LTC2376CMS-18#PBF [Linear]

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2376CMS-18#PBF
型号: LTC2376CMS-18#PBF
厂家: Linear    Linear
描述:

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总26页 (文件大小:1461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2376-18  
18-Bit, 250ksps, Low Power  
SAR ADC with 102dB SNR  
FeaTures  
DescripTion  
The LTC®2376-18 is a low noise, low power, high speed  
18-bit successive approximation register (SAR) ADC. Op-  
n
250ksps Throughput Rate  
n
±±1.5ꢀSꢁ INꢀ ꢂ(aꢃx  
n
Guaranteed ±8-ꢁit No (issing Codes  
erating from a 2.5V supply, the LTC2376-18 has a V  
fully differential input range with V ranging from 2.5V  
to 5.1V. The LTC2376-18 consumes only 3.4mW and  
achieves 1.75LSꢀ INL maximum, no missing codes at  
18 bits with 102dꢀ SNR.  
REF  
n
ꢀow Power: 314mW at 250ksps, 314µW at 250sps  
REF  
n
±02dꢁ SNR ꢂTypx at f = 2kHz  
IN  
IN  
n
–±26dꢁ THD ꢂTypx at f = 2kHz  
n
Digital Gain Compression ꢂDGCx  
n
Guaranteed Operation to 125°C  
The LTC2376-18 has a high speed SPI-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisy-chain mode. The fast 250ksps  
throughput with no cycle latency makes the LTC2376-18  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2376-18 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
n
2.5V Supply  
n
Fully Differential Input Range V  
REF  
n
n
n
n
n
n
V
Input Range from 2.5V to 5.1V  
REF  
No Pipeline Delay, No Cycle Latency  
1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O with Daisy-Chain Mode  
Internal Conversion Clock  
16-Lead MSOP and 4mm × 3mm DFN Packages  
The LTC2376-18 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
applicaTions  
n
Medical Imaging  
n
High Speed Data Acquisition  
n
Portable or Compact Instrumentation  
Industrial Process Control  
Low Power ꢀattery-Operated Instrumentation  
ATE  
function that maps zero-scale code from 0V to 0.1 V  
REF  
n
and full-scale code from V  
to 0.9 V . For a typical  
REF  
REF  
n
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
Typical applicaTion  
32k Point FFT fS = 250ksps, fIN = 2kHz  
2.5V 1.8V TO 5V  
0
SNR = 102.3dB  
–20  
–40  
THD = –126dB  
SINAD = 102.2dB  
SFDR = 127dB  
10µF  
0.1µF  
V
OV  
DD  
CHAIN  
RDL/SDI  
SDO  
DD  
6800pF  
3300pF  
6800pF  
V
V
REF  
20Ω  
20Ω  
–60  
+
IN  
+
–80  
0V  
LTC2376-18  
SCK  
REF  
BUSY  
CNV  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
IN  
SAMPLE CLOCK  
0V  
V
REF  
GND  
REF  
237618 TA01  
2.5V TO 5.1V  
47µF  
(X5R, 0805 SIZE)  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
237618 TA02  
237618fa  
1
For more information www.linear.com/LTC2376-18  
LTC2376-18  
absoluTe MaxiMuM raTings  
ꢂNotes ±, 2x  
Supply Voltage (V )...............................................2.8V  
Digital Output Voltage  
DD  
Supply Voltage (OV )................................................6V  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
DD  
Reference Input (REF).................................................6V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2376C................................................ 0°C to 70°C  
LTC2376I .............................................–40°C to 85°C  
LTC2376H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Analog Input Voltage (Note 3)  
+
IN , IN ......................... (GND –0.3V) to (REF + 0.3V)  
REF/DGC Input (Note 3).... (GND –0.3V) to (REF + 0.3V)  
Digital Input Voltage  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
pin conFiguraTion  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
GND 6  
REF 7  
REF/DGC 8  
9
CNV  
REF/DGC  
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 150°C, θ = 110°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
T
= 150°C, θ = 40°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
orDer inForMaTion http://www1linear1com/product/ꢀTC23.6-±8#orderinfo  
ꢀEAD FREE FINISH  
TAPE AND REEꢀ  
PART (ARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TE(PERATURE RANGE  
0°C to 70°C  
LTC2376CMS-18#PꢀF  
LTC2376IMS-18#PꢀF  
LTC2376HMS-18#PꢀF  
LTC2376CDE-18#PꢀF  
LTC2376IDE-18#PꢀF  
LTC2376CMS-18#TRPꢀF 237618  
LTC2376IMS-18#TRPꢀF 237618  
LTC2376HMS-18#TRPꢀF 237618  
LTC2376CDE-18#TRPꢀF 23768  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
LTC2376IDE-18#TRPꢀF  
23768  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPꢀF suffix.  
237618fa  
2
For more information www.linear.com/LTC2376-18  
LTC2376-18  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ  
V +  
PARA(ETER  
CONDITIONS  
(Note 5)  
(IN  
–0.05  
–0.05  
TYP  
(AX  
UNITS  
+
l
l
l
l
Absolute Input Range (IN )  
V
V
+ 0.05  
V
V
V
V
IN  
REF  
REF  
V –  
IN  
Absolute Input Range (IN )  
(Note 5)  
+ 0.05  
V + – V – Input Differential Voltage Range  
V
IN  
= V + – V –  
–V  
+V  
REF  
IN  
IN  
IN  
IN  
REF  
V
CM  
Common-Mode Input Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
REF  
0.1  
0.1  
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
1
µA  
IN  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
f
IN  
= 125kHz  
86  
dꢀ  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
18  
TYP  
(AX  
UNITS  
ꢀits  
l
l
Resolution  
No Missing Codes  
18  
ꢀits  
Transition Noise  
0.7  
0.5  
0.1  
0
LSꢀ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
(Note 7)  
–1.75  
–0.5  
–8  
1.75  
0.5  
8
LSꢀ  
DNL  
ꢀZE  
LSꢀ  
LSꢀ  
3
mLSꢀ/°C  
LSꢀ  
l
FSE  
–40  
7
40  
0.05  
ppm/°C  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –±dꢁFS1 ꢂNotes 4, 8x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
98.5  
98  
TYP  
102  
102  
(AX  
UNITS  
dꢀ  
l
l
SINAD  
SNR  
Signal-to-(Noise + Distortion) Ratio  
f
IN  
f
IN  
= 2kHz, V = 5V  
REF  
= 2kHz, V = 5V, (H-Grade)  
dꢀ  
REF  
l
l
l
Signal-to-Noise Ratio  
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V  
99.3  
97.5  
94.1  
102  
100  
97  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GND  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V, (H-Grade)  
98.8  
97.1  
93.6  
102  
100  
97  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GND, (H-Grade)  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
l
l
THD  
Total Harmonic Distortion  
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V  
–126  
–127  
–124  
–106  
–103  
–106  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GND  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V, (H-Grade)  
–126  
–127  
–124  
–104  
–100  
–104  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GND, (H-Grade)  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
SFDR  
Spurious Free Dynamic Range  
–3dꢀ Input ꢀandwidth  
Aperture Delay  
f
= 2kHz, V = 5V  
105  
127  
34  
dꢀ  
MHz  
ps  
IN  
REF  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
3.460  
µs  
237618fa  
3
For more information www.linear.com/LTC2376-18  
LTC2376-18  
reFerence inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(Note 5)  
(IN  
TYP  
(AX  
5.1  
UNITS  
l
l
l
l
V
Reference Voltage  
2.5  
V
mA  
V
REF  
REF  
I
Reference Input Current  
High Level Input Voltage REF/DGC Pin  
Low Level Input Voltage REF/DGC Pin  
(Note 9)  
0.16  
0.2  
V
IHDGC  
V
ILDGC  
0.8V  
REF  
0.2V  
V
REF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 OV  
IH  
IL  
DD  
0.2 OV  
V
DD  
I
V
= 0V to OV  
DD  
–10  
10  
µA  
pF  
IN  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV – 0.2  
DD  
V
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
V
V
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
(IN  
2.375  
1.71  
TYP  
(AX  
2.625  
5.25  
1.7  
UNITS  
l
l
l
V
DD  
2.5  
V
V
OV  
DD  
I
I
I
I
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
1.36  
0.05  
0.9  
mA  
mA  
µA  
VDD  
OVDD  
PD  
250ksps Sample Rate (C = 20pF)  
L
+ I  
+ I  
l
l
Conversion Done (I  
Conversion Done (I  
+ I )  
REF  
90  
140  
VDD  
VDD  
OVDD  
OVDD  
REF  
+ I , H-Grade)  
0.9  
µA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
3.4  
2.25  
2.25  
4.25  
225  
315  
mW  
µW  
µW  
D
Conversion Done (I  
Conversion Done (I  
+ I  
+ I  
+ I )  
REF  
REF  
VDD  
VDD  
OVDD  
OVDD  
+ I , H-Grade)  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
250  
3
UNITS  
ksps  
µs  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
1.9  
Acquisition Time  
t
= t  
– t (Note 10)  
HOLD  
3.460  
µs  
ACQ  
CYC  
Maximum Time ꢀetween Acquisitions  
Time ꢀetween Conversions  
CNV High Time  
540  
13  
ns  
HOLD  
CYC  
4
µs  
20  
ns  
CNVH  
ꢀUSYLH  
CNVL  
QUIET  
CNV to ꢀUSY Delay  
C = 20pF  
L
ns  
Minimum Low Time for CNV  
SCK Quiet Time from CNV  
(Note 11)  
(Note 10)  
20  
20  
ns  
ns  
237618fa  
4
For more information www.linear.com/LTC2376-18  
LTC2376-18  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C1 ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(IN  
10  
4
TYP  
(AX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
SCK Period  
(Notes 11, 12)  
SCK  
SCK High Time  
ns  
SCKH  
SCK Low Time  
4
ns  
SCKL  
SDI Setup Time From SCK  
SDI Hold Time From SCK  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK  
SDO Data Remains Valid Delay from SCK  
SDO Data Valid Delay from ꢀUSY  
ꢀus Enable Time After RDL  
ꢀus Relinquish Time After RDL  
(Note 11)  
(Note 11)  
4
ns  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
HSDO  
DSDOꢀUSYL  
EN  
1
ns  
t
= t  
+ t (Note 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
C = 20pF (Note 11)  
L
9.5  
ns  
C = 20pF (Note 10)  
L
1
ns  
C = 20pF (Note 10)  
L
5
ns  
(Note 11)  
(Note 11)  
16  
13  
ns  
ns  
DIS  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note .: ꢀipolar zero-scale error is the offset voltage measured from  
–0.5LSꢀ when the output code flickers between 00 0000 0000 0000 0000  
and 11 1111 1111 1111 1111. Full-scale bipolar error is the worst-case of  
–FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dꢀ are referred to a full-scale 5V input with a  
5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REFor  
OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above REFor OV without  
latch-up.  
Note 9: f  
= 250kHz, I varies proportionately with sample rate.  
SMPL REF  
DD  
Note ±0: Guaranteed by design, not subject to test.  
Note ±±: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, V = 2.5V, f  
= 250kHz,  
DD  
DD  
CM  
SMPL  
DD  
DD  
REF/DGC = V  
.
REF  
and OV = 5.25V.  
DD  
Note 5: Recommended operating conditions.  
Note ±2: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
100MHz for rising capture.  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237618 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
0.2*OV  
DD  
Figure ±1 Voltage ꢀevels for Timing Specifications  
237618fa  
5
For more information www.linear.com/LTC2376-18  
LTC2376-18  
Typical perForMance characTerisTics TA = 25°C, VDD = 215V, OVDD = 215V, VC( = 215V,  
REF = 5V, fS(Pꢀ = 250ksps, unless otherwise noted1  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
1.5  
1.0  
0.5  
0.4  
80000  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
σ = 0.7  
0.3  
0.2  
0.5  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–131072 –65536  
0
65536  
131072  
–131072 –65536  
0
65536  
131072  
–2  
–1  
0
1
2
3
OUTPUT CODE  
OUTPUT CODE  
CODE  
237618 G02  
237618 G01  
237618 G03  
THD, Harmonics  
32k Point FFT fS = 250ksps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
103  
102  
101  
100  
99  
–80  
–90  
SNR = 102.3dB  
THD  
2ND  
3RD  
SNR  
THD = –126dB  
SINAD = 102.2dB  
SFDR = 127dB  
–40  
SINAD  
–60  
–100  
–110  
–120  
–130  
–140  
–80  
98  
–100  
–120  
–140  
–160  
–180  
97  
96  
95  
94  
93  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237618 G05  
237618 G06  
237618 TA02  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
103  
102  
101  
100  
99  
103.0  
102.5  
102.0  
101.5  
101.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
SNR  
SNR  
THD  
2ND  
SINAD  
SINAD  
3RD  
98  
97  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
–30  
–20  
–10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFERENCE VOLTAGE (V)  
INPUT LEVEL (dB)  
REFERENCE VOLTAGE (V)  
237618 G08  
237618 G07  
237618 G09  
237618fa  
6
For more information www.linear.com/LTC2376-18  
LTC2376-18  
Typical perForMance characTerisTics TA = 25°C, VDD = 215V, OVDD = 215V, VC( = 215V,  
REF = 5V, fS(Pꢀ = 250ksps, unless otherwise noted1  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
INꢀ/DNꢀ vs Temperature  
105.0  
104.5  
104.0  
103.5  
103.0  
102.5  
102.0  
101.5  
101.0  
100.5  
100.0  
–115  
–120  
–125  
–130  
–135  
–140  
1.0  
0.5  
SNR  
MAX INL  
THD  
MAX DNL  
MIN DNL  
SINAD  
3RD  
0
2ND  
MIN INL  
–0.5  
–1.0  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237618 G10  
237618 G11  
237618 G12  
Supply Current vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
2.0  
1.5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8
6
I
VDD  
–FS  
1.0  
4
0.5  
2
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2  
–4  
–6  
–8  
I
REF  
+FS  
I
OVDD  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237618 G14  
237618 G15  
237618 G13  
Reference Current  
vs Reference Voltage  
Shutdown Current vs Temperature  
C(RR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
0.18  
0.16  
0.14  
0.12  
0.1  
I
+ I  
+ I  
VDD OVDD REF  
0.08  
0.06  
0.04  
0.02  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
20  
40  
60  
80  
100  
120  
–55 –35 –15  
5
25 45 65 85 105 125  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
237618 G16  
237618 G17  
237618 G18  
237618fa  
7
For more information www.linear.com/LTC2376-18  
LTC2376-18  
pin FuncTions  
CHAIN ꢂPin ±x: Chain Mode Selector Pin. When low, the  
LTC2376-18 operates in normal mode and the RDL/SDI  
input pin functions to enable or disable SDO. When high,  
the LTC2376-18 operates in chain mode and the RDL/SDI  
pin functions as SDI, the daisy-chain serial data input.  
ꢁUSY ꢂPin ±±x: ꢀUSY Indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by 0V .  
DD  
RDꢀ/SDI ꢂPin ±2x: When CHAIN is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
Logic levels are determined by 0V .  
DD  
V
ꢂPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGNDwitha1Fceramic  
DD  
capacitor.  
determined by 0V .  
DD  
GND ꢂPins 3, 6, ±0 and ±6x: Ground.  
SCKPin±3x:SerialDataClockInput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢀ  
+
IN , IN ꢂPins 4, 5x: Positive and Negative Differential  
Analog Inputs.  
first. Logic levels are determined by 0V .  
DD  
REF ꢂPin .x: Reference Input. The range of REF is 2.5V  
to 5.1V. This pin is referred to the GND pin and should be  
decoupledcloselytothepinwitha 4Fceramiccapacitor  
(X5R, 0805 size).  
SDOPin±4x:SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format. Logic levels are determined by 0V .  
DD  
REF/DGCꢂPin8x:WhentiedtoREF,digitalgaincompression  
is disabled and the LTC2376-18 defines full-scale accord-  
OV ꢂPin ±5x: I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
ing to the V  
analog input range. When tied to GND,  
REF  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
digital gain compression is enabled and the LTC2376-18  
or 5V). ꢀypass OV to GND with a 0.1µF capacitor.  
DD  
defines full-scale with inputs that swing between 10% and  
90% of the V analog input range.  
GND ꢂEꢃposed Pad Pin ±. – DFN Package Onlyx: Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
REF  
CNV ꢂPin 9x: Convert Input. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by 0V .  
DD  
FuncTional block DiagraM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
LTC2376-18  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
+
IN  
SPI  
PORT  
18-BIT SAMPLING ADC  
IN  
CNV  
BUSY  
REF/DGC  
CONTROL LOGIC  
GND  
237618 BD01  
237618fa  
8
For more information www.linear.com/LTC2376-18  
LTC2376-18  
TiMing DiagraM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
POWER-DOWN  
BUSY  
SCK  
HOLD  
ACQUIRE  
D17 D16 D15 D2 D1 D0  
SDO  
237618 TD01  
237618fa  
9
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
OVERVIEW  
TRANSFER FUNCTION  
TheLTC2376-18isalownoise,lowpower,highspeed18-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2376-18 supports a  
The LTC2376-18 digitizes the full-scale voltage of 2 × REF  
18  
into 2 levels, resulting in an LSꢀ size of 38µV with  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in 2’s complement format.  
large and flexible V fully differential input range with  
REF  
V
ranging from 2.5V to 5.1V, making it ideal for high  
REF  
performance applications which require a wide dynamic  
range. The LTC2376-18 achieves 1.75LSꢀ INL max, no  
missing codes at 18 bits and 102dꢀ SNR.  
011...111  
BIPOLAR  
011...110  
ZERO  
000...001  
000...000  
111...111  
111...110  
Fast 250ksps throughput with no cycle latency makes  
the LTC2376-18 ideally suited for a wide variety of high  
speed applications. An internal oscillator sets the con-  
version time, easing external timing considerations. The  
LTC2376-18 dissipates only 3.4mW at 250ksps, while an  
auto power-down feature is provided to further reduce  
power dissipation during inactive periods.  
100...001  
FSR = +FS – –FS  
1LSB = FSR/262144  
100...000  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FSR/2  
FSR/2 – 1LSB  
LSB  
237618 F02  
The LTC2376-18 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
Figure 21 ꢀTC23.6-±8 Transfer Function  
ANAꢀOG INPUT  
function that maps zero-scale code from 0V to 0.1 V  
The analog inputs of the LTC2376-18 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
shown in Figure 3. The diodes at the input provide ESD  
protection. In the acquisition phase, each input sees ap-  
REF  
and full-scale code from V  
to 0.9 V . For a typical  
REF  
REF  
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
proximately 45pF (C ) from the sampling CDAC in series  
IN  
with 40Ω (R ) from the on-resistance of the sampling  
ON  
CONVERTER OPERATION  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
The LTC2376-18 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
+
the C capacitors during acquisition. During conversion,  
the analog inputs draw only a small leakage current.  
converter (CDAC) is connected to the IN and IN pins to  
sample the differential analog input voltage. A rising edge  
ontheCNVpininitiatesaconversion.Duringtheconversion  
phase, the 18-bit CDAC is sequenced through a succes-  
sive approximation algorithm, effectively comparing the  
sampled input with binary-weighted fractions of the refer-  
IN  
REF  
C
45pF  
IN  
R
40Ω  
ON  
+
IN  
IN  
ence voltage (e.g. V /2, V /4 … V /262144) using  
REF  
REF  
REF  
BIAS  
VOLTAGE  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 18-bit digital output  
code for serial transfer.  
REF  
C
45pF  
IN  
R
40Ω  
ON  
237618 F03  
Figure 31 The Equivalent Circuit for the  
Differential Analog Input of the ꢀTC23.6-±8  
237618fa  
10  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2376-18 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2376-18. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
It also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2376-18. The LT6350 ADC  
driver is recommended for performing single-ended-to-  
differential conversions. The LT6350 is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the 5V differential input range of the  
LTC2376-18. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2376-18 up to 125°C.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
Figure 5a shows the LT6350 being used to convert a 0V  
to 5V single-ended input signal. In this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5b,  
the LT6350 drives the LTC2376-18 to near full data sheet  
performance.  
LPF2  
6800pF  
SINGLE-ENDED-  
20Ω  
LPF1  
INPUT SIGNAL  
+
IN  
500Ω  
3300pF  
The LT6350 can also be used to buffer and convert large  
true bipolar signals which swing below ground to the 5V  
differential input range of the LTC2376-18 in order to  
maximize the signal swing that can be digitized. Figure 6a  
shows the LT6350 being used to convert a 10V true bi-  
polar signal for use by the LTC2376-18. In this case, the  
first amplifier in the LT6350 is configured as an inverting  
amplifier stage, which acts to attenuate and level shift the  
inputsignaltothe0Vto5VinputrangeoftheLTC2376-18.  
In the inverting amplifier configuration, the single-ended  
input signal source no longer directly drives a high imped-  
ance input of the first amplifier. The input impedance is  
LTC2376-18  
6600pF  
IN  
20Ω  
237618 F04  
SINGLE-ENDED- 6800pF  
TO-DIFFERENTIAL  
DRIVER  
BW = 48kHz  
BW = 600kHz  
Figure 41 Input Signal Chain  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SNR.  
instead set by resistor R . R must be chosen carefully  
IN IN  
based on the source impedance of the signal source.  
Higher values of R tend to degrade both the noise and  
IN  
distortion of the LT6350 and LTC2376-18 as a system.  
237618fa  
11  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
V
CM  
LT6350  
5V  
0V  
OUT1  
4
5V  
0V  
R2 = 499Ω  
R
R
INT  
INT  
200pF  
8
1
+
LT6350  
5V  
0V  
OUT1  
OUT2  
4
5
5V  
0V  
+
R
INT  
R
INT  
8
+
OUT2  
5
10µF  
R4 = 402Ω  
R3 = 2k  
2
5V  
0V  
+
+
V
= V /2  
REF  
CM  
1
2
237618 F05a  
10V  
0V  
–10V  
R
= 2k  
R1 = 499Ω  
IN  
+
V
= V /2  
REF  
CM  
Figure 5a1 ꢀT6350 Converting a 0V-5V Single-Ended  
Signal to a ±5V Differential Input Signal  
220pF  
237618 F06a  
Figure 6a1 ꢀT6350 Converting a ±±0V Single-Ended Signal  
to a ±5V Differential Input Signal  
0
SNR = 101dB  
–20  
–40  
THD = –108.1dB  
SINAD = 100.4dB  
SFDR = 108.5dB  
0
SNR = 100.8dB  
–20  
–40  
THD = –100.1dB  
SINAD = 97.9dB  
SFDR = 102.3dB  
–60  
–80  
–60  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
237618 F05b  
0
25  
50  
75  
100  
125  
Figure 5b1 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 5a  
FREQUENCY (kHz)  
237618 F06b  
Figure 6b1 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 6a  
R1, R2, R3 and R4 must be selected in relation to R to  
IN  
achievethedesiredattenuationandtomaintainabalanced  
input impedance in the first amplifier. Table 1 shows the  
5V  
LT6203  
5V  
0V  
3
2
+
resulting SNR and THD for several values of R , R1, R2,  
IN  
1
7
0V  
R3 and R4 in this configuration. Figure 6b shows the re-  
sulting FFT when using the LT6350 as shown in Figure 6a.  
5V  
0V  
5V  
0V  
5
6
+
Table ±1 SNR, THD vs RIN for ±±0V Single-Ended Input Signal1  
R
R±  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
IN  
ꢂΩx  
237618 F07  
2k  
499  
499  
2k  
402  
2k  
100.8  
100.5  
100.2  
–100  
–92  
Figure .1 ꢀT6203 ꢁuffering a Fully Differential Signal Source  
10k  
100k  
2.49k  
24.9k  
2.49k  
24.9k  
10k  
100k  
20k  
–98  
Digital Gain Compression  
The LTC2376-18 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
Fully Differential Inputs  
tween 10% and 90% of the V analog input range. To  
REF  
To achieve the full distortion performance of the  
LTC2376-18,alowdistortionfullydifferentialsignalsource  
driven through the LT6203 configured as two unity gain  
buffers as shown in Figure 7 can be used to get the full  
data sheet THD specification of –126dꢀ.  
enable digital gain compression, bring the REF/DGC pin  
low. This feature allows the LT6350 to be powered off of  
a single +5.5V supply since each input swings between  
0.5V and 4.5V as shown in Figure 8. Needing only one  
237618fa  
12  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
5V  
many applications. With its small size, low power and  
highaccuracy,theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2376-18. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficientforhighprecisionapplications.TheLTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2376-18 up to 125°C. We recommend bypassing the  
LTC6655-5 with a 47µF ceramic capacitor (X5R, 0805  
size) close to the REF pin.  
4.5V  
0.5V  
0V  
237618 F08  
Figure 81 Input Swing of the ꢀTC23.6 with Gain  
Compression Enabled  
positive supply to power the LT6350 results in additional  
power savings for the entire system.  
TheREFpinoftheLTC2376-18drawscharge(Q  
)from  
CONV  
Figure 9a shows how to configure the LT6350 to accept a  
10V true bipolar input signal and attenuate and level shift  
the signal to the reduced input range of the LTC2376-18  
when digital gain compression is enabled. Figure 9b  
shows an FFT plot with the LTC2376-18 being driven by  
the LT6350 with digital gain compression enabled.  
the 47µF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
I
I
= Q  
/t . The DC current draw of the REF pin,  
REF  
REF  
CONV CYC  
, depends on the sampling rate and output code. If  
the LTC2376-18 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢀs.  
ADC REFERENCE  
The LTC2376-18 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
enceiscriticaltoachievingthefulldatasheetperformance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
When idling, the REF pin on the LTC2376-18 draws only  
a small leakage current (< 1µA). In applications where a  
burst of samples is taken after idling for long periods as  
shown in Figure 10, I quickly goes from approximately  
REF  
5.5V  
V
V
V
LTC6655-5  
IN  
0
–20  
OUT_F  
OUT_S  
SNR = 98.4dB  
THD = –96.9dB  
SINAD = 95.2dB  
SFDR = 99.2dB  
5V  
1k  
–40  
47µF  
V
CM  
–60  
4.5V  
0.5V  
2.5V  
1k  
10µF  
3
+
–80  
V
6800pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2376-18  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
+
20Ω  
IN  
IN  
R
R
INT  
8
+
INT  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237618 F09a  
V
6800pF  
10V  
0V  
–10V  
= 15k  
3.01k  
IN  
0
25  
50  
75  
100  
125  
0.5V  
V
CM  
FREQUENCY (kHz)  
237618 F09b  
Figure 9a1 ꢀT6350 Configured to Accept a ±±0V Input Signal While Running Off of a  
Single 515V Supply When Digital Gain Compression Is Enabled in the ꢀTC23.6-±8  
Figure 9b1 32k Point FFT Plot  
with fIN = 2kHz for Circuit Shown  
in Figure 9a  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
237618 F10  
Figure ±01 CNV Waveform Showing ꢁurst Sampling  
237618fa  
13  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
0µA to a maximum of 0.2mA at 250ksps. This step in DC  
currentdrawtriggersatransientresponseinthereference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
code. In applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
Signal-to-Noise Ratio ꢂSNRx  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 11 shows  
that the LTC2376-18 achieves a typical SNR of 102dꢀ at  
a 250kHz sampling rate with a 2kHz input.  
DYNA(IC PERFOR(ANCE  
Total Harmonic Distortion ꢂTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2376-18 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VN2  
THD=20log  
V1  
Signal-to-Noise and Distortion Ratio ꢂSINADx  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
N
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure11showsthattheLTC2376-18achieves  
a typical SINAD of 102dꢀ at a 250kHz sampling rate with  
a 2kHz input.  
through Nth harmonics.  
POWER CONSIDERATIONS  
The LTC2376-18 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2376-18 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
0
SNR = 102.3dB  
–20  
–40  
THD = –126dB  
SINAD = 102.2dB  
SFDR = 127dB  
Power Supply Sequencing  
–60  
The LTC2376-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2376-18  
has a power-on-reset (POR) circuit that will reset the  
LTC2376-18 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 20µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
–80  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
237618 F11  
Figure ±±1 32k Point FFT with fIN = 2kHz of the ꢀTC23.6-±8  
time will produce invalid results.  
237618fa  
14  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
TI(ING AND CONTROꢀ  
DIGITAꢀ INTERFACE  
The LTC2376-18 has a serial digital interface. The flexible  
CNV Timing  
OV supplyallowstheLTC2376-18tocommunicatewith  
DD  
The LTC2376-18 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up  
the LTC2376-18. Once a conversion has been initiated,  
it cannot be restarted until the conversion is complete.  
For optimum performance, CNV should be driven by a  
clean low jitter signal. Converter status is indicated by the  
ꢀUSY output which remains high while the conversion is  
in progress. To ensure that no errors occur in the digitized  
results, any additional transitions on CNV should occur  
within 40ns from the start of the conversion or after the  
conversion has been completed. Once the conversion has  
completed, the LTC2376-18 powers down and begins  
acquiring the input signal.  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
20MHz, a 250ksps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D17 remains valid till the first rising edge of SCK.  
The serial interface on the LTC2376-18 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2376-18. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy chained.  
Acquisition  
AproprietarysamplingarchitectureallowstheLTC2376-18  
to begin acquiring the input signal for the next conver-  
sion 527ns after the start of the current conversion. This  
extends the acquisition time to 3.460µs, easing settling  
requirementsandallowingtheuseofextremelylowpower  
ADC drivers. (Refer to the Timing Diagram.)  
1.6  
1.4  
1.2  
I
VDD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Internal Conversion Clock  
The LTC2376-18 has an internal clock that is trimmed to  
achieve a maximum conversion time of 3µs.  
I
REF  
Auto Power-Down  
I
OVDD  
0
50  
100  
150  
200  
250  
The LTC2376-18 automatically powers down after a  
conversion has been completed and powers up once a  
new conversion is initiated on the rising edge of CNV.  
During power down, data from the last conversion can  
be clocked out. To minimize power dissipation during  
power down, disable SDO and turn off SCK. The auto  
power-down feature will reduce the power dissipation of  
the LTC2376-18 as the sampling frequency is reduced.  
Since power is consumed only during a conversion, the  
LTC2376-18remainspowered-downforalargerfractionof  
SAMPLING RATE (kHz)  
237618 F12  
Figure ±21 Power Supply Current of the ꢀTC23.6-±8  
Versus Sampling Rate  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 12.  
237618fa  
15  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
Normal (ode, Single Device  
Figure 13 shows a single LTC2376-18 operated in normal  
mode with CHAIN and RDL/SDI tied to ground. With RDL/  
SDI grounded, SDO is enabled and the MSꢀ(D17) of the  
new conversion data is available at the falling edge of  
ꢀUSY.ThisisthesimplestwaytooperatetheLTC2376-18.  
When CHAIN = 0, the LTC2376-18 operates in normal  
mode. In normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
high impedance. If RDL/SDI is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2376-18  
SCK  
RDL/SDI  
SDO  
DATA IN  
CLK  
237618 F13a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
t
HOLD  
ACQ  
t
= t  
– t  
ACQ CYC HOLD  
t
CONV  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D17  
D16  
D15  
D1  
D0  
237618 F13  
Figure ±31 Using a Single ꢀTC23.6-±8 in Normal (ode  
237618fa  
16  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
Normal (ode, (ultiple Devices  
Since SDO is shared, the RDL/SDI input of each ADC must  
be used to allow only one LTC2376-18 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure14,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 14 shows multiple LTC2376-18 devices operating  
in normal mode (CHAIN = 0) sharing CNV, SCK and SDO.  
ꢀy sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2376-18  
B
LTC2376-18  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
237618 F14a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = 0  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
t
SCKL  
HSDO  
t
t
DIS  
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
A
D0  
A
D15  
D14  
D13  
D1  
B
D0  
B
A
A
A
B
B
B
237618 F14  
Figure ±41 Normal (ode With (ultiple Devices Sharing CNV, SCK and SDO  
237618fa  
17  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
applicaTions inForMaTion  
Chain (ode, (ultiple Devices  
This is useful for applications where hardware constraints  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 15 shows an example with  
two daisy-chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 18 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDI/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
When CHAIN = OV , the LTC2376-18 operates in chain  
DD  
mode.Inchainmode,SDOisalwaysenabledandRDL/SDI  
serves as the serial data input pin (SDI) where daisy-chain  
data output from another ADC can be input.  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2376-18  
LTC2376-18  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
237618 F15a  
POWER-DOWN  
ACQUIRE  
CONVERT  
POWER-DOWN  
ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D17  
D16  
D15  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D17  
D16  
D15  
D1  
B
D17  
D16  
D1  
A
D0  
A
SDO  
B
B
B
B
A
A
B
237618 F15  
Figure ±51 Chain (ode Timing Diagram  
237618fa  
18  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
boarD layouT  
To obtain the best performance from the LTC2376-18  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible. In  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended ꢀayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1783A, the  
evaluation kit for the LTC2376-18.  
Partial Top Silkscreen  
237618fa  
19  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
boarD layouT  
Partial ꢀayer ± Component Side  
Partial ꢀayer 2 Ground Plane  
237618fa  
20  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
boarD layouT  
Partial ꢀayer 3 PWR Plane  
Partial ꢀayer 4 ꢁottom ꢀayer  
237618fa  
21  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
boarD layouT  
Partial Schematic of Demoboard  
D G C R E F /  
R E F  
8
7
1 5  
2
1
G N D  
D D  
D D  
V
G N D 1 6  
O V  
G N D  
1 0  
G N D  
6
3
3
2
1
3
2
1
237618fa  
22  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
package DescripTion  
Please refer to http://www1linear1com/product/ꢀTC23.6-±8#packaging for the most recent package drawings1  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
0.70 0.05  
3.30 0.05  
ꢀ.70 0.05  
3.60 0.05  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
TYP  
3.30 0.ꢀ0  
3.00 0.ꢀ0  
(2 SIDES)  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
0.35 × 45°  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
237618fa  
23  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
package DescripTion  
Please refer to http://www1linear1com/product/ꢀTC23.6-±8#packaging for the most recent package drawings1  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
237618fa  
24  
For more information www.linear.com/LTC2376-18  
LTC2376-18  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NU(ꢁER  
A
08/16 Updated graphs G01, G02, and G03  
6
237618fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2376-18  
Typical applicaTion  
ꢀT6350 Configured to Accept a ±±0V Input Signal While Running Off of a Single 515V Supply When  
Digital Gain Compression Is Enabled in the ꢀTC23.6-±8  
5.5V  
V
V
V
LTC6655-5  
IN  
OUT_F  
OUT_S  
5V  
1k  
1k  
47µF  
V
CM  
4.5V  
0.5V  
2.5V  
10µF  
3
+
V
6800pF  
6800pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2376-18  
REF/DGC  
+
20Ω  
IN  
IN  
R
R
INT  
8
+
INT  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237618 TA03  
V
10V  
0V  
= 15k  
3.01k  
IN  
0.5V  
V
CM  
–10V  
relaTeD parTs  
PART NU(ꢁER  
DESCRIPTION  
CO((ENTS  
ADCs  
LTC2379-18  
18-ꢀit, 1.6Msps Serial, Low Power ADC  
16-ꢀit, 2Msps Serial, Low Power ADC  
2.5V Supply, Differential Input, 101.2dꢀ SNR, 5V Input Range,  
DGC, MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16  
2.5V Supply, Differential Input, 96.2dꢀ SNR, 5V Input Range, DGC,  
MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2383-16/LTC2382-16/ 16-ꢀit, 1Msps/500ksps/250ksps Serial, Low Power ADC 2.5V Supply, Differential Input, 92dꢀ SNR, 2.5V Input Range, Pin  
LTC2381-16  
Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2393-16/LTC2392-16/ 16-ꢀit, 1Msps/500ksps/250ksps Parallel/Serial ADC  
LTC2391-16  
5V Supply, Differential Input, 94dꢀ SNR, 4.096V Input Range, Pin  
Compatible Family in 7mm × 7mm LQFP-48 and QFN-48 Packages  
LTC1865/LTC1865L  
LTC2361  
16-ꢀit, 250ksps/150ksps 2-Channel µPower ADC  
12-ꢀit, 250ksps, Serial ADC  
5V/3V Supply, 2-Channel, 4.3mW/1.3mW, MSOP-10 Package  
2.35V to 3.6V, 3.3mW, 6- and 8-Lead TSOT-23 Packages  
DACS  
LTC2757  
18-ꢀit, Single Parallel I  
SoftSpan™ DAC  
1LSꢀ INL/DNL, Software-Selectable Ranges, 7mm × 7mm  
LQFP-48 Package  
OUT  
LTC2641  
16-ꢀit/14-ꢀit/12-ꢀit Single Serial V  
DAC  
1LSꢀ INL/DNL, MSOP-8 Package, 0V to 5V Output  
OUT  
LTC2630  
12-ꢀit/10-ꢀit/8-ꢀit Single V  
DACs  
SC70 6-Pin Package, Internal Reference, 1LSꢀ INL (12 ꢀits)  
OUT  
REFERENCES  
LTC6655  
Precision Low Drift Low Noise ꢀuffered Reference  
Precision Low Drift Low Noise ꢀuffered Reference  
5V/2.5V, 5ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
A(PꢀIFIERS  
LT6350  
Low Noise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail Input and Outputs, 240ns, 0.01% Settling Time  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 10  
Low Noise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at  
1MHz, TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail Input/Output Noise Low 1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
Power Amplifiers  
LTC1992  
Low Power, Fully Differential Input/Output Amplifier/  
Driver Family  
1mA Supply Current  
237618fa  
LT 0816 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2376-18  
LINEAR TECHNOLOGY CORPORATION 2011  

相关型号:

LTC2376HMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2376IDE-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IDE-16#TRPBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-18#PBF

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-20#PBF

LTC2376-20 - 20-Bit, 250ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2377-18

18-Bit, 1.6Msps, Pseudo-Differential Unipolar SAR
Linear

LTC2377-20

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2377CDE-18#PBF

LTC2377-18 - 18-Bit, 500ksps, Low Power SAR ADC with 102dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CDE-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CMS-16#PBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear