LTC2324CUKG-14#PBF [Linear]

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0°C to 70°C;
LTC2324CUKG-14#PBF
型号: LTC2324CUKG-14#PBF
厂家: Linear    Linear
描述:

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0°C to 70°C

文件: 总30页 (文件大小:1418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2324-14  
Quad, 14-Bit + Sign,  
2Msps/Ch Simultaneous Sampling ADC  
FeaTures  
DescripTion  
The LTC®2324-14 is a low noise, high speed quad  
n
2Msps/Ch Throughput Rate  
n
Four Simultaneously Sampling Channels  
Guaranteed 14-Bit, No Missing Codes  
14-bit + sign successive approximation register (SAR)  
ADCwithdifferentialinputsandwideinputcommonmode  
range. Operating from a single 3.3V or 5V supply, the  
n
n
8V Differential Inputs with Wide Input  
P-P  
Common Mode Range  
LTC2324-14 has an 8V differential input range, making  
P-P  
n
n
n
n
n
81dB SNR (Typ) at f = 500kHz  
it ideal for applications which require a wide dynamic  
range with high common mode rejection. The LTC2324-  
14 achieves 1LSꢀ INL typical, no missing codes at 14  
bits and 81dꢀ SNR.  
IN  
IN  
–90dB THD (Typ) at f = 500kHz  
Guaranteed Operation to 125°C  
Single 3.3V or 5V Supply  
Low Drift (20ppm/°C Max) 2.048V or 4.096V  
Internal Reference  
TheLTC2324-14hasanonboardlowdrift(20ppm/°Cmax)  
2.048V or 4.096V temperature-compensated reference.  
The LTC2324-14 also has a high speed SPI-compatible  
serial interface that supports CMOS or LVDS. The fast  
2Msps per channel throughput with no latency makes the  
LTC2324-14 ideally suited for a wide variety of high speed  
applications. The LTC2324-14 dissipates only 40mW per  
channel and offers nap and sleep modes to reduce the  
power consumption to 26μW for further power savings  
during inactive periods.  
n
n
n
n
1.8V to 2.5V I/O Voltages  
CMOS or LVDS SPI-Compatible Serial I/O  
Power Dissipation 40mW/Ch (Typ)  
Small 52-Lead (7mm × 8mm) QFN Package  
applicaTions  
n
High Speed Data Acquisition Systems  
n
Communications  
n
Optical Networking  
Multiphase Motor Control  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Analog Devices, Inc. All other trademarks are the property of their  
respective owners.  
n
Typical applicaTion  
10µF  
1µF  
TRUE DIFFERENTIAL INPUTS  
NO CONFIGURATION REQUIRED  
3.3V OR 5V  
1.8V TO 2.5V  
32k Point FFT fSMPL = 2Msps,  
fIN = 500kHz  
+
IN , IN  
0
–20  
V
GND  
GND  
O
V
DD  
DD  
SNR = 82.3dB  
THD = –90.9dB  
SINAD = 81.6dB  
SFDR = 96.5dB  
ARBITRARY  
DIFFERENTIAL  
14-BIT  
+SIGN  
SAR ADC  
+
V
V
CMOS/LVDS  
SDR/DDR  
REFBUFEN  
DD  
0V  
DD  
0V  
DD  
0V  
DD  
0V  
A
IN1  
IN1  
S/H  
A
–40  
14-BIT  
+SIGN  
SAR ADC  
+
SDO1  
SDO2  
SDO3  
SDO4  
CLKOUT  
SCK  
A
A
IN2  
IN2  
S/H  
–60  
LTC2324-14  
+
–80  
14-BIT  
+SIGN  
SAR ADC  
BIPOLAR  
UNIPOLAR  
A
A
IN3  
IN3  
V
V
S/H  
–100  
–120  
–140  
CNV  
SAMPLE  
CLOCK  
14-BIT  
+SIGN  
SAR ADC  
+
A
A
IN4  
IN4  
S/H  
REF REFOUT1 REFOUT2 REFOUT3 REFOUT4  
0
0.2  
0.4  
0.6  
0.8  
1
1µF  
10µF  
10µF  
10µF  
10µF  
FOUR SIMULTANEOUS  
SAMPLING CHANNELS  
FREQUENCY (MHz)  
232414 TA01b  
232414 TA01a  
232414f  
1
For more information www.linear.com/LTC2324-14  
LTC2324-14  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (OV )................................................3V  
DD  
Analog Input Voltage  
52 51 50 49 48 47 46 45 44 43 42 41  
+
A
, A (Note 3) ................... –0.3V to (V + 0.3V)  
IN  
IN DD  
A
A
1
2
40 DNC/SDOD  
IN4  
+
+
+
REFOUT1,2,3,4........................ .–0.3V to (V + 0.3V)  
39 SDO4/SDOD  
DD  
DD  
IN4  
GND  
GND  
OV  
3
38  
37  
CNV........................................ –0.3V to (OV + 0.3V)  
A
IN3  
4
DD  
Digital Input Voltage  
+
A
IN3  
5
36 DNC/SDOC  
SDO3/SDOC  
35  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
REFOUT3  
GND  
6
Digital Output Voltage  
7
34 CLKOUTEN/CLKOUT  
53  
GND  
+
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
REF  
8
33 CLKOUT/CLKOUT  
DD  
REFOUT2  
9
32 GND  
Operating Temperature Range  
A
A
10  
11  
31 OV  
IN2  
DD  
LTC2324C ................................................ 0°C to 70°C  
LTC2324I .............................................–40°C to 85°C  
LTC2324H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
+
30 DNC/SDOB  
IN2  
+
+
GND 12  
29 SDO2/SDOB  
A
A
13  
14  
28 DNC/SDOA  
IN1  
+
27 SDO1/SDOA  
IN1  
15 16 17 18 19 20 21 22 23 24 25 26  
UKG PACKAGE  
52-LEAD (7mm × 8mm) PLASTIC QFN  
T
= 150°C, θ = 31°C/W, θ = 2°C/W  
JMAX  
JA JC  
EXPOSED PAD (PIN 53) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
http://www.linear.com/product/LTC2324-14#orderinfo  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC2324UKG-14  
LTC2324UKG-14  
LTC2324UKG-14  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2324CUKG-14#PꢀF  
LTC2324IUKG-14#PꢀF  
LTC2324HUKG-14#PꢀF  
LTC2324CUKG-14#TRPꢀF  
LTC2324IUKG-14#TRPꢀF  
LTC2324HUKG-14#TRPꢀF  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPꢀF suffix.  
232414f  
2
For more information www.linear.com/LTC2324-14  
LTC2324-14  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
+
l
l
l
l
l
V
V
V
V
Absolute Input Range (A to A  
)
)
(Note 5)  
0
V
DD  
V
DD  
IN  
IN  
IN  
IN  
IN  
IN  
+
+
Absolute Input Range (A to A  
(Note 5)  
0
V
IN  
+
– V  
Input Differential Voltage Range  
Common Mode Input Range  
V
V
= V – V  
–REFOUT1,2,3,4  
REFOUT1,2,3,4  
V
IN  
IN  
IN  
IN  
+
= (V – V )/2  
0
V
DD  
V
CM  
CM  
IN  
IN  
I
IN  
Analog Input DC Leakage Current  
Analog Input Capacitance  
–1  
1
μA  
pF  
dꢀ  
V
C
IN  
10  
CMRR  
Input Common Mode Rejection Ratio  
CNV High Level Input Voltage  
CNV Low Level Input Voltage  
CNV Input Current  
f
IN  
= 500kHz  
102  
l
l
l
V
V
1.5  
IHCNV  
ILCNV  
INCNV  
0.5  
10  
V
I
–10  
μA  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
14  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
No Missing Codes  
14  
ꢀits  
Transition Noise  
0.8  
1
LSꢀ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
–2.5  
–0.99  
–1.5  
2.5  
0.99  
1.5  
LSꢀ  
DNL  
ꢀZE  
0.4  
0
LSꢀ  
LSꢀ  
0.01  
0
LSꢀ/°C  
LSꢀ  
l
FSE  
V
V
= 4.096V (REFꢀUFEN Grounded) (Note 7)  
= 4.096V (REFꢀUFEN Grounded)  
–2.5  
2.5  
REFOUT1,2,3,4  
15  
ppm/°C  
REFOUT1,2,3,4  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS (Notes 4, 8).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
81  
MAX  
UNITS  
dꢀ  
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio f = 500kHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
= 4.096V, Internal Reference  
= 5V, External Reference  
75  
IN  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
= 500kHz, V  
81  
dꢀ  
SNR  
Signal-to-Noise Ratio  
76  
78  
82  
dꢀ  
82.5  
–90  
–91  
93  
dꢀ  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–77.5  
dꢀ  
dꢀ  
SFDR  
dꢀ  
93  
dꢀ  
–3dꢀ Input ꢀandwidth  
Aperture Delay  
55  
MHz  
ps  
500  
500  
1
Aperture Delay Matching  
Aperture Jitter  
ps  
ps  
RMS  
Transient Response  
Full-Scale Step  
3
ns  
232414f  
3
For more information www.linear.com/LTC2324-14  
LTC2324-14  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Internal Reference Output Voltage  
4.75V < V < 5.25V  
4.078  
2.034  
4.096  
2.048  
4.115  
2.064  
V
V
REFOUT1,2,3,4  
DD  
3.13V < V < 3.47V  
DD  
l
V
Temperature Coefficient  
(Note 14)  
3
20  
ppm/°C  
REF  
REFOUT1,2,3,4 Output Impedance  
Line Regulation  
0.25  
0.3  
V
4.75V < V < 5.25V  
mV/V  
REFOUT1,2,3,4  
DD  
I
External Reference Current  
REFꢀUFEN = 0V  
REFOUT1,2,3,4  
REFOUT1,2,3,4 = 4.096V  
REFOUT1,2,3,4 = 2.048V  
(Notes 9, 10)  
385  
204  
μA  
μA  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
CMOS/LVDS = GND  
MIN  
0.8 OV  
–10  
TYP  
MAX  
UNITS  
CMOS Digital Inputs and Outputs  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
IH  
IL  
DD  
0.2 OV  
DD  
I
V
IN  
= 0V to OV  
DD  
10  
μA  
pF  
IN  
C
IN  
Digital Input Capacitance  
5
l
l
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
OV – 0.2  
V
V
OH  
O
DD  
I = 500μA  
O
0.2  
10  
OL  
l
I
I
I
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
LVDS Digital Inputs and Outputs  
CMOS/LVDS = OV  
DD  
l
l
l
l
l
l
V
V
V
V
V
V
LVDS Differential Input Voltage  
LVDS Common Mode Input Voltage  
LVDS Differential Output Voltage  
LVDS Common Mode Output Voltage  
100Ω Differential Termination  
DD  
240  
1
600  
1.45  
600  
1.4  
mV  
V
ID  
OV = 2.5V  
100Ω Differential Termination  
OV = 2.5V  
DD  
IS  
100Ω Differential Termination  
OV = 2.5V  
DD  
220  
0.85  
100  
0.85  
350  
1.2  
200  
1.2  
mV  
V
OD  
100Ω Differential Termination  
OV = 2.5V  
DD  
OS  
Low Power LVDS Differential Output Voltage 100Ω Differential Termination  
350  
1.4  
mV  
V
OD_LP  
OS_LP  
OV = 2.5V  
DD  
Low Power LVDS Common Mode Output Voltage 100Ω Differential Termination  
OV = 2.5V  
DD  
232414f  
4
For more information www.linear.com/LTC2324-14  
LTC2324-14  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Supply Voltage  
5V Operation  
3.3V Operation  
4.75  
3.13  
5.25  
3.47  
V
V
DD  
+
l
IV  
DD  
Supply Current  
2Msps Sample Rate (IN = IN = 0V)  
31  
39  
mA  
CMOS I/O Mode  
CMOS/LVDS = GND  
Supply Voltage  
l
l
l
l
OV  
1.71  
2.63  
8
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
Supply Current  
2Msps Sample Rate (C = 5pF)  
4.4  
5.3  
20  
L
Nap Mode Current  
Sleep Mode Current  
Power Dissipation  
Conversion Done (I  
)
6.4  
90  
VDD  
Sleep Mode (I  
+ I  
)
OVDD  
SLEEP  
VDD  
l
l
l
P
V
= 3.3V, 2Msps Sample Rate  
DD  
102  
18  
20  
130  
21.1  
288  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 2Msps Sample Rate  
162  
27  
30  
203  
32  
424  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
LVDS I/O Mode  
CMOS/LVDS = OV , OV = 2.5V  
DD DD  
l
l
l
l
OV  
Supply Voltage  
Supply Current  
2.37  
2.63  
33  
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
2Msps Sample Rate (C = 5pF, R = 100Ω)  
26  
5.3  
20  
L
L
Nap Mode Current  
Sleep Mode Current  
Power Dissipation  
Conversion Done (I  
)
6.4  
90  
VDD  
Sleep Mode (I  
+ I  
)
OVDD  
SLEEP  
VDD  
l
l
l
P
V
= 3.3V, 2Msps Sample Rate  
DD  
151  
52  
80  
185  
56  
288  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 2Msps Sample Rate  
214  
52  
30  
265  
69  
424  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2
UNITS  
Msps  
µs  
l
l
l
l
f
t
t
t
t
t
Maximum Sampling Frequency  
Time ꢀetween Conversions  
Conversion Time  
SMPL  
(Note 11) t  
= t  
+ t  
+ t  
READOUT  
0.5  
220  
30  
1000  
CYC  
CYC  
CNVH  
CONV  
ns  
CONV  
CNV High Time  
ns  
CNVH  
Sampling Aperture  
(Note 11) t  
= t  
– t  
CONV  
250  
50  
ns  
ACQUISITION  
WAKE  
ACQUISITION  
CYC  
REFOUT1,2,3,4 Wake-Up Time  
C
= 10µF  
ms  
REFOUT1,2,3,4  
CMOS I/O Mode, SDR CMOS/LVDS = GND, SDR/ DDR = GND  
l
l
l
l
l
t
t
t
t
t
SCK Period  
(Note 13)  
9.1  
4.1  
4.1  
0
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
HSDO_SDR  
DSCKCLKOUT  
L
SCK to CLKOUT Delay  
(Note 12)  
2
232414f  
5
For more information www.linear.com/LTC2324-14  
LTC2324-14  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 11)  
(Note 11)  
(Note 11)  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
l
t
t
t
ꢀus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
3
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
ns  
0
ns  
CMOS I/O Mode, DDR CMOS/LVDS = GND, SDR/ DDR = OV  
DD  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SCK Period  
18.2  
8.2  
8.2  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
3
HSDO_DDR  
DSCKCLKOUT  
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
(Note 11)  
(Note 11)  
2
ꢀus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
0
LVDS I/O Mode, SDR CMOS/LVDS = OV , SDR/DDR = GND  
DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
3.3  
1.5  
1.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4
HSDO_SDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
2
SCK Delay Time to CNV↑  
0
LVDS I/O Mode, DDR CMOS/LVDS = OV , SDR/DDR = OV = 2.5V  
DD  
DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
6.6  
3
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
3
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
0
1.5  
4
HSDO_DDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
2
SCK Delay Time to CNV↑  
0
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note 8: All specifications in dꢀ are referred to a full-scale 4.096V input  
with REF = 4.096V.  
Note 2: All voltage values are with respect to ground.  
Note 9: When REFOUT1,2,3,4 is overdriven, the internal reference buffer  
Note 3: When these pin voltages are taken below ground, or above V or  
must be turned off by setting REFꢀUFEN = 0V.  
DD  
OV , they will be clamped by internal diodes. This product can handle input  
DD  
Note 10: f  
= 2MHz, I  
varies proportionally with sample rate.  
SMPL  
REFOUT1,2,3,4  
currents up to 100mA below ground, or above V or OV , without latch-up.  
DD  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V and OV = 2.5V.  
Note 13: t  
rising edge capture.  
Note 14: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 15: CNV is driven from a low jitter digital source, typically at OV  
logic levels.  
Note 4: V = 5V, OV = 2.5V, REFOUT1,2,3,4 = 4.096V, f = 2MHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
of 9.1ns allows a shift clock frequency up to 110MHz for  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 7: ꢀipolar zero error is the offset voltage measured from –0.5LSꢀ  
when the output code flickers between 0000 0000 0000 000 and 1111  
1111 1111 111. Full-scale bipolar error is the worst-case of –FS or +FS  
DD  
232414f  
6
For more information www.linear.com/LTC2324-14  
LTC2324-14  
aDc TiMing characTerisTics  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
232414 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 1. Voltage Levels for Timing Specifications  
232414f  
7
For more information www.linear.com/LTC2324-14  
LTC2324-14  
Typical perForMance characTerisTics  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
= 4.096V, fSMPL = 2Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
4
3
1.0  
0.5  
150000  
σ = 0.75  
135000  
120000  
105000  
90000  
2
1
Right Click In Graph Area for Menu  
Double Click In Graph Area for Data Setup  
0
0
75000  
60000  
45000  
30000  
15000  
0
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–16384  
–8192  
0
8192  
16384  
–16384  
–8192  
0
8192  
16384  
–8 –6.4–4.8–3.2–1.6 0.0 1.6 3.2 4.8 6.4  
8
1
1
OUTPUT CODE  
OUTPUT CODE  
CODE  
232414 G01  
232414 G02  
232414 G03  
THD, Harmonics vs Input  
Frequency (1kHz to 1MHz)  
32k Point FFT, fSMPL = 2Msps,  
fIN = 500kHz  
SNR, SINAD vs Input Frequency  
(1kHz to 1MHz)  
0
–20  
83.0  
82.8  
82.6  
82.4  
82.2  
82.0  
81.8  
81.6  
81.4  
81.2  
81.0  
–80  
–84  
SNR = 82.3dB  
THD = –90.9dB  
SINAD = 81.6dB  
SFDR = 96.5dB  
–88  
–40  
–92  
THD  
–96  
SNR  
–60  
–100  
–104  
–108  
–112  
–116  
–120  
HD3  
–80  
HD2  
–100  
–120  
–140  
SINAD  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
232414 G04  
232414 G05  
232414 G06  
THD, Harmonics vs Input  
Common Mode  
SNR, SINAD vs Reference Voltage,  
fIN = 500kHz  
32k Point FFT, IMD, fSMPL =2Msps,  
AIN+ = 500kHz, AIN= 1.3MHz  
–85  
–90  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
0
–20  
f = 500kHz  
THD = 84dB  
f = 500kHz  
V
= 800kHz, 4Vpp  
CM  
SNR  
SINAD  
–40  
THD  
–95  
–60  
HD3  
–80  
–100  
–105  
–110  
HD2  
–100  
–120  
–140  
1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.2  
0.4  
0.6  
0.8  
INPUT COMMON MODE (V)  
V
(V)  
REFOUT  
FREQUENCY (MHz)  
232414 G07  
232414 G08  
232414 G09  
232414f  
8
For more information www.linear.com/LTC2324-14  
LTC2324-14  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
Step Response  
Typical perForMance characTerisTics  
= 4.096V, fSMPL = 2Msps, unless otherwise noted.  
CMRR vs Input Frequency  
Crosstalk vs Input Frequency  
(Large Signal Settling)  
16384  
120  
112  
104  
96  
–105  
–107  
–109  
–111  
–113  
–115  
–117  
–119  
–121  
–123  
–125  
V
= 4Vpp  
CM  
12288  
8192  
4.096V RANGE  
4096  
0
88  
IN+ = 2MHz SQUARE WAVE  
IN– = 0V  
–4096  
80  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
SETTLING TIME (ns)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
232414 G12  
232414 G10  
232414 G11  
Step Response  
(Fine Settling)  
External Reference Supply  
Current vs Sample Frequency  
REF Output vs Temperature  
125  
100  
75  
400  
300  
200  
100  
0
1.00  
0.50  
REFBUFEN = 0V  
(EXT REF BUF  
V
= 3.3V  
DD  
OVERDRIVING REF BUF)  
0
50  
–0.50  
–1.00  
–1.50  
–2.00  
–2.50  
–3.00  
25  
V
= 4.096V  
REFOUT1,2,3,4  
0
V
= 5V  
DD  
–25  
–50  
–75  
–100  
–125  
4.096V RANGE  
V
= 2.048V  
REFOUT1,2,3,4  
IN+ = 2.0MHz SQUARE WAVE  
IN– = 0V  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
0
0.5  
1
1.5  
2
–55 –35 –15  
5
25 45 65 85 105 125  
SETTLING TIME (ns)  
SAMPLE FREQUENCY (Msps)  
TEMPERATURE (°C)  
232414 G13  
232414 G14  
232414 G15  
Supply Current  
vs Sample Frequency  
OVDD Current vs SCK Frequency,  
CLOAD = 10pF  
Offset Error vs Temperature  
1.0  
0.5  
5
4
3
2
1
0
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
35  
30  
25  
20  
15  
Full Scale Sinusoidal Input  
LVDS  
CMOS(2.5V)  
V
= 5V  
DD  
0
CMOS(1.8V)  
V
DD  
= 3.3V  
–0.5  
LOW POWER LVDS  
–1.0  
–55 –35 –15  
5
25 45 65 85 105 12  
0
22  
44  
66  
88  
110  
0
0.4  
0.8  
1.2  
1.6  
2
TEMPERATURE (°C)  
SCK FREQUENCY (MHz)  
SAMPLE FREQUENCY (Msps)  
232414 G16  
232414 G18  
232414 G17  
232414f  
9
For more information www.linear.com/LTC2324-14  
LTC2324-14  
pin FuncTions  
PINS THAT ARE THE SAME FOR ALL DIGITAL I/O MODES  
REFOUT1(Pin22):ReferenceBuffer1Output.Anonboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
+
AIN4 , AIN4 (Pins 2, 1): Analog Differential Input Pins.  
+
Full-scale range (AIN4 – AIN4 ) is REFOUT4 voltage.  
These pins can be driven from V to GND.  
DD  
GND (Pins 3, 7, 12, 18, 26, 32, 38, 46, 49): Ground.  
These pins and exposed pad (Pin 53) must be tied directly  
to a solid ground plane.  
SDR/DDR (Pin 23): Double Data Rate Input. Controls the  
frequency of SCK and CLKOUT. Tie to GND for the falling  
edge of SCK to shift each serial data output (Single Data  
+
AIN3 , AIN3 (Pins 5, 4): Analog Differential Input Pins.  
+
Full-scale range (AIN3 – AIN3 ) is REFOUT3 voltage.  
These pins can be driven from V to GND.  
Rate, SDR). Tie to OV to shift serial data output on each  
DD  
DD  
edge of SCK (Double Data Rate, DDR). CLKOUT will be a  
REFOUT3 (Pin 6): Reference Buffer 3 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
delayed version of SCK for both pin states.  
CNV (Pin 24): Convert Input. This pin, when high, defines  
the acquisition phase. When this pin is driven low, the  
conversion phase is initiated and output data is clocked  
out. This input must be driven at OV levels with a low  
DD  
jitter pulse. This pin is unaffected by the CMOS/LVDS pin.  
CMOS/LVDS (Pin 25): I/O Mode Select. Ground this pin  
REF (Pin 8): Common 4.096V reference output. Decouple  
to GND with a 1μF low ESR ceramic capacitor. May be  
overdriven with a single external reference to establish a  
common reference for ADC cores 1 through 4.  
to enable CMOS mode, tie to OV to enable LVDS mode.  
DD  
Float this pin to enable low power LVDS mode.  
OV (Pins 31, 37): I/O Interface Digital Power. The range  
DD  
of OV is 1.71V to 2.63V. This supply is nominally set  
REFOUT2 (Pin 9): Reference Buffer 2 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
DD  
to the same supply as the host interface (CMOS: 1.8V or  
2.5V, LVDS: 2.5V). Bypass OV to GND (Pins 32 and 38)  
DD  
with 0.1µF capacitors.  
REFBUFEN (Pin 43): Reference Buffer Output Enable. Tie  
to V when using the internal reference. Tie to ground  
DD  
to disable the internal REFOUT1–4 buffers for use with  
+
external voltage references. This pin has a 500k internal  
AIN2 ,AIN2 (Pins11,10):AnalogDifferentialInputPins.  
+
pull-up to V .  
Full-scale range (AIN2 – AIN2 ) is REFOUT2 voltage.  
These pins can be driven from V to GND.  
DD  
DD  
REFOUT4 (Pin45):ReferenceBuffer4Output.Anonboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
+
AIN1 ,AIN1 (Pins14,13):AnalogDifferentialInputPins.  
+
Full-scale range (AIN1 – AIN1 ) is REFOUT1 voltage.  
These pins can be driven from V to GND.  
DD  
V
(Pins 15, 21, 44, 52): Power Supply. Bypass V to  
DD  
DD  
GND with a 10µF ceramic capacitor and a 0.1µF ceramic  
capacitorclosetothepart. TheV pinsshouldbeshorted  
together and driven from the same supply.  
DD  
Exposed Pad (Pin 53): Ground. Solder this pad to ground.  
232414f  
10  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
pin FuncTions  
CMOS DATA OUTPUT OPTION (CMOS/LVDS = LOW)  
LVDS DATA OUTPUT OPTION (CMOS/LVDS = HIGH OR  
FLOAT)  
SDO1(Pin27):CMOSSerialDataOutputforADCChannel1.  
The conversion result is shifted MSB first on each falling  
edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from SDO1 in SDR mode, 16 SCK edges  
in DDR mode.  
+
SDOA , SDOA (Pins 27, 28): LVDS Serial Data Output  
for ADC Channel 1. The conversion result is shifted CH1  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 14-bit conversion data to be read from SDOA in SDR  
mode,16SCKedgesinDDRmode.Terminatewitha100Ω  
resistor at the receiver (FPGA).  
SDO2(Pin29):CMOSSerialDataOutputforADCChannel2.  
The conversion result is shifted MSB first on each falling  
edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from SDO2 in SDR mode, 16 SCK edges  
in DDR mode.  
+
SDOB , SDOB (Pins 29, 30): LVDS Serial Data Output  
for ADC Channel 2. The conversion result is shifted CH2  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 14-bit conversion data to be read from SDOB in SDR  
mode,16SCKedgesinDDRmode.Terminatewitha100Ω  
resistor at the receiver (FPGA).  
SDO3(Pin35):CMOSSerialDataOutputforADCChannel3.  
The conversion result is shifted MSB first on each falling  
edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from SDO3 in SDR mode, 16 SCK edges  
in DDR mode.  
+
CLKOUT ,CLKOUT (Pins33,34):SerialDataClockOutput.  
CLKOUT provides a skew-matched clock to latch the SDO  
outputatthereceiver.ThesepinsechotheinputatSCKwith  
a small delay. These pins must be differentially terminated  
by an external 100Ω resistor at the receiver (FPGA).  
SDO4 (Pin 39): CMOS Serial Data Output for ADC Channel  
4. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 14-bit conversion  
data to be read from SDO4 in SDR mode, 16 SCK edges  
in DDR mode.  
+
SDOC , SDOC (Pins 35, 36): LVDS Serial Data Output  
for ADC channel 3. The conversion result is shifted CH3  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 14-bit conversion data to be read from SDOA in SDR  
mode,16SCKedgesinDDRmode.Terminatewitha100Ω  
resistor at the receiver (FPGA).  
CLKOUT (Pin 33): Serial Data Clock Output. CLKOUT  
provides a skew-matched clock to latch the SDO output  
at the receiver (FPGA). The logic level is determined by  
+
OV . This pin echoes the input at SCK with a small delay.  
SDOD , SDOD (Pins 39, 40): LVDS Serial Data Output  
for ADC Channel 4. The conversion result is shifted CH4  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 14-bit conversion data to be read from SDOA in SDR  
mode,16SCKedgesinDDRmode.Terminatewitha100Ω  
resistor at the receiver (FPGA).  
DD  
CLKOUTEN (Pin 34): CLKOUT can be disabled by tying  
Pin 34 to OV for a small power savings. If CLKOUT is  
DD  
used, ground this pin.  
SCK (Pin 41): Serial Data Clock Input. The falling edge  
of this clock shifts the conversion result MSB first onto  
the SDO pins in SDR mode (DDR = LOW). In DDR mode  
(SDR/DDR = HIGH) each edge of this clock shifts the  
conversion result MSB first onto the SDO pins. The logic  
+
SCK , SCK (Pins 41, 42): Serial Data Clock Input. The  
falling edge of this clock shifts the conversion result MSB  
first onto the SDO pins in SDR mode (SDR/DDR = LOW).  
In DDR mode (SDR/DDR = HIGH) each edge of this clock  
shifts the conversion result MSB first onto the SDO pins.  
Thesepinsmustbedifferentiallyterminatedbyanexternal  
level is determined by OV .  
DD  
DNC (Pins 28, 30, 36, 40, 42): In CMOS mode, do not  
connect this pin.  
100Ω resistor at the receiver (ADC).  
232414f  
11  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
FuncTional block DiagraM  
CMOS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
A
+
SDO1  
DNC  
IN1  
+
27  
28  
14  
13  
14-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
A
IN1  
REFOUT1  
×1  
REF  
22  
A
A
+
IN2  
SDO2  
DNC  
+
11  
10  
29  
30  
14-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN2  
REFOUT2  
×1  
REF  
9
SCK  
CLKOUT  
41  
42  
33  
34  
CMOS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
DNC  
CLKOUTEN  
SDR/DDR  
23  
A
A
+
IN3  
SDO3  
DNC  
+
5
4
35  
36  
14-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN3  
REFOUT3  
×1  
REF  
6
A
A
+
IN4  
SDO4  
DNC  
+
2
1
39  
40  
14-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN4  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232414 BDa  
232414f  
12  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
FuncTional block DiagraM  
LVDS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
+
A
+
SDOA  
SDOA  
IN1  
+
27  
28  
14  
13  
LVDS  
I/O  
14-BIT+SIGN  
SAR ADC  
S/H  
A
IN1  
REFOUT1  
×1  
REF  
22  
+
A
A
+
SDOB  
IN2  
+
11  
10  
29  
30  
LVDS  
I/O  
14-BIT+SIGN  
SAR ADC  
S/H  
SDOB  
IN2  
REFOUT2  
×1  
REF  
9
+
+
CLKOUT  
SCK  
SCK  
41  
42  
33  
34  
LVDS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
CLKOUT  
SDR/DDR  
23  
+
A
+
SDOC  
IN3  
+
5
4
35  
36  
LVDS  
I/O  
14-BIT+SIGN  
SAR ADC  
S/H  
A
SDOC  
IN3  
REFOUT3  
×1  
REF  
6
+
A
A
+
SDOD  
IN4  
+
2
1
39  
40  
LVDS  
I/O  
14-BIT+SIGN  
SAR ADC  
S/H  
SDOD  
IN4  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232414 BDb  
232414f  
13  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
TiMing DiagraM  
SDR Mode, CMOS (Reading 1 Channel per SDO)  
SAMPLE N  
SAMPLE N+1  
CNV  
CONVERT  
ACQUIRE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
Hi-Z  
Hi-Z  
CLKOUT  
Hi-Z  
Hi-Z  
SDO1  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
CHANNEL 2  
CONVERSION N  
Hi-Z  
Hi-Z  
SDO4  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 4  
CONVERSION N  
CHANNEL 1  
CONVERSION N  
232414 TD01  
DDR Mode, CMOS (Reading 1 Channel per SDO)  
SAMPLE N  
SAMPLE N+1  
ACQUIRE  
CNV  
CONVERT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
Hi-Z  
Hi-Z  
CLKOUT  
SDO1  
Hi-Z  
Hi-Z  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
CHANNEL 2  
CONVERSION N  
Hi-Z  
Hi-Z  
SDO4  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
CHANNEL 4  
CONVERSION N  
232414 TD02  
232414f  
14  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
TiMing DiagraM  
SDR Mode, LVDS (Reading 1 Channel per SDO Pair)  
SAMPLE N  
SAMPLE N+1  
CNV  
CONVERT  
ACQUIRE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
CLKOUT  
SDOA  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
CHANNEL 2  
CONVERSION N  
SDOD  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 4  
CONVERSION N  
CHANNEL 1  
CONVERSION N  
232414 TD03  
DDR Mode, LVDS (Reading 1 Channel per SDO Pair)  
SAMPLE N  
SAMPLE N+1  
ACQUIRE  
CNV  
CONVERT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
CLKOUT  
SDOA  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
CHANNEL 2  
CONVERSION N  
SDOD  
DONT CARE  
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
D14  
CHANNEL 1  
CONVERSION N  
232414 TD04  
CHANNEL 4  
CONVERSION N  
232414f  
15  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
OVERVIEW  
input with binary-weighted fractions of the reference volt-  
age (e.g., V /2, V /4 … V /32768) using  
adifferentialcomparator. Attheendofconversion, aCDAC  
output approximates the sampled analog input. The ADC  
control logic then prepares the 14-bit digital output code  
for serial transfer.  
REFOUT  
REFOUT  
REFOUT  
The LTC2324-14 is a low noise, high speed 15-bit succes-  
sive approximation register (SAR) ADC with differential  
inputs and a wide input common mode range. Operating  
from a single 3.3V or 5V supply, the LTC2324-14 has a  
4V or 8V differential input range, making it ideal for  
P-P  
P-P  
applications which require a wide dynamic range. The  
LTC2324-14achieves 1LSBINLtypical,nomissingcodes  
at 14 bits and 81dB SNR.  
TRANSFER FUNCTION  
The LTC2324-14 digitizes the full-scale voltage of 2 ×  
15  
REFOUT1,2,3,4 into 2 levels, resulting in an LSB size of  
TheLTC2324-14hasanonboardreferencebufferandlow  
drift(20ppm/°Cmax)4.096Vtemperature-compensated  
reference. The LTC2324-14 also has a high speed SPI-  
compatible serial interface that supports CMOS or LVDS.  
The fast 2Msps per channel throughput with no-cycle  
latency makes the LTC2324-14 ideally suited for a wide  
variety of high speed applications. The LTC2324-14 dis-  
sipates only 40mW per channel. Nap and sleep modes  
are also provided to reduce the power consumption  
of the LTC2324-14 during inactive periods for further  
power savings.  
250µV with REF = 4.096V. The ideal transfer function is  
shown in Figure 2. The output data is in 2’s complement  
format.  
Analog Input  
The differential inputs of the LTC2324-14 provide great  
flexibility to convert a wide variety of analog signals with  
no configuration required. The LTC2324-14 digitizes the  
+
difference voltage between the A and A pins while  
IN  
IN  
supporting a wide common mode input range. The analog  
input signals can have an arbitrary relationship to each  
other, provided that they remain between V and GND.  
CONVERTER OPERATION  
DD  
The LTC2324-14 can also digitize more limited classes of  
analog input signals such as pseudo-differential unipolar/  
bipolarandfullydifferentialwithnoconfigurationrequired.  
The LTC2324-14 operates in two phases. During the ac-  
quisition phase, the sample capacitor is connected to the  
+
analog input pins A and A to sample the differential  
IN  
IN  
The analog inputs of the LTC2324-14 can be modeled  
by the equivalent circuit shown in Figure 3. The back-  
to-back diodes at the inputs form clamps that provide  
analoginputvoltage,asshowninFigure3.Afallingedgeon  
the CNV pin initiates a conversion. During the conversion  
phase,the15-bitCDACissequencedthroughasuccessive  
approximationalgorithmeffectivelycomparingthesampled  
ESD protection. In the acquisition phase, 10pF (C )  
IN  
V
DD  
C
011 1111 1111 1111  
011 1111 1111 1110  
IN  
R
15Ω  
ON  
10pF  
+
A
IN  
000 0000 0000 0001  
000 0000 0000 0000  
111 1111 1111 1111  
BIAS  
VOLTAGE  
V
DD  
C
IN  
R
15Ω  
ON  
10pF  
1LSB = 2 • REFOUT  
100 0000 0000 0001  
232414 F03  
A
IN  
32768  
100 0000 0000 0000  
–REFOUT/2  
–1  
LSB  
0
1
LSB  
REFOUT/2  
–1LSB  
Figure 3. The Equivalent Circuit for the Differential  
Analog Input of the LTC2324-14  
INPUT VOLTAGE (V)  
232414 F02  
Figure 2. LTC2324-14 Transfer Function  
232414f  
16  
For more information www.linear.com/LTC2324-14  
 
 
LTC2324-14  
applicaTions inForMaTion  
from the sampling capacitor in series with approximately  
mode input range relaxes the accuracy requirements of  
anysignalconditioningcircuitspriortotheanaloginputs.  
15Ω(R )fromtheon-resistanceofthesamplingswitch  
ON  
is connected to the input. Any unwanted signal that is  
common to both inputs will be reduced by the common  
mode rejection of the ADC sampler. The inputs of the  
ADC core draw a small current spike while charging the  
Pseudo-Differential Bipolar Input Range  
The pseudo-differential bipolar configuration represents  
driving one of the analog inputs at a fixed voltage, typically  
C capacitors during acquisition.  
IN  
V
/2, and applying a signal to the other A pin. In this  
REF  
IN  
case the analog input swings symmetrically around the  
fixedinputyieldingbipolartwo’scomplementoutputcodes  
with an ADC span of half of full-scale. This configuration  
is illustrated in Figure 4, and the corresponding transfer  
function in Figure 5. The fixed analog input pin need not  
Single-Ended Signals  
Single-ended signals can be directly digitized by the  
LTC2324-14. These signals should be sensed pseudo-  
differentially for improved common mode rejection. By  
connecting the reference signal (e.g., ground sense) of  
be set at V /2, but at some point within the V rails  
REF  
DD  
the main analog signal to the other A pin, any noise or  
allowingthealternateinputtoswingsymmetricallyaround  
IN  
+
disturbance common to the two signals will be rejected  
by the high CMRR of the ADC. The LTC2324-14 flexibility  
handles both pseudo-differential unipolar and bipolar  
signals,withnoconfigurationrequired.Thewidecommon  
thisvoltage.Iftheinputsignal(A A )swingsbeyond  
IN IN  
REFOUT1,2,3,4/2, valid codes will be generated by the  
ADC and must be clamped by the user, if necessary.  
V
V
REF  
REF  
LT1819  
LTC2324-14  
+
25Ω  
+
0V  
0V  
A
REFOUT1  
IN1  
10µF  
1µF  
V
REF  
REF  
220pF  
10k  
V
/2  
REF  
25Ω  
+
V
/2  
REF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
IN1  
SDO1  
CLKOUT  
SCK  
10k  
1µF  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232414 F04  
Figure 4. Pseudo-Differential Bipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
16383  
8191  
A
IN  
+
(A – A  
)
IN  
IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
–8192  
–16384  
232414 F05  
Figure 5. Pseudo-Differential Bipolar Transfer Function  
232414f  
17  
For more information www.linear.com/LTC2324-14  
 
 
LTC2324-14  
applicaTions inForMaTion  
Pseudo-Differential Unipolar Input Range  
The LT®1819 high speed dual operational amplifier is  
recommendedforperformingsingle-ended-to-differential  
conversions, as shown in Figure 8. In this case, the first  
amplifier is configured as a unity-gain buffer and the  
single-ended input signal directly drives the high imped-  
ance input of this amplifier.  
The pseudo-differential unipolar configuration represents  
driving one of the analog inputs at ground and applying a  
signal to the other A pin. In this case, the analog input  
IN  
swings between ground and V  
yielding unipolar two’s  
REF  
complement output codes with an ADC span of half of  
full-scale. This configuration is illustrated in Figure 6, and  
the corresponding transfer function in Figure 7. If the input  
V
REF  
LT1819  
V
REF  
+
0V  
+
signal (A – A ) swings negative, valid codes will be  
IN  
IN  
0V  
generated by the ADC and must be clamped by the user, if  
necessary. A possible variant of this mode would be to tie  
+
V
REF  
V
REF  
/2  
+
A
IN  
to ground and drive A between ground and V  
IN REF  
200Ω  
0V  
yieldingacodespanillustratedbythedottedlineinFigure7.  
200Ω  
V
REF  
232414 F08  
LT1818  
LTC2324-14  
+
V
REF  
25Ω  
+
0V  
A
REFOUT1  
IN1  
0V  
10µF  
1µF  
Figure 8. Single-Ended to Differential Driver  
REF  
220pF  
Fully-Differential Inputs  
25Ω  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
IN1  
SDO1  
CLKOUT  
SCK  
To achieve the best distortion performance of the  
LTC2324-14, we recommend driving a fully-differential  
signal through LT1819 amplifiers configured as two  
unity-gain buffers, as shown in Figure 9. This circuit  
achieves the full data sheet THD specification of –90dB at  
input frequencies up to 500kHz. A fully-differential input  
signal can span the maximum full-scale of the ADC, up to  
REFOUT1,2,3,4. The common mode input voltage can  
232414 F06  
Figure 6. Pseudo-Differential Unipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
16383  
8191  
span the entire supply range up to V , limited by the  
DD  
input signal swing. The fully-differential configuration is  
illustrated in Figure 10, with the corresponding transfer  
function illustrated in Figure 11.  
A
IN  
+
(A – A  
IN IN  
)
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
–8192  
–16384  
V
REF  
0V  
LT1819  
232414 F07  
V
REF  
+
Figure 7. Pseudo-Differential Unipolar Transfer Function  
0V  
V
REF  
0V  
Single-Ended-to-Differential Conversion  
V
REF  
+
0V  
Whilesingle-endedsignalscanbedirectlydigitizedaspre-  
viously discussed, single-ended to differential conversion  
circuits may also be used when higher dynamic range is  
desired. By producing a differential signal at the inputs of  
the LTC2324-14, the signal swing presented to the ADC is  
maximized, thus increasing the achievable SNR.  
232414 F09  
Figure 9. LT1819 Buffering a Fully-Differential Signal Source  
232414f  
18  
For more information www.linear.com/LTC2324-14  
 
LTC2324-14  
applicaTions inForMaTion  
V
V
REF  
REF  
0V  
LT1819  
LTC2324-14  
+
25Ω  
25Ω  
+
0V  
A
A
REFOUT1  
IN1  
10µF  
1µF  
REF  
220pF  
V
V
REF  
0V  
REF  
+
0V  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
SDO1  
CLKOUT  
SCK  
IN1  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232414 F10  
Figure 10. Fully-Differential Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
16383  
8192  
A
IN  
+
(A  
– A  
)
INn  
INn  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
–8192  
–16384  
232414 F11  
Figure 11. Fully-Differential Transfer Function  
INPUT DRIVE CIRCUITS  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC inputs, which draw a small  
current spike during acquisition.  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2324-14 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when during acquisition.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter  
to minimize noise. The simple 1-pole RC lowpass filter  
shown in Figure 12 is sufficient for many applications.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2324-14. The amplifier  
provides low output impedance to minimize gain error  
232414f  
19  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
SINGLE-ENDED  
ADC REFERENCE  
INPUT SIGNAL  
+
50Ω  
IN  
IN  
LTC2324  
Internal Reference  
3.3nF  
The LTC2324-14 has an on-chip, low noise, low  
drift (20ppm/°C max), temperature compensated band-  
gap reference. It is internally buffered and is available  
at REF (Pin 8). The reference buffer gains the internal  
SINGLE-ENDED  
TO DIFFERENTIAL  
DRIVER  
232414 F12  
BW = 1MHz  
Figure 12. Input Signal Chain  
reference voltage to 4.096V for supply voltages V = 5V  
DD  
and to 2.048V for V = 3.3V. The REF pin also drives  
DD  
The sampling switch on-resistance (R ) and the sample  
ON  
the four internal reference buffers with a current limited  
output (250μA) so it may be easily overdriven with an  
external reference in the range of 1.25V to 5V. Bypass  
REF to GND with a 1μF (X5R, 0805 size) ceramic capacitor  
to compensate the reference buffer and minimize noise.  
The 1μF capacitor should be as close as possible to the  
LTC2324-14 package to minimize wiring inductance. The  
REFBUFEN pin does not affect the internal REF buffer. The  
voltage on the REF pin must be externally buffered if used  
for external circuitry.  
capacitor (C ) form a second lowpass filter that limits  
IN  
the input bandwidth to the ADC core to 110MHz. A buffer  
amplifier with a low noise density must be selected to  
minimize the degradation of the SNR over this bandwidth.  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
Table 1. Reference Configurations and Ranges  
REFOUT1,2,3,4  
PIN  
DIFFERENTIAL INPUT  
RANGE  
REFERENCE CONFIGURATION  
V
REFBUFEN  
5V  
REF PIN  
4.096V  
DD  
Internal Reference with Internal Buffers  
5V  
3.3V  
5V  
4.096V  
4.096V  
3.3V  
5V  
2.048V  
2.048V  
2.048V  
Common External Reference with Internal Buffer (REF Pin  
Externally Overdriven)  
1.25V to 5V  
1.25V to 5V  
4.096V  
1.25V to 3.3V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
3.3V  
5V  
3.3V  
0V  
External Reference with REF Buffers Disabled  
3.3V  
0V  
2.048V  
232414f  
20  
For more information www.linear.com/LTC2324-14  
 
LTC2324-14  
applicaTions inForMaTion  
External Reference  
recommendedwhenoverdrivingREFOUT. TheLTC6655-5  
offers the same small size, accuracy, drift and extended  
temperature range as the LTC6655-4.096. By using a 5V  
reference, a higher SNR can be achieved. We recommend  
bypassing the LTC6655-5 with a 10μF ceramic capacitor  
(X5R, 0805 size) close to each of the REFOUT1,2,3,4  
pins. If the REF pin voltage is used as a REFOUT refer-  
ence when REFBUFEN is connected to GND, it should be  
buffered externally.  
The internal REFOUT1,2,3,4 buffers can also be over-  
driven from 1.25V to 5V with an external reference at  
REFOUT1,2,3,4 as shown in Figure 13 (c). To do so,  
REFBUFEN must be grounded to disable the REF buffers.  
A 55k internal resistance loads the REFOUT1,2,3,4 pins  
when the REF buffers are disabled. To maximize the input  
signal swing and corresponding SNR, the LTC6655-5 is  
V
3.3V TO 5V  
DD  
V
+5V  
DD  
5V TO  
13.2V  
REFBUFEN  
REF  
REFBUFEN  
REF  
LTC6655-4.096  
V
V
IN  
OUT_F  
V
OUT_S  
1µF  
LTC2324-14  
SHDN  
LTC2324-14  
10µF  
10µF  
REFOUT1  
REFOUT2  
REFOUT3  
REFOUT4  
0.1µF  
REFOUT1  
REFOUT2  
REFOUT3  
REFOUT4  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
GND  
10µF  
GND  
232414 F13a  
232414 F13b  
(13a) LTC2324-14 Internal Reference Circuit  
(13b) LTC2324-14 with a Shared External Reference Circuit  
V
+5V  
DD  
REFBUFEN  
REF  
1µF  
5V TO 13.2V  
5V TO 13.2V  
5V TO 13.2V  
5V TO 13.2V  
LTC6655-4.096  
V
V
IN  
OUT_F  
V
OUT_S  
REFOUT1  
SHDN  
10µF  
10µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
LTC2324-14  
LTC6655-2.048  
V
V
REFOUT2  
REFOUT3  
IN  
OUT_F  
V
OUT_S  
SHDN  
LTC6655-2.5  
V
V
IN  
OUT_F  
SHDN  
V
OUT_S  
LTC6655-3  
V
V
IN  
OUT_F  
V
OUT_S  
REFOUT4  
SHDN  
GND  
232414 F13c  
(13c) LTC2324-14 with Different External Reference Voltages  
Figure 13. Reference Connections  
232414f  
21  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
Internal Reference Buffer Transient Response  
The REFOUT1,2,3,4 pins of the LTC2324-14 draw charge  
DYNAMIC PERFORMANCE  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2324-14 provides  
guaranteed tested limits for both AC distortion and noise  
measurements. The typical large signal transient pulse  
response of the ADC is illustrated in Figure 15.  
(Q  
) from the external bypass capacitors during each  
CONV  
conversion cycle. If the internal reference buffer is over-  
driven,theexternalreferencemustprovideallofthischarge  
with a DC current equivalent to I  
= Q  
/t  
.
REF  
CONV CYC  
Thus, the DC current draw of I  
depends  
REFOUT1,2,3,4  
on the sampling rate and output code. In applications  
where a burst of samples is taken after idling for long  
periods, as shown in Figure 14 , I  
quickly goes from  
REFBUF  
approximately~75µAtoamaximumof500µAforREFOUT  
= 5V at 2Msps. This step in DC current draw triggers a  
transient response in the external reference that must be  
considered since any deviation in the voltage at REFOUT  
will affect the accuracy of the output code. If an external  
reference is used to overdrive REFOUT1,2,3,4, the fast  
settling LTC6655 reference is recommended.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is bandlimited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure16showsthattheLTC2324-14achieves  
a typical SINAD of 81dB at a 2MHz sampling rate with a  
500kHz input.  
CNV  
IDLE  
PERIOD  
232414 F14  
Signal-to-Noise Ratio (SNR)  
Figure 14. CNV Waveform Showing Burst Sampling  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 16 shows  
that the LTC2324-14 achieves a typical SNR of 81dB at a  
2MHz sampling rate with a 500kHz input.  
16384  
12288  
8192  
4.096V RANGE  
4096  
0
SNR = 82.3dB  
THD = –90.9dB  
–20  
–40  
SINAD = 81.6dB  
SFDR = 96.5dB  
0
IN+ = 2MHz SQUARE WAVE  
IN– = 0V  
–4096  
–60  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
SETTLING TIME (ns)  
232414 F15  
–80  
Figure 15. Transient Response of the LTC2324-14  
–100  
–120  
–140  
0
0.2  
0.4  
0.6  
0.8  
1
FREQUENCY (MHz)  
232414 F16  
Figure 16. 32k Point FFT of the LTC2324-14  
232414f  
22  
For more information www.linear.com/LTC2324-14  
 
 
LTC2324-14  
applicaTions inForMaTion  
Total Harmonic Distortion (THD)  
allows the LTC2324-14 to communicate with any digital  
logic operating between 1.8V and 2.5V. When using LVDS  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
I/O, the OV supply must be set to 2.5V.  
DD  
Power Supply Sequencing  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
The LTC2324-14 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2324-14  
has a power-on-reset (POR) circuit that will reset the  
LTC2324-14 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 10ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
2
V22 +V32 +V42 +… +VN  
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics.  
POWER CONSIDERATIONS  
The LTC2324-14 requires two power supplies: the 3.3V  
to 5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
35  
30  
25  
20  
15  
V
= 5V  
DD  
V
DD  
= 3.3V  
0
0.4  
0.8  
1.2  
1.6  
2
SAMPLE FREQUENCY (Msps)  
232414 F17  
Figure 17. Power Supply Current of the LTC2324-14 Versus Sampling Rate  
232414f  
23  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
TIMING AND CONTROL  
capture the SDO output eases timing requirements at the  
receiver. For low throughput speed applications, CLKOUT  
CNV Timing  
can be disabled by tying Pin 34 to OV .  
DD  
The LTC2324-14 sampling and conversion is controlled  
by CNV. A rising edge on CNV will start sampling and the  
fallingedgestartstheconversionandreadoutprocess.The  
conversion process is timed by the SCK input clock. For  
optimum performance, CNV should be driven by a clean  
low jitter signal. The Typical Application at the back of the  
data sheet illustrates a recommended implementation to  
reduce the relatively large jitter from an FPGA CNV pulse  
source. Note the low jitter input clock times the falling  
edge of the CNV signal. The rising edge jitter of CNV is  
much less critical to performance. The typical pulse width  
of the CNV signal is 30ns with < 1.5ns rise and fall times  
at a 2Msps conversion rate.  
Nap/Sleep Modes  
Nap mode is a method to save power without sacrificing  
power-updelaysforsubsequentconversions. Sleepmode  
has substantial power savings, but a power-up delay is  
incurred to allow the reference and power systems to  
become valid. To enter nap mode on the LTC2324-14,  
the SCK signal must be held high or low and a series of  
two CNV pulses must be applied. This is the case for both  
CMOS and LVDS modes. The second rising edge of CNV  
initiates the nap state. The nap state will persist until either  
asinglerisingedgeofSCKisapplied,orfurtherCNVpulses  
are applied. The SCK rising edge will put the LTC2324-14  
back into the operational (full-power) state. When in nap  
mode, two additional pulses will put the LTC2324-14 in  
sleep mode. When configured for CMOS I/O operation, a  
single rising edge of SCK can return the LTC2324-14 into  
operational mode. A 10ms delay is necessary after exiting  
sleep mode to allow the reference buffer to recharge the  
external filter capacitor. In LVDS mode, exit sleep mode  
by supplying a fifth CNV pulse. The fifth pulse will return  
the LTC2324-14 to operational mode, and further SCK  
pulses will keep the part from re-entering nap and sleep  
modes. The fifth SCK pulse also works in CMOS mode  
as a method to exit sleep. In the absence of SCK pulses,  
repetitive CNV pulses will cycle the LTC2324-14 between  
operational, nap and sleep modes indefinitely.  
SCK Serial Data Clock Input  
In SDR mode (SDR/DDR Pin 23 = GND), the falling edge  
of this clock shifts the conversion result MSB first onto  
the SDO pins. A 110MHz external clock must be applied  
at the SCK pin to achieve 2Msps throughput using all four  
SDO outputs. In DDR mode (SDR/DDR Pin 23 = OV ),  
DD  
each input edge of SCK shifts the conversion result MSB  
first onto the SDO pins. A 55MHz external clock must be  
applied at the SCK pin to achieve 2Msps throughput using  
all four SDO1 through SDO4 outputs.  
CLKOUT Serial Data Clock Output  
The CLKOUT output provides a skew-matched clock to  
latch the SDO output at the receiver. The timing skew  
of the CLKOUT and SDO outputs are matched. For high  
throughput applications, using CLKOUT instead of SCK to  
RefertothetimingdiagramsinFigure18,Figure19,Figure20  
and Figure 21 for more detailed timing information about  
sleep and nap modes.  
CNV  
1
2
NAP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
Z
WAKE ON 1ST SCK EDGE  
SDO1 – 4  
Z
232414 F18  
Figure 18. CMOS and LVDS Mode NAP and WAKE Using SCK  
232414f  
24  
For more information www.linear.com/LTC2324-14  
 
LTC2324-14  
applicaTions inForMaTion  
REFOUT  
RECOVERY  
REFOUT1 – 4  
4.096V  
4.096V  
t
WAKE  
CNV  
1
2
3
4
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
WAKE ON 1ST SCK EDGE  
SDO1 – 4  
Z
Z
Z
Z
232414 F19  
Figure 19. CMOS Mode SLEEP and WAKE Using SCK  
REFOUT  
RECOVERY  
REFOUT1 – 4  
4.096V  
4.096V  
t
WAKE  
WAKE ON 5TH  
CNV EDGE  
CNV  
1
2
3
4
5
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
SDO1 – 4  
Z
Z
Z
Z
Z
232414 F20  
Figure 20. LVDS and CMOS Mode SLEEP and WAKE Using CNV  
SDR MODE TIMING  
DDR MODE TIMING  
t
t
CYC  
CYC  
t
t
t
READOUT  
CNVH  
CONV  
t
t
t
CNVH  
CONV  
READOUT  
t
DSCKCNVH  
t
DSCKCNVH  
CNV  
CNV  
t
t
SCKH  
t
SCK  
SCKH  
t
SCK  
SCK  
SCK  
1
2
3
14  
15  
16  
1
2
3
14  
15  
16  
t
SCKL  
t
SCKL  
CLKOUT  
CLKOUT  
1
2
3
14  
15  
16  
1
2
3
14  
15  
16  
t
DSCKCLKOUT  
t
DSCKCLKOUT  
t
t
t
t
DCNVSDOV  
DCNVSDOZ  
DCNVSDOZ  
t
t
HSDO  
DCNVSDOV  
HSDO  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
SDO  
D14  
D13  
D12  
D1  
D0  
X
D14  
SDO  
D14  
D13  
D12  
D1  
D0  
X
D14  
232414 F21  
Figure 21. LTC2324-14 Timing Diagram  
232414f  
25  
For more information www.linear.com/LTC2324-14  
 
LTC2324-14  
applicaTions inForMaTion  
DIGITAL INTERFACE  
outputs are matched. For high throughput applications,  
using CLKOUT instead of SCK to capture the SDO output  
eases timing requirements at the receiver. In CMOS mode,  
use the SDO1 – SDO4, and CLKOUT pins as outputs. Use  
The LTC2324-14 features a serial digital interface that  
is simple and straightforward to use. The flexible OV  
DD  
supply allows the LTC2324-14 to communicate with any  
digital logic operating between 1.8V and 2.5V. In addi-  
tion to a standard CMOS SPI interface, the LTC2324-14  
provides an optional LVDS SPI interface to support low  
noise digital design. The CMOS /LVDS pin is used to select  
the digital interface mode. The SCK input clock shifts the  
conversion result MSB first on the SDO pins. CLKOUT  
provides a skew-matched clock to latch the SDO output  
at the receiver. The timing skew of the CLKOUT and SDO  
+
the SCK pin as an input. In LVDS mode, use the SDOA /  
+
+
SDOA through SDOD /SDOD and CLKOUT /CLKOUT  
pinsasdifferentialoutputs.Thesepinsmustbedifferentially  
terminated by an external 100Ω resistor at the receiver  
+
(FPGA). The SCK /SCK pins are differential inputs and  
must be terminated differentially by an external 100Ω  
resistor at the receiver(ADC).  
2.5V  
2.5V  
LTC2324-14  
FPGA OR DSP  
LTC2324-14  
FPGA OR DSP  
OV  
DD  
OV  
DD  
+
+
+
+
SCK  
SCK  
SCK  
SCK  
100Ω  
100Ω  
100Ω  
+
+
+
SDOD  
SDOD  
SDOD  
SDOD  
+
+
+
SDOC  
SDOC  
SDOC  
SDOC  
100Ω  
100Ω  
100Ω  
100Ω  
2.5V  
2.5V  
CMOS/LVDS  
CMOS/LVDS  
+
+
+
+
CLKOUT  
CLKOUT  
CLKOUT  
CLKOUT  
100Ω  
100Ω  
+
+
+
SDOB  
SDOB  
SDOB  
SDOB  
+
+
+
+
SDOA  
SDOA  
SDOA  
SDOA  
RETIMING  
FLIP-FLOP  
RETIMING  
FLIP-FLOP  
CNV  
CNV  
232414 F22  
232414 F23  
Figure 22. LTC2324-14 Using the LVDS Interface  
Figure 23. LTC2324-14 Using the LVDS Interface with One Lane  
232414f  
26  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
SDR/DDR Modes  
Multiple Data Lanes  
The LTC2324-14 has an SDR (single data rate) and DDR  
(double data rate) mode for reading conversion data from  
theSDOpins.Inbothmodes,CLKOUTisadelayedversion  
of SCK. In SDR mode, each negative edge of SCK shifts  
the conversion data out the SDO pins. In DDR mode,  
each edge of the SCK input shifts the conversion data  
out. In DDR mode, the required SCK frequency is half of  
what is required in SDR mode. Tie SDR/DDR to ground to  
The LTC2324-14 has up to four SDO data lanes in CMOS  
mode and four SDO lanes in LVDS mode. In CMOS mode,  
thenumberofpossibledatalanesrangefrom four(SDO1,  
SDO2, SDO3 and SDO4), two (SDO1 and SDO3) and one  
(SDO1). Generally, themoredatalanesused, thelowerthe  
required SCK frequency. When using less than four lanes  
in CMOS mode, there is a limit on the maximum possible  
conversionfrequency(seeTable2).EachSDOpinwillhold  
the MSB of the conversion data. In DDR mode you can  
use a SCK frequency half of SDR mode. See Table 2 for  
examples of various possibilities and the resulting SCK  
frequency required.  
configure for SDR mode and to OV for DDR mode. The  
DD  
CLKOUTsignalisadelayedversionoftheSCKinputandis  
phase aligned with the SDO data. In SDR mode, the SDO  
transitions on the falling edge of CLKOUT as illustrated  
in Figure 21. We recommend using the rising edge of  
CLKOUT to latch the SDO data into the FPGA register in  
SDR mode. In DDR mode, the SDO transitions on each  
input edge of SCK. We recommend using the CLKOUT ris-  
ing and falling edges to latch the SDO data into the FPGA  
registers in DDR mode. Since the CLKOUT and SDO data  
are phase aligned, we recommend digitally delaying the  
SDO data in the FPGA to provide adequate setup and hold  
timing margins in DDR mode.  
CMOS  
In CMOS mode, the number of possible data lanes range  
from four (SDO1, SDO2, SDO3 and SDO4), two (SDO1  
and SDO3) and one (SDO1). As suggested in the CMOS  
Timing Diagrams, each SDO lane outputs the conversion  
results for all analog input channels in a sequential cir-  
cular manner. For example, the first conversion result on  
SDO1 corresponds to analog input channel 1, followed  
by the conversion results for channels 2 through 4. The  
Table 2. Conversion Frequency for Various I/O Modes  
CONVERSION  
FREQUENCY  
(Msps/CH)  
CMOS/  
I/O MODE LVDS PIN  
SDR/  
DDR PIN  
SDO1 4  
LANES  
SDOA D  
LANES  
SCK FREQ  
(MHz)  
CLKOUT FREQ  
(MHz)  
SCK  
CYCLES  
OV  
DD  
GND (SDR) SDO1 – SDO4  
OV (DDR) SDO1 – SDO4  
110  
55  
110  
55  
16  
8
2.0  
2.0  
1.5  
1.0  
2.0  
2.0  
2.0  
2.0  
DD  
GND  
CMOS  
1.8V to 2.5V  
2.5V  
(CMOS)  
OV (DDR)  
SDO1, SDO3  
SDO1  
55  
55  
32  
64  
16  
8
DD  
GND (SDR)  
GND (SDR)  
110  
300  
110  
150  
300  
110  
300  
110  
150  
300  
SDOA – SDOD  
SDOA – SDOD  
SDOA, SDOC  
SDOA  
OV (DDR)  
DD  
OV  
DD  
LVDS  
(LVDS)  
OV (DDR)  
DD  
16  
64  
GND (SDR)  
Notes: Conversion Period (SDR) = t  
Conversion Period (DDR) = t  
+ t  
+ t  
+ (64/(Lanes f ))  
+ (32/(Lanes f ))  
SCK  
CNV_MIN  
CONV_MAX SCK  
CNV_MIN  
CONV_MAX  
Conversion Frequency = 1/Conversion Period  
SCK Cycles (SDR) = 64/Lanes  
SCK Cycles (DDR) = 32/Lanes  
232414f  
27  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
applicaTions inForMaTion  
data output on SDO1 then wraps back to channel 1 and  
this pattern repeats indefinitely. Other SDO lanes follow a  
similar circular pattern except the first conversion result  
presented on each lane corresponds to its associated  
analog input channel.  
Applications that cannot accommodate the full four lanes  
of serial data may employ fewer lanes without reconfigur-  
ing the LTC2324-14. For example, capturing the first two  
conversion results (32 SCK cycles total in SDR mode  
and 32 SCK edges in DDR mode) from SDOA and SDOC  
provides data for analog input channels 1 through 4,  
respectively, using two output lanes. If only one lane can  
be accommodated, capturing the first four conversion  
results (64 SCK cycles total in SDR mode and 64 SCK  
edges in DDR mode) from SDOA provides data for all  
analog input channels. Generally, the more data lanes  
used, the lower the required SCK frequency. When using  
less than four lanes in LVDS mode, there is a limit on the  
maximum possible conversion frequency. See Table 2 for  
examples of various possibilities and the resulting SCK  
frequency required.  
Applicationsthatcannotaccommodatethefullfourlanes  
of serial data may employ fewer lanes without reconfig-  
uring the LTC2324-14. For example, capturing the first  
two conversion results (32 SCK cycles total in SDR mode  
and 32 SCK edges in DDR mode) from SDO1 and SDO3  
provides data for analog input channels 1 and 2, 3 and 4,  
respectively, using two output lanes. Similarly, capturing  
the first four conversion results (64 SCK cycles total in  
SDR mode and 64 SCK edges in DDR mode) from SDO1  
provides data for analog input channels 1 to 4, using  
one output lane. Generally, the more data lanes used,  
the lower the required SCK frequency. When using less  
than four lanes in CMOS mode, there is a limit on the  
maximum possible conversion frequency. See Table 2  
for examples of various possibilities and the resulting  
SCK frequency required.  
BOARD LAYOUT  
To obtain the best performance from the LTC2324-14,  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals adjacent to analog signals or underneath  
the ADC.  
LVDS  
InLVDSmode,thenumberofpossibledatalanepairsrange  
from four (SDOA – SDOD), two (SDOA and SDOC) and  
one (SDOA). As suggested in the LVDS Timing Diagrams,  
each SDO lane pair outputs the conversion results for all  
analog input channels in a sequential circular manner. For  
example, thefirstconversionresultonSDOAcorresponds  
to analog input channel 1, followed by the conversion re-  
sults for channels 2 through 4. The data output on SDOA  
then wraps back to channel 1 and this pattern repeats  
indefinitely. Other SDO lanes follow a similar circular pat-  
tern except the first conversion result presented on each  
lane corresponds to its associated analog input channel  
pairs (SDOA: analog input 1, SDOB: analog input 2, SDOC:  
analog input 3 and SDOD: analog input 4).  
Supply bypass capacitors should be placed as close as  
possible to the supply pins. Low impedance common re-  
turns for these bypass capacitors are essential to the low  
noise operation of the ADC. A single solid ground plane  
is recommended for this purpose. When possible, screen  
the analog input traces using ground.  
Recommended Layout  
For a detailed look at the reference design for this con-  
verter, including schematics and PCB layout, please refer  
to DC2395A, the evaluation kit for the LTC2324-14.  
232414f  
28  
For more information www.linear.com/LTC2324-14  
LTC2324-14  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2324-14#packaging for the most recent package drawings.  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC DWG # 05-08-1729 Rev Ø)  
7.50 ±0.05  
6.10 ±0.05  
5.50 REF  
(2 SIDES)  
0.70 ±0.05  
6.45 ±0.05  
6.50 REF  
(2 SIDES)  
7.10 ±0.05 8.50 ±0.05  
5.41 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.50 REF  
(2 SIDES)  
0.75 ±0.05  
7.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
0.00 – 0.05  
51  
52  
0.40 ±0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45°C  
CHAMFER  
6.45 ±0.10  
8.00 ±0.10  
(2 SIDES)  
6.50 REF  
(2 SIDES)  
5.41 ±0.10  
(UKG52) QFN REV  
Ø 0306  
R = 0.10  
TYP  
0.25 ±0.05  
0.50 BSC  
TOP VIEW  
SIDE VIEW  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 ±0.05  
232414f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
29  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2324-14  
Typical applicaTion  
Low Jitter Clock Timing with RF Sine Generator Using Clock Squaring/Level-Shifting Circuit and Retiming Flip-Flop  
V
CC  
NC7SVUO4P5X  
0.1µF  
1k  
MASTER_CLOCK  
V
CC  
50Ω  
1k  
D
PRE  
NL17SZ740S8  
CONV  
Q
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CLR  
CONV ENABLE  
CNV  
LTC2324-14  
SCK  
10Ω  
10Ω  
CLKOUT  
GND  
GND  
CMOS/LVDS  
SDR/DDR  
SDO1 – 8  
232414 TA02  
NC7SVU04P5X (× 5)  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2311-16/LTC2311-14/ 16-/14-/12-Bit, 5Msps Differential Input ADC  
LTC2311-12  
3.3V Supply, 1-Channel 40mW, 20ppm/°C Internal Reference, Flexible  
Inputs, 16-Lead MSOP Package  
LTC2320-16/LTC2320-14/ 16-/14-/12-Bit, Octal 1.5Msps/Channel  
3.3V/5V Supply, 20mW/Channel, 20ppm/°C Internal Reference, Flexible  
Inputs, 7mm × 8mm QFN-52 Package  
LTC2320-12  
Simultaneous Sampling ADC  
LTC2321-16/LTC2321-14/ 16-/14-/12-Bit, Dual 2Msps, Simultaneous  
LTC2321-12 Sampling ADCs  
3.3V/5V Supply, 40mW/Ch, 20ppm°C Max Internal Reference,  
Flexible Inputs, 4mm × 5mm QFN-28 Package  
LTC2370-16/LTC2368-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2367-16/LTC2364-16 Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, 5V Input Range,  
DGC, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-16/LTC2376-16 Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
DACs  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Reference  
DACs with Internal  
DACs with External  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 8-Pin ThinSOT™ Package  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit SPI V  
Reference  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead  
MSOP Package  
OUT  
References  
LTC6655  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm  
Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm  
Peak-to-Peak Noise, MSOP-8 Package  
Amplifiers  
LT1818/LT1819  
400MHz, 2500V/µs, 9mA Single/Dual Operational  
Amplifiers  
–85dBc Distortion at 5MHz, 6nV/√Hz Input Noise Voltage, 9mA Supply  
Current, Unity-Gain Stable  
LT1806  
LT6200  
325MHz, Single, Rail-to-Rail Input and Output, Low –80dBc Distortion at 5MHz, 3.5nV/√Hz Input Noise Voltage,  
Distortion, Low Noise Precision Op Amps 9mA Supply Current, Unity-Gain Stable  
165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Low Distortion, Unity-Gain Stable  
Low Noise, Op Amp Family  
232414f  
LT 0717 • PRINTED IN USA  
www.linear.com/LTC2324-14  
30  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY