  
Recommended Layout  
For a detailed look at the reference design for this con-  
verter, including schematics and PCB layout, please refer  
to DC2395A, the evaluation kit for the LTC2320-14.  
Table 3. Conversion Frequency for Various I/O Modes  
CONVERSION  
FREQUENCY  
(Msps/CH)  
CMOS/  
I/O MODE LVDS PIN  
SDR/  
DDR PIN  
SDO1 8  
LANES  
SDOA D  
LANES  
SCK FREQ  
(MHz)  
CLKOUT FREQ  
(MHz)  
SCK  
CYCLES  
OV  
DD  
GND (SDR) SDO1 – SDO8  
OV (DDR) SDO1 – SDO8  
DD  
100  
50  
100  
50  
16  
8
1.5  
1.5  
GND  
CMOS  
1.8V to 2.5V  
2.5V  
SDO1, SDO3,  
SDO5, SDO7  
SDO1  
(CMOS)  
OV (DDR)  
50  
50  
16  
1.25  
DD  
GND (SDR)  
GND (SDR)  
100  
200  
100  
150  
300  
100  
200  
100  
150  
300  
128  
32  
16  
32  
128  
0.5  
1.5  
1.5  
1.4  
1.0  
SDOA – SDOD  
SDOA – SDOD  
SDOA, SDOC  
SDOA  
OV (DDR)  
OV  
DD  
DD  
LVDS  
(LVDS)  
OV (DDR)  
DD  
GND (SDR)  
Notes: Conversion Period (SDR) = t  
Conversion Period (DDR) = t  
+ t  
+ t  
+ (128/(Lanes • f ))  
+ (64/(Lanes • f ))  
SCK  
CNV_MIN  
CONV_MAX SCK  
CNV_MIN  
CONV_MAX  
Conversion Frequency = 1/Conversion Period  
SCK Cycles (SDR) = 128/Lanes  
SCK Cycles (DDR) = 64/Lanes  
232014fa  
31  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2320-14#packaging for the most recent package drawings.  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC DWG # 05-08-1729 Rev Ø)  
ꢀꢁꢞ0 ±0ꢁ0ꢞ  
ꢟꢁ10 ±0ꢁ0ꢞ  
ꢞꢁꢞ0 ꢌꢆꢗ  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
0ꢁꢀ0 ±0ꢁ0ꢞ  
ꢟꢁ4ꢞ ±0ꢁ0ꢞ  
ꢟꢁꢞ0 ꢌꢆꢗ  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
ꢀꢁ10 ±0ꢁ0ꢞ ꢣꢁꢞ0 ±0ꢁ0ꢞ  
ꢞꢁ41 ±0ꢁ0ꢞ  
ꢒꢍꢑꢓꢍꢏꢆ ꢉꢔꢊꢕꢄꢈꢆ  
0ꢁ2ꢞ ±0ꢁ0ꢞ  
0ꢁꢞ0 ꢙꢃꢑ  
ꢌꢆꢑꢉꢖꢖꢆꢈꢅꢆꢅ ꢃꢉꢕꢅꢆꢌ ꢒꢍꢅ ꢒꢄꢊꢑꢚ ꢍꢈꢅ ꢅꢄꢖꢆꢈꢃꢄꢉꢈꢃ  
ꢍꢒꢒꢉꢕꢅꢆꢌ ꢖꢍꢃꢓ ꢊꢉ ꢍꢌꢆꢍꢃ ꢊꢚꢍꢊ ꢍꢌꢆ ꢈꢉꢊ ꢃꢉꢕꢅꢆꢌꢆꢅ  
ꢞꢁꢞ0 ꢌꢆꢗ  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
0ꢁꢀꢞ ±0ꢁ0ꢞ  
ꢀꢁ00 ±0ꢁ10  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
ꢌ ꢠ 0ꢁ11ꢞ  
ꢊꢝꢒ  
0ꢁ00 ꢤ 0ꢁ0ꢞ  
ꢞ1  
ꢞ2  
0ꢁ40 ±0ꢁ10  
ꢒꢄꢈ 1 ꢊꢉꢒ ꢖꢍꢌꢓ  
ꢂꢃꢆꢆ ꢈꢉꢊꢆ ꢟꢇ  
1
2
ꢒꢄꢈ 1 ꢈꢉꢊꢑꢚ  
ꢌ ꢠ 0ꢁ30 ꢊꢝꢒ ꢉꢌ  
0ꢁ3ꢞ × 4ꢞ°ꢑ  
ꢑꢚꢍꢖꢗꢆꢌ  
ꢟꢁ4ꢞ ±0ꢁ10  
ꢣꢁ00 ±0ꢁ10  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
ꢟꢁꢞ0 ꢌꢆꢗ  
ꢂ2 ꢃꢄꢅꢆꢃꢇ  
ꢞꢁ41 ±0ꢁ10  
ꢂꢔꢓꢏꢞ2ꢇ ꢥꢗꢈ ꢌꢆꢡ  
ꢦ 030ꢟ  
ꢌ ꢠ 0ꢁ10  
ꢊꢝꢒ  
0ꢁ2ꢞ ±0ꢁ0ꢞ  
0ꢁꢞ0 ꢙꢃꢑ  
ꢊꢉꢒ ꢡꢄꢆꢎ  
ꢃꢄꢅꢆ ꢡꢄꢆꢎ  
0ꢁ200 ꢌꢆꢗ  
0ꢁ00 ꢤ 0ꢁ0ꢞ  
ꢙꢉꢊꢊꢉꢖ ꢡꢄꢆꢎꢢꢆꢘꢒꢉꢃꢆꢅ ꢒꢍꢅ  
0ꢁꢀꢞ ±0ꢁ0ꢞ  
232014fa  
32  
For more information www.linear.com/LTC2320-14  
LTC2320-14  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/18 Corrected no latency operation.  
18, 25  
232014fa  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
33  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC2320-14  
TYPICAL APPLICATION  
Low Jitter Clock Timing with RF Sine Generator Using Clock Squaring/Level-Shifting Circuit and Retiming Flip-Flop  
V
CC  
NC7SVUO4P5X  
0.1µF  
1k  
MASTER_CLOCK  
V
CC  
50Ω  
1k  
D
ꢁRꢂ  
NC7SV74K8X  
CONV  
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CꢀR  
CONV ENABLE  
CNV  
LTC2320-14  
SCK  
10Ω  
10Ω  
CLKOUT  
GND  
GND  
CMOS/LVDS  
SDR/DDR  
SDO1 – 8  
232014 TA02  
NC7SVU04P5X (× 9)  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2320-16/LTC2320-12 16-/12-Bit, Octal 1.5Msps/CH, Simultaneous  
Sampling ADCs  
3.3V/5V Supply, 20mW/Ch, 20ppm°C Max Internal Reference, Flexible  
Inputs, 7mm × 8mm QFN Package  
LTC2310-16/LTC2310-14/ 16-/14-/12-Bit, Differential Input ADC with Wide  
3.3V/5V Supply, Single-Channel, 35mW, 20ppm/°C Max Internal  
Reference, Flexible Inputs, 16-Lead MSO Package  
LTC2310-12  
Input Common Mode  
LTC2321-16/LTC2321-14/ Dual 16-/14-/12-Bit, 2Msps, Simultaneous  
LTC2321-12 Sampling ADCs  
3.3V/5V Supply, 33mW/Ch, 20ppm°C Max Internal Reference,  
Flexible Inputs, 4mm × 5mm QFN-28 Package  
LTC2324-16/LTC2324-14/ Quad 16-/14-/12-Bit, 2Msps/Channel, Simultaneous 3.3V/5V Supply, Single-Channel, 40mW, 20ppm/°C Max Internal  
LTC2324-12  
Sampling ADCs  
Reference, Flexible Inputs, 52-Lead QFN Package  
LTC2380-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-16/LTC2376-16 Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
DACs  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Reference  
DACs with Internal  
DACs with External  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 8-Pin ThinSOT™ Package  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit SPI V  
Reference  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead  
MSOP Package  
OUT  
References  
LTC6655  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm  
Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm  
Peak-to-Peak Noise, MSOP-8 Package  
Amplifiers  
LT1818/LT1819  
400MHz, 2500V/µs, 9mA Single/Dual Operational  
Amplifiers  
–85dBc Distortion at 5MHz, 6nV/√Hz Input Noise Voltage, 9mA Supply  
Current, Unity-Gain Stable  
LT1806  
LT6200  
325MHz, Single, Rail-to-Rail Input and Output, Low –80dBc Distortion at 5MHz, 3.5nV/√Hz Input Noise Voltage,  
Distortion, Low Noise Precision Op Amps 9mA Supply Current, Unity-Gain Stable  
165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Low Distortion, Unity-Gain Stable  
Low Noise, Op Amp Family  
232014fa  
LT 0118 REV A • PRINTED IN USA  
www.linear.com/LTC2320-14  
34  
ANALOG DEVICES, INC. 2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY