LTC2380CMS-16#PBF [Linear]

LTC2380-16 - 16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2380CMS-16#PBF
型号: LTC2380CMS-16#PBF
厂家: Linear    Linear
描述:

LTC2380-16 - 16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

文件: 总24页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LTC2380-16  
16-Bit, 2Msps, Low Power  
SAR ADC with 96dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2380-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2380-16 has a  
n
2Msps Throughput Rate  
n
±±0.6Sꢀ IN6 ꢁMaꢂx  
n
Guaranteed 1.-ꢀit No Missing Codes  
n
6ow Power: 19mW at 2Msps, 19μW at 2ksps  
V
REF  
fully differential input range with V ranging from  
REF  
n
9.dꢀ SNR ꢁtypx at f = 2kHz  
2.5V to 5.1V. The LTC2380-16 consumes only 19mW and  
achieves 0.6LSꢀ ꢁIL maximum, no missing codes at  
16-bits with 96dꢀ SIR.  
IN  
n
117dꢀ THD ꢁtypx at f = 2kHz  
IN  
n
Digital Gain Compression ꢁDGCx  
n
Guaranteed Operation to 125°C  
The LTC2380-16 has a high speed SPꢁ-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic while  
alsofeaturingadaisychainmode.Thefast2Mspsthrough-  
put with no cycle latency makes the LTC2380-16 ideally  
suited for a wide variety of high speed applications. An  
internaloscillatorsetstheconversiontime,easingexternal  
timingconsiderations.TheLTC2380-16automaticallypow-  
ers down between conversions, leading to reduced power  
dissipation that scales with the sampling rate.  
n
2.5V Supply  
n
Fully Differential ꢁnput Range V  
REF  
n
n
n
n
n
n
V
ꢁnput Range from 2.5V to 5.1V  
REF  
Io Pipeline Delay, Io Cycle Latency  
1.8V to 5V ꢁ/O Voltages  
SPꢁ-Compatible Serial ꢁ/O with Daisy-Chain Mode  
ꢁnternal Conversion Clock  
16-pin MSOP and 4mm × 3mm DFI Packages  
The LTC2380-16 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
APPLICATIONS  
n
Medical ꢁmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢁnstrumentation  
ꢁndustrial Process Control  
function that maps zero-scale code from 0V to 0.1 • V  
REF  
n
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
n
Low Power ꢀattery-Operated ꢁnstrumentation  
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
n
ATE  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
32k Point FFT fS = 2Msps, fIN = 2kHz  
0
2.5V 1.8V TO 5V  
10μF  
SIR = 96.4dꢀ  
–20  
–40  
THD = –119dꢀ  
SꢁIAD = 96.3dꢀ  
SFDR = 122dꢀ  
0.1μF  
–60  
V
OV  
DD  
CHAꢁI  
RDL/SDꢁ  
SDO  
SCK  
ꢀUSY  
CIV  
DD  
3300pF  
3300pF  
3300pF  
V
V
REF  
20Ω  
20Ω  
+
–80  
ꢁI  
0V  
–100  
–120  
–140  
–160  
–180  
LTC2380-16  
REF  
ꢁI  
SAMPLE CLOCK  
0V  
V
REF/DGC  
REF  
GID  
REF  
238016 TA01  
2.5V TO 5.1V  
47μF  
(X5R, 0805 SꢁZE)  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUEICY (kHz)  
238016 TA02  
238016p  
1
LTC2380-16  
ABSOLUTE MAXIMUM RATINGS  
ꢁNotes 1, 2x  
Supply Voltage (V )...............................................2.8V  
Digital Output Voltage  
DD  
Supply Voltage (OV )................................................6V  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
DD  
Reference ꢁnput (REF).................................................6V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2380C................................................ 0°C to 70°C  
LTC2380ꢁ .............................................–40°C to 85°C  
LTC2380H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Analog ꢁnput Voltage (Iote 3)  
+
ꢁI , ꢁI ......................... (GID –0.3V) to (REF + 0.3V)  
REF/DGC ꢁnput (Iote 3).... (GID –0.3V) to (REF + 0.3V)  
Digital ꢁnput Voltage  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VꢁEW  
CHAꢁI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GID  
OV  
TOP VꢁEW  
V
DD  
DD  
CHAꢁI 1  
16 GID  
GID  
SDO  
V
2
15 OV  
DD  
DD  
+
GID 3  
14 SDO  
13 SCK  
17  
GID  
ꢁI  
SCK  
+
ꢁI  
ꢁI  
4
5
ꢁI  
RDL/SDꢁ  
ꢀUSY  
GID  
12 RDL/SDꢁ  
11 ꢀUSY  
10 GID  
GID  
REF  
GID 6  
REF 7  
REF/DGC 8  
9
CIV  
REF/DGC  
CIV  
MS PACKAGE  
16-LEAD PLASTꢁC MSOP  
DE PACKAGE  
T
= 150°C, θ = 110°C/W  
16-LEAD (4mm × 3mm) PLASTꢁC DFI  
JMAX  
JA  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
ORDER INFORMATION  
6EAD FREE FINISH  
LTC2380CMS-16#PꢀF  
LTC2380ꢁMS-16#PꢀF  
LTC2380HMS-16#PꢀF  
LTC2380CDE-16#PꢀF  
LTC2380ꢁDE-16#PꢀF  
TAPE AND REE6  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2380CMS-16#TRPꢀF 238016  
LTC2380ꢁMS-16#TRPꢀF 238016  
LTC2380HMS-16#TRPꢀF 238016  
LTC2380CDE-16#TRPꢀF 23806  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2380ꢁDE-16#TRPꢀF  
23806  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
238016p  
2
LTC2380-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6  
V +  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
–0.05  
–0.05  
V
V
+ 0.05  
V
V
V
V
ꢁI  
REF  
REF  
V
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
+ 0.05  
ꢁI  
V + – V – ꢁnput Differential Voltage Range  
V
ꢁI  
= V + – V –  
–V  
+V  
REF  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
REF  
V
CM  
Common-Mode ꢁnput Range  
V
/2–  
V
/2  
REF  
V
/2+  
REF  
0.05  
REF  
0.05  
l
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
1
μA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢁI  
CMRR  
ꢁnput Common Mode Rejection Ratio  
f
ꢁI  
= 1MHz  
83  
dꢀ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6 PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
16  
ꢀits  
Transition Ioise  
0.15  
0.25  
0.1  
0
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–0.6  
–0.5  
–2  
0.6  
0.5  
2
LSꢀ  
DIL  
ꢀZE  
LSꢀ  
LSꢀ  
1
mLSꢀ/°C  
LSꢀ  
l
FSE  
–10  
2
10  
0.1  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢀFS0 ꢁNotes 4, 8x  
SYMꢀO6 PARAMETER  
CONDITIONS  
MIN  
94  
TYP  
MAX  
UNITS  
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢁI  
= 2kHz  
96  
dꢀ  
Signal-to-Ioise Ratio  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
94  
96.1  
95.3  
93.4  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
l
THD  
Total Harmonic Distortion  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
–109  
–117  
–114  
–103  
dꢀ  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
SFDR  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
f
ꢁI  
= 2kHz  
118  
34  
dꢀ  
MHz  
ps  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
175  
ns  
238016p  
3
LTC2380-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
5.1  
UNITS  
l
l
l
l
V
Reference Voltage  
2.5  
V
mA  
V
REF  
REF  
Reference ꢁnput Current  
High Level ꢁnput Voltage REF/DGC Pin  
Low Level ꢁnput Voltage REF/DGC Pin  
(Iote 9)  
1.2  
1.5  
V
V
0.8V  
REF  
ꢁHDGC  
0.2V  
V
ꢁLDGC  
REF  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6 PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
0.8 • OV  
ꢁH  
ꢁL  
DD  
V
0.2 • OV  
10  
V
DD  
ꢁI  
V
ꢁI  
= 0V to OV  
DD  
–10  
μA  
pF  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –500 μA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢁ = 500 μA  
O
0.2  
10  
V
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
8.5  
UNITS  
l
l
l
V
2.5  
V
V
DD  
OV  
DD  
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
2Msps Sample Rate  
7.5  
1.1  
0.9  
0.9  
mA  
mA  
μA  
VDD  
OVDD  
PD  
2Msps Sample Rate (C = 20pF)  
L
l
l
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ  
+ ꢁ  
)
40  
110  
VDD  
VDD  
OVDD  
OVDD  
, H-Grade)  
μA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
2Msps Sample Rate  
19  
2.25  
2.25  
21  
100  
275  
mW  
μW  
μW  
D
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ  
+ ꢁ  
)
VDD  
VDD  
OVDD  
OVDD  
, H-Grade)  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
290  
175  
500  
20  
310  
Acquisition Time  
t
= t  
–t  
– t (Iote 10)  
ꢀUSYLH  
ns  
ACQ  
CYC COIV  
Time ꢀetween Conversions  
CIV High Time  
ns  
CYC  
ns  
CIVH  
ꢀUSYLH  
CIVL  
QUꢁET  
SCK  
C = 20pF (Iote 11)  
L
15  
ns  
CIV to ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Quiet Time from CIV ↑  
SCK Period  
(Iote 11)  
20  
10  
10  
4
ns  
(Iote 10)  
ns  
(Iotes 11, 12)  
ns  
SCK High Time  
ns  
SCKH  
238016p  
4
LTC2380-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C0 ꢁNote 4x  
SYMꢀO6  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SCK Low Time  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK ↑  
SDꢁ Hold Time From SCK ↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK ↑  
SDO Data Remains Valid Delay from SCK ↑  
SDO Data Valid Delay from ꢀUSY↓  
ꢀus Enable Time After RDL ↓  
ꢀus Relinquish Time After RDL↑  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢀUSYL  
EI  
(Iote 11)  
(Iote 11)  
16  
13  
ns  
ns  
DꢁS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above REFor  
The deviation is measured from the center of the quantization band.  
Note 7: ꢀipolar zero-scale error is the offset voltage measured from  
–0.5LSꢀ when the output code flickers between 0000 0000 0000 0000 and  
1111 1111 1111 1111. Full-scale bipolar error is the worst-case of –FS  
or +FS untrimmed deviation from ideal first and last code transitions and  
includes the effect of offset error.  
OV , they will be clamped by internal diodes. This product can handle  
Note 8: All specifications in dꢀ are referred to a full-scale 5V input with a  
5V reference voltage.  
DD  
input currents up to 100mA below ground or above REFor OV without  
DD  
latch-up.  
Note 9: f  
= 2MHz, ꢁ varies proportionately with sample rate.  
REF  
SMPL  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, f  
= 2MHz,  
DD  
DD  
SMPL  
Note 1±: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
REF/DGC = V  
.
REF  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note .: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
Note 12: t  
100MHz for rising capture.  
of 10ns maximum allows a shift clock frequency up to  
SCK  
0.8*OV  
DD  
t
WꢁDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
238016 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
0.2*OV  
DD  
Figure 10 Voltage 6evels for Timing Specifications  
238016p  
5
LTC2380-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 205V, OVDD = 205V, REF = 5V,  
fSMP6 = 2Msps, unless otherwise noted0  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
1.0  
0.8  
0.5  
0.4  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
σ = 0.15  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32676 32677 32678 32679 32680  
OUTPUT CODE  
OUTPUT CODE  
CODE  
238016 G01  
238016 G02  
238016 G03  
THD, Harmonics  
32k Point FFT fS = 2Msps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
–80  
–85  
SIR = 96.4dꢀ  
THD = –119dꢀ  
SꢁIAD = 96.3dꢀ  
SFDR = 122dꢀ  
SIR  
–90  
–40  
3RD  
–95  
–60  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
THD  
–80  
SꢁIAD  
–100  
–120  
–140  
–160  
–180  
2ID  
0
100 200 300 400 500 600 700 800 900 1000  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
238016 G05  
238016 G06  
238016 G04  
SNR, SINAD vs Input level,  
IN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
f
96.5  
96.0  
95.5  
95.0  
94.5  
94.0  
93.5  
93.0  
97.0  
96.5  
96.0  
95.5  
95.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
SIR  
SIR  
SꢁIAD  
THD  
3RD  
SꢁIAD  
2ID  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
–30  
–20  
–10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFEREICE VOLTAGE (V)  
ꢁIPUT LEVEL (dꢀ)  
REFEREICE VOLTAGE (V)  
238016 G16  
238016 G07  
238016 G17  
238016p  
6
LTC2380-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 205V, OVDD = 205V, REF = 5V,  
fSMP6 = 2Msps, unless otherwise noted0  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
IN6/DN6 vs Temperature  
98.0  
97.5  
97.0  
96.5  
96.0  
95.5  
95.0  
94.5  
94.0  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
0.50  
0.25  
0
MAX ꢁIL  
THD  
SIR  
MAX DIL  
SꢁIAD  
3RD  
MꢁI DIL  
MꢁI ꢁIL  
–0.25  
–0.50  
2ID  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238016 G08  
238016 G09  
238016 G10  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
Supply Current vs Temperature  
1.00  
0.75  
0.50  
0.25  
0
8
7
6
5
4
3
2
1
0
2.0  
1.5  
VDD  
–FS  
1.0  
0.5  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.5  
–1.0  
–1.5  
–2.0  
OVDD  
+FS  
REF  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238016 G12  
238016 G13  
238016 G11  
Reference Current vs  
Reference Voltage  
Shutdown Current vs Temperature  
CMRR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+ ꢁ  
VDD OVDD  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
200  
400  
600  
800  
1000  
–55 –35 –15  
5
25 45 65 85 105 125  
REFEREICE VOLTAGE (V)  
FREQUEICY (kHz)  
TEMPERATURE (°C)  
238016 G14  
238016 G15  
238016 G18  
238016p  
7
LTC2380-16  
PIN FUNCTIONS  
CHAIN ꢁPin 1x: Chain Mode Selector Pin. When low, the  
LTC2380-16 operates in Iormal Mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2380-16 operates in Chain Mode and the RDL/  
SDꢁ pin functions as SDꢁ, the daisychain serial data input.  
ꢀUSY ꢁPin 11x: ꢀUSY indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by 0V .  
DD  
RD6/SDI ꢁPin 12x: When CHAꢁI is low, the part is in Ior-  
mal Mode and the pin is treated as a bus enabling input.  
When CHAꢁI is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisychain is input. Logic levels are  
Logic levels are determined by 0V .  
DD  
V
ꢁPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGIDwitha1Fceramic  
DD  
capacitor.  
determined by 0V .  
DD  
GND ꢁPins 3, ., 1± and 1.x: Ground.  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
theconversionresultordaisychaindatafromanotherADC  
is shifted out on the rising edges of this clock MSꢀ first.  
+
IN , IN ꢁPins 4, 5x: Positive and Iegative Differential  
Analog ꢁnputs.  
Logic levels are determined by 0V .  
DD  
REF ꢁPin 7x: Reference ꢁnput. The range of REF is 2.5V  
to 5.1V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0805 size).  
SDOPin14x:SerialDataOutput. Theconversionresultor  
daisychain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format. Logic levels are determined by 0V .  
DD  
REF/DGCꢁPin8x:WhentiedtoREF,digitalgaincompression  
OV ꢁPin 15x: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
isdisabledandtheLTC2380-16definesfull-scaleaccording  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
to the V analog input range. When tied to GID, digital  
REF  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
gain compression is enabled and the LTC2380-16 defines  
or 5V). ꢀypass OV to GID with a 0.1μF capacitor.  
DD  
full-scale with inputs that swing between 10% and 90%  
of the V analog input range.  
GND ꢁEꢂposed Pad Pin 17 – DFN Package Onlyx: Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
REF  
CNV ꢁPin 9x: Convert ꢁnput. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by 0V .  
DD  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
LTC2380-16  
CHAꢁI  
SDO  
RDL/SDꢁ  
SCK  
+
+
ꢁI  
SPꢁ  
PORT  
16-ꢀꢁT SAMPLꢁIG ADC  
ꢁI  
CIV  
ꢀUSY  
REF/DGC  
COITROL LOGꢁC  
GID  
238016 ꢀD01  
238016p  
8
LTC2380-16  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAꢁI, RDL/SDꢁ = 0  
CIV  
POWER-DOWI AID ACQUꢁRE  
COIVERT  
ꢀUSY  
SCK  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
238016 TD02  
238016p  
9
LTC2380-16  
APPLICATIONS INFORMATION  
OVERVIEW  
TRANSFER FUNCTION  
TheLTC2380-16isalownoise,lowpower,highspeed16-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2380-16 supports a  
The LTC2380-16 digitizes the full-scale voltage of 2 × REF  
16  
into 2 levels, resulting in an LSꢀ size of 152μV with  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in 2’s complement format.  
large and flexible V fully differential input range with  
REF  
V
ranging from 2.5V to 5.1V, making it ideal for high  
REF  
performance applications which require a wide dynamic  
range. The LTC2380-16 achieves 0.6LSꢀ ꢁIL max, no  
missing codes at 16-bits and 96dꢀ SIR.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Fast 2Msps throughput with no cycle latency makes the  
LTC2380-16 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2380-16  
dissipatesonly19mWat2Msps,whileanautopower-down  
feature is provided to further reduce power dissipation  
during inactive periods.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
–1 0V  
LSB  
1
–FSR/2  
FSR/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
The LTC2380-16 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
238016 F02  
Figure 20 6TC238±-1. Transfer Function  
ANA6OG INPUT  
function that maps zero-scale code from 0V to 0.1 • V  
REF  
The analog inputs of the LTC2380-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
shown in Figure 3. The diodes at the input provide ESD  
protection. ꢁn the acquisition phase, each input sees ap-  
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
proximately 45pF (C ) from the sampling CDAC in series  
ꢁI  
with 40ꢂ (R ) from the on-resistance of the sampling  
CONVERTER OPERATION  
OI  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
The LTC2380-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
+
converter (CDAC) is connected to the ꢁI and ꢁI pins  
to sample the differential analog input voltage. A rising  
edge on the CIV pin initiates a conversion. During the  
conversionphase,the16-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
the C capacitors during acquisition. During conversion,  
the analog inputs draw only a small leakage current.  
ꢁI  
REF  
C
45pF  
ꢁI  
R
OI  
40Ω  
+
ꢁI  
ꢁI  
referencevoltage(e.g.V /2,V /4…V /65536)using  
REF  
REF  
REF  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 16-bit digital output  
code for serial transfer.  
ꢀꢁAS  
VOLTAGE  
REF  
C
45pF  
ꢁI  
R
OI  
40Ω  
238016 F03  
Figure 30 The Equivalent Circuit for the  
Differential Analog Input of the 6TC238±-1.  
238016p  
10  
LTC2380-16  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2380-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2380-16. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2380-16. The LT6350 ADC  
driver is recommended for performing single-ended-to-  
differential conversions. The LT6350 is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the 5V differential input range of the  
LTC2380-16. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2380-16 up to 125°C.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
Figure 5a shows the LT6350 being used to convert a 0V  
to 5V single-ended input signal. ꢁn this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5b,  
the LT6350 drives the LTC2380-16 to near full datasheet  
performance.  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SIR.  
The LT6350 can also be used to buffer and convert large  
true bipolar signals which swing below ground to the  
5V differential input range of the LTC2380-16 in order  
to maximize the signal swing that can be digitized. Fig-  
ure 6a shows the LT6350 being used to convert a 10V  
true bipolar signal for use by the LTC2380-16. ꢁn this  
case, the first amplifier in the LT6350 is configured as  
an inverting amplifier stage, which acts to attenuate and  
level shift the input signal to the 0V to 5V input range of  
the LTC2380-16. ꢁn the inverting amplifier configuration,  
the single-ended input signal source no longer directly  
drives a high impedance input of the first amplifier. The  
LPF2  
3300pF  
SꢁIGLE-EIDED-  
20Ω  
LPF1  
ꢁIPUT SꢁGIAL  
+
ꢁI  
500Ω  
3300pF  
LTC2380-16  
6600pF  
ꢁI  
20Ω  
238016 F04  
SꢁIGLE-EIDED- 3300pF  
TO-DꢁFFEREITꢁAL  
DRꢁVER  
input impedance is instead set by resistor R . R must  
ꢁI ꢁI  
ꢀW = 48kHz  
be chosen carefully based on the source impedance of the  
ꢀW = 800kHz  
signal source. Higher values of R tend to degrade both  
ꢁI  
Figure 40 Input Signal Chain  
the noise and distortion of the LT6350 and LTC2380-16  
as a system.  
238016p  
11  
LTC2380-16  
APPLICATIONS INFORMATION  
V
CM  
LT6350  
5V  
0V  
OUT1  
4
5V  
0V  
R2 = 499  
R
R
ꢁIT  
ꢁIT  
200pF  
8
1
+
LT6350  
5V  
0V  
OUT1  
OUT2  
4
5
5V  
0V  
+
R
R
ꢁIT  
8
+
ꢁIT  
OUT2  
5
10μF  
R4 = 402  
R3 = 2k  
2
5V  
0V  
+
+
V
= V /2  
REF  
CM  
1
2
238016 F05a  
10V  
0V  
–10V  
R
= 2k  
R1 = 499  
ꢁI  
+
V
= V /2  
REF  
CM  
Figure 5a0 6T.35± Converting a ±V-5V Single-Ended  
Signal to a ±5V Differential Input Signal  
220pF  
238016 F06a  
Figure .a0 6T.35± Converting a ±1±V Single-Ended Signal to  
a ±5V Differential Input Signal  
0
SIR = 96.1dꢀ  
–20  
–40  
THD = –104.7dꢀ  
SꢁIAD = 95.5dꢀ  
SFDR = 108dꢀ  
0
SIR = 96dꢀ  
–60  
–20  
–40  
THD = –93dꢀ  
SꢁIAD = 91.2dꢀ  
SFDR = 94.3dꢀ  
–80  
–100  
–120  
–140  
–160  
–180  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100 200 300 400 500 600 700 800 9001000  
FREQUEICY (kHz)  
238016 F05b  
0
100 200 300 400 500 600 700 800 9001000  
Figure 5b0 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 5a  
FREQUEICY (kHz)  
238016 F06b  
Figure .b0 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure .a  
R1, R2, R3 and R4 must be selected in relation to R to  
ꢁI  
achievethedesiredattenuationandtomaintainabalanced  
input impedance in the first amplifier. Table 1 shows the  
5V  
0V  
LT6203  
5V  
0V  
3
2
+
resulting SIR and THD for several values of R , R1, R2,  
ꢁI  
1
7
R3 and R4 in this configuration. Figure 6b shows the re-  
sulting FFT when using the LT6350 as shown in Figure 6a.  
5V  
0V  
5V  
0V  
5
6
+
Table 10 SNR, THD vs RIN for ±1±V Single-Ended Input Signal0  
R
R1  
ꢁΩx  
R2  
ꢁΩx  
R3  
ꢁΩx  
R4  
ꢁΩx  
SNR  
ꢁdꢀx  
THD  
ꢁdꢀx  
IN  
ꢁΩx  
238016 F07  
2k  
499  
499  
2k  
402  
2k  
96  
96  
93  
–93  
–96  
–97  
Figure 70 6T.2±3 ꢀuffering a Fully Differential Signal Source  
10k  
100k  
2.49k  
24.9k  
2.49k  
24.9k  
10k  
100k  
20k  
Digital Gain Compression  
The LTC2380-16 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
Fully Differential Inputs  
To achieve the full distortion performance of the  
LTC2380-16,alowdistortionfullydifferentialsignalsource  
driven through the LT6203 configured as two unity gain  
buffers as shown in Figure 7 can be used to get the full  
data sheet THD specification of –117dꢀ.  
tween 10% and 90% of the V analog input range. To  
REF  
enable digital gain compression, bring the REF/DGC pin  
low. This feature allows the LT6350 to be powered off of  
a single +5.5V supply since each input swings between  
0.5V and 4.5V as shown in Figure 8. Ieeding only one  
238016p  
12  
LTC2380-16  
APPLICATIONS INFORMATION  
5V  
many applications. With its small size, low power and  
highaccuracy, theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2380-16. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications. The LTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2380-16 up to 125°C. We recommend bypassing the  
LTC6655-5witha4Fceramiccapacitor(X5R,0805size)  
close to the REF pin.  
4.5V  
0.5V  
0V  
238016 F08  
Figure 80 Input Swing of the 6TC238± with Gain  
Compression Enabled  
positive supply to power the LT6350 results in additional  
power savings for the entire system.  
TheREFpinoftheLTC2380-16drawscharge(Q  
)from  
COIV  
Figure 9a shows how to configure the LT6350 to accept a  
10V true bipolar input signal and attenuate and level shift  
the signal to the reduced input range of the LTC2380-16  
whendigitalgaincompressionisenabled.Figure9bshows  
anFFTplotwiththeLTC2380-16beingdrivenbytheLT6350  
with digital gain compression enabled.  
the 47μF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
= Q  
/t . The DC current draw of the REF pin,  
REF  
REF  
COIV CYC  
, depends on the sampling rate and output code. ꢁf  
the LTC2380-16 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢀs.  
ADC REFERENCE  
The LTC2380-16 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
ence is critical to achieving the full datasheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
When idling, the REF pin on the LTC2380-16 draws only  
a small leakage current (< 1μA). ꢁn applications where a  
burst of samples is taken after idling for long periods as  
shown in Figure 10, ꢁ quickly goes from approximately  
REF  
5.5V  
V
V
V
LTC6655-5  
ꢁI  
0
–20  
OUT_F  
OUT_S  
SIR = 94.6dꢀ  
THD = –94.6dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 95.9dꢀ  
5V  
1k  
–40  
47μF  
V
CM  
–60  
4.5V  
0.5V  
2.5V  
1k  
10μF  
3
+
–80  
V
3300pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2380-16  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
+
20Ω  
ꢁI  
ꢁI  
R
R
ꢁIT  
8
+
ꢁIT  
10μF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
238016 F09a  
V
3300pF  
10V  
0V  
–10V  
= 15k  
3.01k  
ꢁI  
0
100 200 300 400 500 600 700 800 9001000  
0.5V  
V
CM  
FREQUEICY (kHz)  
238016 F09b  
Figure 9a0 6T.35± Configured to Accept a ±1±V Input Signal While Running Off of a  
Single 505V Supply When Digital Gain Compression Is Enabled in the 6TC238±-1.  
Figure 9b0 32k Point FFT Plot with  
fIN = 2kHz for Circuit Shown in  
Figure 9a  
CIV  
ꢁDLE  
PERꢁOD  
ꢁDLE  
PERꢁOD  
238016 F10  
Figure 1±0 CNV Waveform Showing ꢀurst Sampling  
238016p  
13  
LTC2380-16  
APPLICATIONS INFORMATION  
0μA to a maximum of 1.5mA at 2Msps. This step in DC  
currentdrawtriggersatransientresponseinthereference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
code. ꢁn applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
Signal-to-Noise Ratio ꢁSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 11 shows  
that the LTC2380-16 achieves a typical SIR of 96dꢀ at a  
2MHz sampling rate with a 2kHz input.  
DYNAMIC PERFORMANCE  
Total Harmonic Distortion ꢁTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2380-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VI2  
THD=20log  
V1  
Signal-to-Noise and Distortion Ratio ꢁSINADx  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
I
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 11 shows that the LTC2380-16 achieves  
a typical SꢁIAD of 96dꢀ at a 2MHz sampling rate with a  
2kHz input.  
through Ith harmonics.  
POWER CONSIDERATIONS  
The LTC2380-16 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2380-16 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
0
SIR = 96.4dꢀ  
–20  
–40  
THD = –119dꢀ  
SꢁIAD = 96.3dꢀ  
SFDR = 122dꢀ  
Power Supply Sequencing  
–60  
The LTC2380-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2380-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2380-16 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
–80  
–100  
–120  
–140  
–160  
–180  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUEICY (kHz)  
238016 F11  
Figure 110 32k Point FFT with fIN = 2kHz of the 6TC238±-1.  
238016p  
14  
LTC2380-16  
APPLICATIONS INFORMATION  
reinitialize the ADC. Io conversions should be initiated  
until 20μs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
powered-downforalargerfractionoftheconversioncycle  
CYC  
power dissipation which scales with the sampling rate as  
shown in Figure 12.  
(t ) at lower sample rates, thereby reducing the average  
TIMING AND CONTRO6  
CNV Timing  
DIGITA6 INTERFACE  
The LTC2380-16 has a serial digital interface. The flexible  
OV supply allows the LTC2380-16 to communicate with  
DD  
The LTC2380-16 conversion is controlled by CIV. A ris-  
ing edge on CIV will start a conversion and power up the  
LTC2380-16.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CIV should be driven by a clean low jitter  
signal. Converter status is indicated by the ꢀUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CIV should occur within 40ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2380-16 powers down and begins acquiring the  
input signal.  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
100MHz, a 2Msps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D15 remains valid till the first rising edge of SCK.  
The serial interface on the LTC2380-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2380-16. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisy-chained.  
Internal Conversion Clock  
The LTC2380-16 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof310ns.Withamin-  
imum acquisition time of 175ns, throughput performance  
of 2Msps is guaranteed without any external adjustments.  
8
7
6
VDD  
5
4
3
2
1
0
Auto Power-Down  
The LTC2380-16 automatically powers down after a con-  
version has been completed and powers up once a new  
conversion is initiated on the rising edge of CIV. During  
power down, data from the last conversion can be clocked  
out. To minimize power dissipation during power down,  
disableSDOandturnoffSCK.Theautopower-downfeature  
will reduce the power dissipation of the LTC2380-16 as  
the sampling frequency is reduced. Since power is con-  
sumedonlyduringaconversion, theLTC2380-16remains  
OVDD  
REF  
0
400  
800  
1200  
1600  
2000  
SAMPLꢁIG RATE (kHz)  
238016 F12  
Figure 120 Power Supply Current of the 6TC238±-1.  
Versus Sampling Rate  
238016p  
15  
LTC2380-16  
TIMING DIAGRAM  
Normal Mode, Single Device  
Figure 13 shows a single LTC2380-16 operated in Iormal  
Mode with CHAꢁI and RDL/SDꢁ tied to ground. With RDL/  
SDꢁ grounded, SDO is enabled and the MSꢀ(D15) of the  
new conversion data is available at the falling edge of  
ꢀUSY. ThisisthesimplestwaytooperatetheLTC2380-16.  
When CHAꢁI = 0, the LTC2380-16 operates in Iormal  
mode. ꢁn Iormal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high-impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
COIVERT  
DꢁGꢁTAL HOST  
ꢁRQ  
CIV  
CHAꢁI  
ꢀUSY  
LTC2380-16  
SCK  
RDL/SDꢁ  
SDO  
DATA ꢁI  
CLK  
238016 F13a  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
COIVERT  
CHAꢁI = 0  
RDL/SDꢁ = 0  
t
CYC  
t
CIVH  
t
CIVL  
CIV  
t
= t  
– t  
– t  
ACQ CYC COIV ꢀUSYLH  
t
t
COIV  
ACQ  
ꢀUSY  
t
SCK  
t
ꢀUSYLH  
t
t
QUꢁET  
SCKH  
1
2
3
14  
15  
16  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOꢀUSYL  
D15  
D14  
D13  
D1  
D0  
238016 F13  
Figure 130 Using a Single 6TC238±-1. in Normal Mode  
238016p  
16  
LTC2380-16  
TIMING DIAGRAM  
Normal Mode, Multiple Devices  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
be used to allow only one LTC2380-16 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure14,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 14 shows multiple LTC2380-16 devices operating  
in Iormal Mode(CHAꢁI = 0) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
RDL  
RDL  
A
COIVERT  
CIV  
CIV  
CHAꢁI  
ꢀUSY  
SDO  
ꢁRQ  
CHAꢁI  
LTC2380-16  
LTC2380-16  
A
DꢁGꢁTAL HOST  
SDO  
RDL/SDꢁ  
RDL/SDꢁ  
SCK  
SCK  
DATA ꢁI  
CLK  
238016 F15  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
CHAꢁI = 0  
t
CIVL  
CIV  
t
COIV  
ꢀUSY  
t
ꢀUSYLH  
RDL/SDꢁ  
A
RDL/SDꢁ  
t
SCK  
t
t
QUꢁET  
SCKH  
17  
SCK  
SDO  
1
2
3
14  
15  
16  
18  
19  
30  
31  
32  
t
t
SCKL  
HSDO  
t
t
DSDO  
DꢁS  
t
EI  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
A
D14  
D13  
D1  
A
D0  
D15  
D14  
D13  
D1  
D0  
A
A
A
238016 F14  
Figure 140 Normal Mode With Multiple Devices Sharing CNV, SCK and SDO  
238016p  
17  
LTC2380-16  
TIMING DIAGRAM  
When CHAꢁI = OV , the LTC2380-16 operates in Chain  
This is useful for applications where hardware constraints  
maylimitthenumberoflinesneededtointerfacetoalarge  
number of converters. Figure 15 shows an example with  
two daisy chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 16 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
DD  
Mode. ꢁnChainMode,SDOisalwaysenabledandRDL/SDꢁ  
serves as the serial data input pin (SDꢁ) where daisychain  
data output from another ADC can be input.  
COIVERT  
OV  
OV  
DD  
DD  
CIV  
CIV  
CHAꢁI  
CHAꢁI  
DꢁGꢁTAL HOST  
LTC2380-16  
LTC2380-16  
RDL/SDꢁ  
SDO  
RDL/SDꢁ  
ꢀUSY  
SDO  
ꢁRQ  
A
DATA ꢁI  
SCK  
SCK  
CLK  
238016 F15a  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
COIVERT  
CHAꢁI = OV  
DD  
RDL/SDꢁ = 0  
A
t
CYC  
t
CIVL  
CIV  
ꢀUSY  
t
COIV  
t
ꢀUSYLH  
SCK  
t
SCKCH  
t
t
QUꢁET  
SCKH  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCKL  
t
t
HSDO  
SSDꢁSCK  
t
t
DSDO  
HSDꢁSCK  
SDO = RDL/SDꢁ  
A
D15  
D14  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOꢀUSYL  
D15  
D13  
D1  
D15  
D14  
D1  
A
D0  
A
SDO  
A
A
238016 F15  
Figure 150 Chain Mode Timing Diagram  
238016p  
18  
LTC2380-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2380-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible. ꢁn  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended 6ayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1783A, the  
evaluation kit for the LTC2380-16.  
Partial Top Silkscreen  
238016p  
19  
LTC2380-16  
BOARD LAYOUT  
Partial 6ayer 1 Component Side  
Partial 6ayer 2 Ground Plane  
238016p  
20  
LTC2380-16  
BOARD LAYOUT  
Partial 6ayer 3 PWR Plane  
Partial 6ayer 4 ꢀottom 6ayer  
238016p  
21  
LTC2380-16  
BOARD LAYOUT  
Partial Schematic of Demoboard  
D G C R E F /  
R E F  
8
7
1 5  
2
1
G I D  
D D  
D D  
V
G I D 1 6  
O V  
G I D  
1 0  
G I D  
6
3
3
2
1
3
2
1
238016p  
22  
LTC2380-16  
PACKAGE DESCRIPTION  
DE Package  
1.-6ead Plastic DFN ꢁ4mm × 3mmx  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
R = 0.115  
0.40 0.10  
4.00 0.10  
(2 SꢁDES)  
TYP  
16  
9
0.70 0.05  
R = 0.05  
TYP  
3.30 0.05  
1.70 0.05  
3.30 0.10  
3.60 0.05  
2.20 0.05  
3.00 0.10  
(2 SꢁDES)  
PACKAGE  
OUTLꢁIE  
1.70 0.10  
PꢁI 1 IOTCH  
R = 0.20 OR  
0.35 s 45°  
PꢁI 1  
TOP MARK  
(SEE IOTE 6)  
CHAMFER  
(DE16) DFI 0806 REV Ø  
8
1
0.23 0.05  
0.45 ꢀSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 ꢀSC  
3.15 REF  
ꢀOTTOM VꢁEW—EXPOSED PAD  
3.15 REF  
0.00 – 0.05  
RECOMMEIDED SOLDER PAD PꢁTCH AID DꢁMEISꢁOIS  
APPLY SOLDER MASK TO AREAS THAT ARE IOT SOLDERED  
IOTE:  
1. DRAWꢁIG PROPOSED TO ꢀE MADE VARꢁATꢁOI OF VERSꢁOI (WGED-3) ꢁI JEDEC  
PACKAGE OUTLꢁIE MO-229  
2. DRAWꢁIG IOT TO SCALE  
3. ALL DꢁMEISꢁOIS ARE ꢁI MꢁLLꢁMETERS  
4. DꢁMEISꢁOIS OF EXPOSED PAD OI ꢀOTTOM OF PACKAGE DO IOT ꢁICLUDE  
MOLD FLASH. MOLD FLASH, ꢁF PRESEIT, SHALL IOT EXCEED 0.15mm OI AIY SꢁDE  
5. EXPOSED PAD SHALL ꢀE SOLDER PLATED  
6. SHADED AREA ꢁS OILY A REFEREICE FOR PꢁI 1 LOCATꢁOI OI THE  
TOP AID ꢀOTTOM OF PACKAGE  
MS Package  
1.-6ead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 p 0.102  
(.159 p .004)  
(IOTE 3)  
0.889 p 0.127  
(.035 p .005)  
0.280 p 0.076  
(.011 p .003)  
REF  
16151413121110  
9
3.00 p 0.102  
(.118 p .004)  
(IOTE 4)  
DETAꢁL “A”  
0o – 6o TYP  
5.23  
4.90 p 0.152  
(.193 p .006)  
3.20 – 3.45  
(.206)  
0.254  
(.010)  
(.126 – .136)  
MꢁI  
GAUGE PLAIE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
0.50  
(.0197)  
ꢀSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAꢁL “A”  
0.18  
(.007)  
RECOMMEIDED SOLDER PAD LAYOUT  
SEATꢁIG  
PLAIE  
IOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
1. DꢁMEISꢁOIS ꢁI MꢁLLꢁMETER/(ꢁICH)  
2. DRAWꢁIG IOT TO SCALE  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
ꢀSC  
3. DꢁMEISꢁOI DOES IOT ꢁICLUDE MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS.  
MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
4. DꢁMEISꢁOI DOES IOT ꢁICLUDE ꢁITERLEAD FLASH OR PROTRUSꢁOIS.  
ꢁITERLEAD FLASH OR PROTRUSꢁOIS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
5. LEAD COPLAIARꢁTY (ꢀOTTOM OF LEADS AFTER FORMꢁIG) SHALL ꢀE 0.102mm (.004") MAX  
238016p  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2380-16  
TYPICAL APPLICATION  
6T.35± Configured to Accept a ±1±V Input Signal While Running Off of a Single 505V Supply When  
Digital Gain Compression Is Enabled in the 6TC238±-1.  
5.5V  
V
V
V
LTC6655-5  
ꢁI  
OUT_F  
OUT_S  
5V  
1k  
1k  
47μF  
V
CM  
4.5V  
2.5V  
10μF  
3
+
V
3300pF  
LT6350  
OUT1  
OUT2  
0.5V  
6.04k  
4.32k  
REF  
V
DD  
4
+
20Ω  
ꢁI  
ꢁI  
R
ꢁIT  
R
ꢁIT  
8
+
LTC2380-16  
REF/DGC  
10μF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
238016 TA03  
V
3300pF  
10V  
0V  
= 15k  
3.01k  
ꢁI  
0.5V  
V
CM  
–10V  
RELATED PARTS  
PART NUMꢀER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2393-16/LTC2392-16/ 16-ꢀit, 1Msps/500ksps/250ksps Parallel/Serial  
LTC2391-16 ADC  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, Pin  
Compatible Family in 7mm × 7mm LQFP-48 and QFI package  
LTC2383-16/LTC2382-16/ 16-ꢀit, 1Msps/500ksps/250ksps Serial, Low  
2.5V Supply, Differential ꢁnput, 92dꢀ SIR, 2.5V ꢁnput Range, Pin  
Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 package  
LTC2381-16  
Power ADC  
LTC1864/LTC1864L  
LTC1865/LTC1865L  
LTC2302/LTC2306  
16-bit, 250ksps/150ksps 1-Channel μPower ADC 5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
16-bit, 250ksps/150ksps 2-Channel μPower ADC 5V/3V Supply, 2-Channel, 4.3mW/1.3mW, MSOP-8 Package  
12-ꢀit, 500ksps, 1-/2-Channel, Low Ioise, ADC  
5V Supply, 14mW at 500ksps, 10-Pin DFI Package  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-10 Package  
DACs  
LTC2757  
18-ꢀit Single Parallel ꢁ  
SoftSpan DAC  
OUT  
1LSꢀ ꢁIL/DIL, Software-Selectable Ranges, 7mm × 7mm LQFP-48  
Package  
LTC2641-16  
LTC2630  
16-ꢀit Single Serial V  
DACs  
DACs  
1LSꢀ ꢁIL, 1LSꢀ DIL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, ꢁnternal Reference, 1LSꢀ ꢁIL (12ꢀits)  
OUT  
12-/10-/8-ꢀit Single V  
OUT  
REFERENCES  
LTC6652  
Precision Low Drift Low Ioise ꢀuffered Reference 5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
Precision Low Drift Low Ioise ꢀuffered Reference 5V/2.5V, 2ppm/°C, 0.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6655  
AMP6IFIERS  
LT6350  
Low Ioise Single-Ended-To-Differential ADC  
Driver  
Rail-to-Rail ꢁnput and Outputs, 240ns 0.01% Settling Time, DFI-8 or  
MSOP-8 Packages  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with Unity  
Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at 1MHz,  
TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢁnput/Output  
Ioise Low Power Amplifiers  
1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
LTC1992  
Low Power, Fully Differential ꢁnput/Output  
Amplifier/Driver Family  
1mA Supply Current  
238016p  
LT 0211 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2380CMS-16PBF

16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR
Linear

LTC2380CMS-24#PBF

LTC2380-24 - 24-Bit, 1.5Msps/2Msps, Low Power SAR ADC with Integrated Digital Filter; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2380HMS-16#PBF

LTC2380-16 - 16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2380HMS-16PBF

16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR
Linear

LTC2380IDE-16#PBF

LTC2380-16 - 16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2380IDE-16PBF

16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR
Linear

LTC2380IDE-24#PBF

LTC2380-24 - 24-Bit, 1.5Msps/2Msps, Low Power SAR ADC with Integrated Digital Filter; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2380IMS-16#PBF

LTC2380-16 - 16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2380IMS-16PBF

16-Bit, 2Msps, Low Power SAR ADC with 96dB SNR
Linear

LTC2380IMS-24#PBF

LTC2380-24 - 24-Bit, 1.5Msps/2Msps, Low Power SAR ADC with Integrated Digital Filter; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2381-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2381CDE-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear