LTC2381CDE-16PBF [Linear]

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface; 16位, 250ksps的,低功耗SAR ADC ,具有串行接口
LTC2381CDE-16PBF
型号: LTC2381CDE-16PBF
厂家: Linear    Linear
描述:

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
16位, 250ksps的,低功耗SAR ADC ,具有串行接口

文件: 总24页 (文件大小:1106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2381-16  
16-Bit, 250ksps, Low Power  
SAR ADC with Serial Interface  
FEATURES  
DESCRIPTION  
The LTC®2381-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2381-16 has a  
2.5V fully differential input range. The LTC2381-16  
consumes only 3.25mW and achieves 2LSꢀ ꢁIL max,  
no missing codes at 16-bits and 92dꢀ SIR.  
n
250ksps Throughput Rate  
n
2ꢀSꢁ INꢀ ꢂ(aꢃx  
n
Guaranteed 16-ꢁit No (issing Codes  
n
ꢀow Power: 3.25mW at 250ksps, 13μW at 1ksps  
n
92dꢁ SNR ꢂtypx at f = 20kHz  
IN  
n
Eꢃtended Acquisition Time of 3.25μs Allows Use of  
ꢀower Power Drivers  
The LTC2381-16 has a high speed SPꢁ-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisychain mode. The fast 250ksps  
throughput with no cycle latency makes the LTC2381-16  
ideally suited for a wide variety of high speed applica-  
tions. An internal oscillator sets the conversion time,  
easing external timing considerations. The LTC2381-16  
automatically powers down between conversions, lead-  
ing to reduced power dissipation that scales with the  
sampling rate.  
n
Guaranteed Operation to 125°C  
n
2.5V Supply  
n
Fully Differential ꢁnput Range 2.5V  
n
External 2.5V Reference ꢁnput  
n
Io Pipeline Delay, Io Cycle Latency  
n
1.8V to 5V ꢁ/O Voltages  
n
SPꢁ-Compatible Serial ꢁ/O with Daisy-Chain Mode  
n
ꢁnternal Conversion Clock  
n
16-pin MSOP and 4mm × 3mm DFI Packages  
APPLICATIONS  
The LTC2381-16 features a proprietary sampling  
architecture that enables the ADC to begin acquiring the  
next sample during the current conversion. The resulting  
extended acquisition time of 3.25μs allows the use of  
extremely low power ADC drivers.  
n
Medical ꢁmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢁnstrumentation  
ꢁndustrial Process Control  
Low Power ꢀattery-Operated ꢁnstrumentation  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
n
ATE  
TYPICAL APPLICATION  
32k Point FFT fS = 250ksps, fIN = 20kHz  
0
2.5V 1.8V TO 5V  
SIR = 91.8dꢀ  
–20  
–40  
THD = –106dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 107dꢀ  
10μF  
0.1μF  
AIALOG ꢁIPUT  
0V TO 2.5V  
–60  
V
OV  
DD  
50Ω  
50Ω  
100Ω  
3300pF  
100Ω  
CHAꢁI  
RDL/SDꢁ  
SDO  
SCK  
ꢀUSY  
CIV  
DD  
+
ꢁI  
–80  
LT6350  
LTC2381-16  
–100  
–120  
–140  
–160  
–180  
ꢁI  
SAMPLE CLOCK  
REF  
GID  
238116 TA01  
2.5V  
SꢁIGLE-EIDED-  
TO-DꢁFFEREITꢁAL  
DRꢁVER  
47μF  
(X5R, 0805 SꢁZE)  
0
25  
50  
75  
100  
125  
FREQUEICY (kHz)  
238116 TA02a  
238116f  
1
LTC2381-16  
ABSOLUTE MAXIMUM RATINGS  
ꢂNotes 1, 2x  
Digital Output Voltage  
Supply Voltage (V )...............................................2.8V  
DD  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
Supply Voltage (OV )................................................6V  
DD  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2381C ................................................ 0°C to 70°C  
LTC2381ꢁ .............................................–40°C to 85°C  
LTC2381H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Reference ꢁnput (REF)..............................................2.8V  
Analog ꢁnput Voltage (Iote 3)  
+
ꢁI , ꢁI ......................... (GID –0.3V) to (REF + 0.3V)  
Digital ꢁnput Voltage  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VꢁEW  
CHAꢁI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GID  
OV  
TOP VꢁEW  
V
DD  
DD  
CHAꢁI 1  
16 GID  
GID  
SDO  
V
2
15 OV  
DD  
DD  
+
GID 3  
14 SDO  
13 SCK  
17  
GID  
ꢁI  
SCK  
+
ꢁI  
ꢁI  
4
5
ꢁI  
RDL/SDꢁ  
ꢀUSY  
GID  
12 RDL/SDꢁ  
11 ꢀUSY  
10 GID  
GID  
REF  
REF  
GID 6  
REF 7  
REF 8  
9
CIV  
CIV  
MS PACKAGE  
16-LEAD (4mm s 5mm) PLASTꢁC MSOP  
DE PACKAGE  
16-LEAD (4mm s 3mm) PLASTꢁC DFI  
T
= 150°C, θ = 110°C/W  
JA  
JMAX  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
ORDER INFORMATION  
ꢀEAD FREE FINISH  
LTC2381CMS-16#PꢀF  
LTC2381ꢁMS-16#PꢀF  
LTC2381HMS-16#PꢀF  
LTC2381CDE-16#PꢀF  
LTC2381ꢁDE-16#PꢀF  
TAPE AND REEꢀ  
PART (ARKING  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TE(PERATURE RANGE  
0°C to 70°C  
LTC2381CMS-16#TRPꢀF 238116  
LTC2381ꢁMS-16#TRPꢀF 238116  
LTC2381HMS-16#TRPꢀF 238116  
LTC2381CDE-16#TRPꢀF 23816  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2381ꢁDE-16#TRPꢀF  
23816  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
238116f  
2
LTC2381-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ  
V +  
PARA(ETER  
CONDITIONS  
(Iote 5)  
(IN  
–0.05  
–0.05  
TYP  
(AX  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
V
V
V
V
V
V
ꢁI  
REF  
REF  
V –  
ꢁI  
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
V + – V – ꢁnput Differential Voltage range  
V
= V + – V –  
–V  
+V  
REF  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
REF  
V
CM  
Common-Mode ꢁnput Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
0.05  
REF  
0.05  
l
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
1
μA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢁI  
CMRR  
ꢁnput Common Mode Rejection Ratio  
70  
dꢀ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
16  
TYP  
(AX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
16  
ꢀits  
Transition Ioise  
0.6  
0.9  
0.5  
0.25  
3
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–2  
–1  
–6  
2
1
6
LSꢀ  
DIL  
ꢀZE  
LSꢀ  
LSꢀ  
mLSꢀ/°C  
LSꢀ  
l
FSE  
–14  
3
14  
0.1  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢁFS. ꢂNotes 4, 8x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
88.5  
89  
TYP  
92  
(AX  
UNITS  
dꢀ  
l
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢁI  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 20kHz  
Signal-to-Ioise Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
= 20kHz  
92  
dꢀ  
THD  
= 20kHz, First 5 Harmonics  
= 20kHz  
–106  
107  
30  
–99  
dꢀ  
SFDR  
dꢀ  
MHz  
ns  
2
Aperture Jitter  
30  
ps  
Transient Response  
Full-Scale Step  
250  
ns  
238116f  
3
LTC2381-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(Iote 5)  
(IN  
TYP  
(AX  
2.6  
UNITS  
V
l
l
V
Reference Voltage  
Load Current  
2.4  
REF  
REF  
(Iote 9)  
285  
μA  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
UNITS  
V
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
0.8 • OV  
ꢁH  
ꢁL  
DD  
0.2 • OV  
10  
V
DD  
V
ꢁI  
= 0V to OV  
DD  
–10  
μA  
pF  
ꢁI  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –500 μA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢁ = 500 μA  
O
0.2  
10  
V
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
(IN  
2.375  
1.71  
TYP  
(AX  
2.625  
5.25  
UNITS  
l
V
2.5  
V
V
DD  
OV  
DD  
l
l
l
Supply Current  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
1.3  
0.5  
0.5  
1.7  
40  
110  
mA  
μA  
μA  
DD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
3.25  
1.25  
1.25  
4.25  
100  
275  
mW  
μW  
μW  
D
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(IN  
TYP  
(AX  
250  
3
UNITS  
ksps  
μs  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
2
Acquisition Time  
t
= t  
– t (Iote 10)  
HOLD  
3.25  
μs  
ACQ  
CYC  
Maximum Time ꢀetween Acquisitions  
Time ꢀetween Conversions  
CIV High Time  
750  
20  
ns  
HOLD  
CYC  
4
us  
20  
ns  
CIVH  
ꢀUSYLH  
CIVL  
SCK  
C = 20pF (Iote 11)  
L
ns  
CIV to ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Period  
(Iote 11)  
200  
10  
ns  
(Iotes 11, 12)  
ns  
238116f  
4
LTC2381-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SY(ꢁOꢀ  
PARA(ETER  
CONDITIONS  
(IN  
4
TYP  
(AX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
t
SCK High Time  
SCKH  
SCK Low Time  
4
ns  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK ↑  
SDꢁ Hold Time From SCK ↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK ↑  
SDO Data Remains Valid Delay from SCK ↑  
SDO Data Valid Delay from ꢀUSY ↓  
ꢀus Enable Time After RDL ↓  
ꢀus Relinquish Time After RDL ↑  
SCK Setup Time from RDL/SDꢁ ↓  
SCK Hold Time from RDL/SDꢁ ↓  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢀUSYL  
EI  
(Iote 11)  
(Iote 11)  
(Iote 10)  
(Iote 10)  
16  
13  
ns  
ns  
DꢁS  
1
ns  
SSCKRDL  
HSCKRDL  
16  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: ꢀipolar zero-scale error is the offset voltage measured from  
–0.5LSꢀ when the output code flickers between 0000 0000 0000 0000  
and 1111 1111 1111 1111. Full-scale bipolar error is the worst-case of  
–FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dꢀ are referred to a full-scale 2.5V input with  
a 2.5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REF  
or OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above REFor OV without  
Note 9: f  
= 250kHz, ꢁ varies proportionately with sample rate.  
SMPL REF  
DD  
latch-up.  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 2.5V, f = 250kHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note 6: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 12: t  
100MHz for rising capture.  
of 10ns maximum allows a shift clock frequency up to  
SCK  
0.8*OV  
DD  
t
WꢁDTH  
0.2*OV  
DD  
t
t
50%  
50%  
DELAY  
DELAY  
238216 F01  
0.8*OV  
0.2*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
DD  
Figure 1. Voltage ꢀevels for Timing Specifications  
238116f  
5
LTC2381-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fS(Pꢀ = 250ksps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
2.0  
1.5  
1.0  
0.5  
0.0  
1600000  
1400000  
1200000  
1000000  
1.0  
0.5  
0.0  
800000  
600000  
400000  
200000  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32764  
32765  
32767  
CODE  
32768  
32769  
OUTPUT CODE  
OUTPUT CODE  
238116 G01  
238116 G02  
238116 G03  
32k Point FFT fS = 250Ksps,  
fIN = 20kHz  
THD, Harmonics  
SNR, SINAD vs Input Frequency  
vs Input Frequency  
0
–20  
93  
92.5  
92  
–90  
–95  
SIR = 91.8dꢀ  
THD = –106dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 107dꢀ  
–40  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–60  
SIR  
3RD  
2ID  
THD  
–80  
91.5  
91  
–100  
–120  
–140  
–160  
–180  
SꢁIAD  
90.5  
90  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
0
25  
50  
FREQUEICY (kHz)  
75  
100  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
238116 G05  
238116 G06  
238116 G04  
SNR, SINAD vs Input level,  
fIN = 20kHz  
SNR, SINAD vs Temperature  
THD, Harmonics vs Temperature  
93.0  
92.5  
92.0  
91.5  
91.0  
93.00  
92.50  
92.00  
91.50  
91.00  
–100  
–105  
–110  
–115  
–120  
SIR  
SꢁIAD  
SIR  
THD  
2ID  
SꢁIAD  
3RD  
–55 –35 –15  
5
25 45 65 85 105 125  
–40  
–30  
–20  
–10  
0
–55 –35 –15  
5
25 45 65 85 105 125  
ꢁIPUT LEVEL (dꢀ)  
TEMPERATURE (ºC)  
TEMPERATURE (°C)  
238116 G07  
238116 G08  
238116f  
6
LTC2381-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fS(Pꢀ = 250ksps, unless otherwise noted.  
INꢀ/DNꢀ vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
1
0.5  
0
0
–0.5  
–1  
0
–0.25  
–0.5  
–0.75  
–1  
–FS  
MAX ꢁIL  
MAX DIL  
MꢁI DIL  
MꢁI ꢁIL  
+FS  
–0.5  
–1.5  
–1  
–2  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238116 G10  
238116 G11  
238116 G12  
Supply Current vs Temperature  
Shutdown Current vs Temperature  
Supply Current vs Sampling Rate  
1.5  
1
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
+ ꢁ  
+ ꢁ  
VDD OVDD REF  
VDD  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
REF  
OVDD  
0
0
50  
100  
150  
200  
250  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
SAMPLꢁIG RATE (kHz)  
TEMPERATURE (°C)  
238116 G13  
238116 G14  
238116 G15  
238116f  
7
LTC2381-16  
PIN FUNCTIONS  
CHAIN ꢂPin 1x: Chain Mode Selector Pin. When low, the  
LTC2381-16 operates in Iormal Mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2381-16 operates in Chain Mode and the RDL/SDꢁ  
pin functions as SDꢁ, the daisychain serial data input.  
RDꢀ/SDIPin12x:WhenCHAꢁIislow,thepartisinIormal  
Mode and the pin is treated as a bus enabling input. When  
CHAꢁI is high, the part is in chain mode and the pin is  
treated as a serial data input pin where data from another  
ADC in the daisychain is input.  
V
ꢂPin 2x: 2.5V Digital Power Supply. The range of  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
theconversionresultordaisychaindatafromanotherADC  
is shifted out on the rising edges of this clock MSꢀ first.  
DD  
DD  
V
is 2.375V to 2.625V. ypass V to GID with a 10μF  
DD  
ceramic capacitor.  
GND ꢂPins 3, 6, 10 and 16x: Ground.  
SDOPin14x:SerialDataOutput. Theconversionresultor  
daisychain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format.  
+
IN , IN ꢂPins 4, 5x: Positive and Iegative Differential  
Analog ꢁnputs.  
REF ꢂPins 7, 8x: Reference ꢁnput. The range of REF is 2.4V  
to 2.6V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0805 size).  
OV ꢂPin 15x: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). ꢀypass OV to GID with a 0.1μF capacitor.  
DD  
CNV ꢂPin 9x: Convert ꢁnput. A rising edge on this input  
initiates a new conversion. When the conversion is done,  
the part powers down as long as CIV is held high. When  
CIV is returned low, the part powers up in preparation  
for the next conversion.  
GND ꢂEꢃposed Pad Pin 17 – DFN Package Onlyx: Ground.  
Exposed pad must be soldered directly to the ground  
plane.  
ꢁUSY ꢂPin 11x: ꢀUSY indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished.  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 2.5V  
LTC2381-16  
+
CHAꢁI  
SDO  
RDL/SDꢁ  
SCK  
+
ꢁI  
SPꢁ  
PORT  
16-ꢀꢁT SAMPLꢁIG ADC  
ꢁI  
CIV  
COITROL LOGꢁC  
ꢀUSY  
GID  
238116 ꢀD01  
238116f  
8
LTC2381-16  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAꢁI, RDL/SDꢁ = 0  
CIV  
POWER-UP  
POWER-DOWI  
COIVERT  
ꢀUSY  
HOLD  
ACQUꢁRE  
SCK  
SDO  
D15 D14 D13 D2 D1 D0  
238116 TD01  
APPLICATIONS INFORMATION  
OVERVIEW  
CONVERTER OPERATION  
TheLTC2381-16isalownoise,lowpower,highspeed16-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2381-16 supports a  
large 2.5V fully differential input range, making it ideal  
for high performance applications which require a wide  
dynamicrange.TheLTC2381-16achieves 2LSILmax,  
no missing codes at 16-bits and 92dꢀ SIR.  
A rising edge on the CIV pin initiates a conversion. During  
the conversion phase, the 16-bit CDAC is sequenced  
throughasuccessiveapproximationalgorithm,effectively  
comparing the sampled input with binary-weighted  
fractions of the reference voltage (e.g. V /2, V /4 …  
REF  
REF  
V
REF  
/65536) using the differential comparator. At the end  
ofconversion,theCDACoutputapproximatesthesampled  
analog input. The ADC control logic then prepares the  
16-bit digital output code for serial transfer.  
Fast 250ksps throughput with no cycle latency makes the  
LTC2381-16 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2381-16  
dissipates only 3.25mW at 250ksps, while an auto  
power-down feature is provided to further reduce power  
dissipation during inactive periods.  
TRANSFER FUNCTION  
The LTC2381-16 digitizes the full-scale voltage of 2 × REF  
16  
into 2 levels, resulting in an LSꢀ size of 76μV with  
REF=2.5V.TheidealtransferfunctionisshowninFigure2.  
The output data is in 2’s complement format.  
The LTC2381-16 features a proprietary sampling  
architecture that enables the ADC to begin acquiring the  
next sample during the current conversion. The resulting  
extended acquisition time of 3.25μs allows the use of  
extremely low power ADC drivers.  
ANAꢀOG INPUT  
The analog inputs of the LTC2381-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
The analog inputs can be modeled by the equivalent  
238116f  
9
LTC2381-16  
APPLICATIONS INFORMATION  
circuit shown in Figure 3. The diodes at the input provide  
time is important even for DC inputs, because the ADC  
inputs draw a current spike when entering acquisition.  
ESD protection. ꢁn the acquisition phase, each input sees  
approximately45pF(C )fromthesamplingCDACinseries  
ꢁI  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2381-16. The amplifier  
provides low output impedance which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
with 40ꢂ (R ) from the on-resistance of the sampling  
OI  
switch.Anyunwantedsignalthatiscommontobothinputs  
will be reduced by the common mode rejection of the  
ADC. The inputs draw a current spike while charging the  
C capacitors during acquisition. When the LTC2381-16  
ꢁI  
is not acquiring the input, the analog inputs draw only a  
small leakage current.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Another filter network consisting of LPF2 and the 100Ω  
series input resistors should be used between the buffer  
and ADC inputs to both minimize the noise contribution  
of the buffer and to help minimize disturbances reflected  
into the buffer from sampling transients. Long RC time  
constants at the analog inputs will slow down the settling  
of the analog inputs. Therefore, LPF2 requires a wider  
bandwidth than LPF1. A buffer amplifier with a low noise  
density must be selected to minimize degradation of the  
SIR. With the 482kHz lowpass filter shown in Figure 4,  
the LT6350 provides the full data sheet performance of  
the LTC2381-16.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
INPUT VOLTAGE (V)  
238116 F02  
Figure 2. TC2381-16 Transfer Function  
REF  
C
ꢁI  
R
R
OI  
+
ꢁI  
ꢁI  
ꢀꢁAS  
VOLTAGE  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
REF  
C
ꢁI  
OI  
238116 F03  
Figure 3. The Equivalent Circuit for the  
Differential Analog Input of the TC2381-16  
LPF2  
50Ω  
SꢁIGLE-EIDED-  
ꢁIPUT SꢁGIAL  
100Ω  
LPF1  
+
ꢁI  
ꢁI  
INPUT DRIVE CIRCUITS  
500Ω  
3300pF  
LTC2381-16  
LT6350  
A low impedance source can directly drive the high  
impedance inputs of the LTC2381-16 without gain error.  
A high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the  
distortion performance of the ADC. Minimizing settling  
6600pF  
50Ω  
100Ω  
ꢀW = 482kHz  
238116 F04  
SꢁIGLE-EIDED-  
TO-DꢁFFEREITꢁAL  
DRꢁVER  
ꢀW = 48kHz  
Figure 4. Input Signal Chain  
238116f  
10  
LTC2381-16  
APPLICATIONS INFORMATION  
Single-Ended-to-Differential Conversion  
The LT6350 can also be used to buffer and convert large,  
truebipolarsignalswhichswingbelowgroundtothe 2.5V  
differential input range of the LTC2381-16. Figure 7 shows  
theLT6350beingusedtoconverta 10Vtruebipolarsignal  
for use by the LTC2381-16. The input impedance is again  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2381-16. The LT6350 ADC  
driver is recommended for performing single-ended-to-  
differential conversions.The LT6350 is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the 2.5V differential input range of the  
LTC2381-16. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2381-16 up to 125°C.  
set by resistor R . Table 2 shows the resulting SIR and  
ꢁI  
THDforseveralvaluesofR .Figure7ashowstheresulting  
ꢁI  
FFT when using the LT6350 as shown in Figure 7.  
LT6350  
OUT1  
OUT2  
0V to  
2.5V  
4
5
R
R
ꢁIT  
8
1
+
ꢁIT  
0V to 2.5V  
Figure 5 shows the LT6350 being used to convert a 0V  
to 2.5V single-ended input signal. ꢁn this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5a,  
the LT6350 drives the LTC2381-16 to full datasheet  
performance without degrading the SIR or THD .  
+
2.5V to  
0V  
2
+
V
= V /2  
REF  
CM  
238116 F05  
Figure 5. T6350 Converting a 0V-2.5V Single-Ended Signal  
to a 2.5V Differential Input Signal  
The LT6350 can also be used to buffer and convert  
single-ended signals larger than the input range of the  
LTC2381-16 in order to maximize the signal swing that  
can be digitized. Figure 6 shows the LT6350 converting a  
0V-5V single-ended input signal to the 2.5V differential  
input range of the LTC2381-16. ꢁn this case, the first  
amplifier in the LT6350 is configured as an inverting  
amplifier stage, which acts to attenuate the input signal  
down to the 0V-2.5V input range of the LTC2381-16. ꢁn the  
inverting amplifier configuration, the single-ended input  
signal source no longer directly drives a high impedance  
input of the first amplifier. The input impedance is instead  
0
SIR = 91.8dꢀ  
–20  
–40  
THD = –106dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 107dꢀ  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
FREQUEICY (kHz)  
set by resistor R . R must be chosen carefully based on  
ꢁI ꢁI  
238116 F05a  
the source impedance of the signal source. Higher values  
Figure 5a. 32k Point FFT Plot for Circuit Shown in Figure 5  
of R tend to degrade both the noise and distortion of  
ꢁI  
the LT6350 and LTC2381-16 as a system. R1, R2 and R3  
must be selected in relation to R to achieve the desired  
ꢁI  
attenuation and to maintain a balanced input impedance  
in the first amplifier. Table 1 shows the resulting SIR  
and THD for several values of R , R1, R2 and R3 in this  
ꢁI  
configuration. Figure 6a shows the resulting FFT when  
using the LT6350 as shown in Figure 6.  
238116f  
11  
LTC2381-16  
APPLICATIONS INFORMATION  
V
V
REF  
CM  
R2 = 1.24k  
200pF  
R2 = 1k  
150pF  
LT6350  
LT6350  
OUT1  
OUT2  
2.5V to  
0V  
4
5
OUT1  
OUT2  
2.5V to  
0V  
4
5
R
R
V
8
+
ꢁIT  
ꢁIT  
R
R
ꢁIT  
8
+
ꢁIT  
10μF  
R4 = 1.1k  
R3 = 10k  
10μF  
R4 = 680Ω  
R3 = 2k  
+
+
0V to  
2.5V  
0V to  
2.5V  
1
2
1
2
R
= 2k  
R1 = 1k  
R = 10k  
ꢁI  
ꢁI  
R1 = 1.24k  
+
+
V
= V /2  
REF  
= V /2  
REF  
CM  
CM  
75pF  
0V to 5V  
10V  
238116 F06  
220pF  
238116 F07  
Figure 6. T6350 Converting a 0V-5V Single-Ended Signal to  
a 2.5V Differential Input Signal  
Figure 7. T6350 Converting a 10V Single-Ended Signal to  
a 2.5V Differential Input Signal  
0
0
SIR = 91.7dꢀ  
SIR = 91.8dꢀ  
–20  
–40  
THD = –100dꢀ  
SꢁIAD = 91.2dꢀ  
SFDR = 103.5dꢀ  
–20  
–40  
THD = –95.5dꢀ  
SꢁIAD = 91.4dꢀ  
SFDR = 96.9dꢀ  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
238116 F06a  
238116 F07a  
Figure 6a. 32k Point FFT Plot for Circuit Shown in Figure 6  
Table 1. SNR, THD vs RIN for 0-5V Single-Ended Input Signal  
Figure 7a. 32k Point FFT Plot for Circuit Shown in Figure 7  
Table 2. SNR, THD vs RIN for 10V Single-Ended Input Signal  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
IN  
IN  
ꢂΩx  
ꢂΩx  
2k  
1k  
5k  
1k  
5k  
2k  
680  
3.3k  
16k  
92  
91  
91  
–100  
–100  
–97  
10k  
1.24k  
6.19k  
12.4k  
1.24k  
6.19k  
12.4k  
10k  
50k  
1.1k  
5.49k  
11k  
92  
91  
91  
–96  
–96  
–97  
10k  
50k  
10k  
50k  
50k  
25k  
25k  
100k  
100k  
ADC REFERENCE  
use with the LTC2381-16. The LTC6652-2.5 offers 0.05%  
(max) initial accuracy and 5ppm/°C (max) temperature  
coefficientforhighprecisionapplications.TheLTC6652-2.5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2381-16 up to 125°C. We recommend bypassing the  
LTC6652-2.5 with a 47μF ceramic capacitor (X5R, 0805  
size) close to the REF pin. All performance curves shown  
TheLTC2381-16requiresanexternalreferencetodefineits  
input range. A low noise, low temperature drift reference  
is critical to achieving the full datasheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications. Withitssmallsize, lowpowerandhigh  
accuracy, the LTC6652-2.5 is particularly well suited for  
in this datasheet were obtained using the LTC6652-2.5.  
238116f  
12  
LTC2381-16  
APPLICATIONS INFORMATION  
TheREFpinoftheLTC2381-16drawscharge(Q  
)from  
COIV  
V
OUT_S  
LTC6655-2.5  
the 47μF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
V
OUT_F  
1Ω  
47μF  
= Q  
/t . The DC current draw of the REF pin,  
REF  
REF  
COIV CYC  
REF  
, depends on the sampling rate and output code. ꢁf  
the LTC2381-16 is used to continuously sample a signal  
at a constant rate, the LTC6652-2.5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢀs.  
LTC2381-16  
238116 F09  
Figure 9. TC6655-2.5 Driving REF of TC2381-16  
When idling, the REF pin on the LTC2381-16 draws only a  
smallleakagecurrent(<1μA).napplicationswhereaburst  
of samples is taken after idling for long periods as shown  
0
SIR = 91.8dꢀ  
in Figure 8, ꢁ quickly goes from approximately 0μA to  
–20  
–40  
THD = –106dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 107dꢀ  
REF  
a maximum of 285μA at 250ksps. This step in DC current  
draw triggers a transient response in the reference that  
must be considered since any deviation in the reference  
outputvoltagewillaffecttheaccuracyoftheoutputcode.n  
applications where the transient response of the reference  
is important, the fast settling LTC6655-2.5 reference  
is recommended. ꢁnserting a 1Ω resistor between the  
47μF bypass capacitor and reference output as shown in  
Figure 9 helps to improve the transient settling time and  
minimize the reference voltage deviation.  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
FREQUEICY (kHz)  
238116 F10  
Figure 10. 32k Point FFT of the TC2381-16  
DYNA(IC PERFOR(ANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
andanalyzingthedigitaloutputusinganFFTalgorithm,the  
ADC’s spectral content can be examined for frequencies  
outside the fundamental. The LTC2381-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
Signal-to-Noise and Distortion Ratio ꢂSINADx  
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 10 shows that the LTC2381-16 achieves  
a typical SꢁIAD of 92dꢀ at a 250kHz sampling rate with  
a 20kHz input.  
CIV  
ꢁDLE  
PERꢁOD  
ꢁDLE  
PERꢁOD  
238116 F08  
Figure 8. CNV Waveform Showing ꢁurst Sampling  
238116f  
13  
LTC2381-16  
APPLICATIONS INFORMATION  
Signal-to-Noise Ratio ꢂSNRx  
TI(ING AND CONTROꢀ  
CNV Timing  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 10 shows  
that the LTC2381-16 achieves a typical SIR of 92dꢀ at a  
250kHz sampling rate with a 20kHz input.  
The LTC2381-16 conversion is controlled by CIV. A rising  
edgeonCIVwillstartaconversion.Onceaconversionhas  
been initiated, it cannot be restarted until the conversion  
is complete. For optimum performance, CIV should be  
driven by a clean low jitter signal. Converter status is  
indicatedbytheUSYoutputwhichremainshighwhilethe  
conversion is in progress. To ensure that no errors occur  
in the digitized results, any additional transitions on CIV  
should occur within 40ns from the start of the conversion  
or after the conversion has been completed.  
Total Harmonic Distortion ꢂTHDx  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
ACQUISITION  
2
V22 + V32 + V42 ++ VI  
AproprietarysamplingarchitectureallowstheLTC2381-16  
to begin acquiring the input signal for the next conversion  
750nsafterthestartofthecurrentconversion.Thisextends  
theacquisitiontimeto3.25μs,easingsettlingrequirements  
and allowing the use of extremely low power ADC drivers.  
(Refer to the Timing Diagram.)  
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through V are the amplitudes of the  
I
second through Ith harmonics.  
1.4  
1.2  
1
POWER CONSIDERATIONS  
The LTC2381-16 provides two power supply pins: the 2.5V  
power supply (V ), and the digital input/output interface  
DD  
0.8  
0.6  
0.4  
0.2  
0
power supply (OV ). The flexible OV supply allows the  
DD  
DD  
LTC2381-16tocommunicatewithanydigitallogicoperating  
between 1.8V and 5V, including 2.5V and 3.3V systems.  
Power Supply Sequencing  
The LTC2381-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2381-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2381-16 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
reinitialize the ADC. Io conversions should be initiated  
until 20μs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
0
50  
100  
150  
200  
250  
SAMPLꢁIG RATE (kHz)  
238116 F11  
Figure 11. Power Supply Current of the TC2381-16  
Versus Sampling Rate  
Internal Conversion Clock  
The LTC2381-16 has an internal clock that is trimmed to  
achieve a maximum conversion time of 2.5μs.  
238116f  
14  
LTC2381-16  
APPLICATIONS INFORMATION  
Auto Power-Down  
DIGITAꢀ INTERFACE  
The LTC2381-16 automatically powers down after a  
conversion has been completed as long as CIV remains  
high.Duringpower-down,thedatafromthelastconversion  
can be clocked out. To minimize power dissipation during  
power-down, disable SDO and turn off SCK. To power up  
The LTC2381-16 has a serial digital interface. The flexible  
OV supply allows the LTC2381-16 to communicate with  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin  
when an external clock is applied to the SCK pin if SDO  
is enabled. Clocking out the data after the conversion will  
yield the best performance. With a shift clock frequency  
of at least 15MHz, a 250ksps throughput is still achieved.  
The serial output data changes state on the rising edge  
of SCK and can be captured on the falling edge or next  
rising edge of SCK. D15 remains valid till the first rising  
edge of SCK.  
the part, bring CIV low at least 200ns (t  
) before the  
COIVL  
initiation of the next conversion. The auto power-down  
feature will reduce the power dissipation of the LTC2381-  
16 as the sampling frequency is reduced. Since the time  
required to power up the part does not change at lower  
sample rates, the LTC2381-16 can remain powered-down  
for a larger fraction of the conversion cycle (t ), thereby  
CYC  
reducing the average power dissipation which scales  
linearly with sampling rate as shown in Figure 11.  
The serial interface on the LTC2381-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2381-16. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisy-chained.  
238116f  
15  
LTC2381-16  
TIMING DIAGRAM  
Normal (ode, Single Device  
Figure 12 shows a single LTC2381-16 operated in Iormal  
Mode with CHAꢁI and RDL/SDꢁ tied to ground. With RDL/  
SDꢁ grounded, SDO is enabled and the MSꢀ(D15) of the  
newconversiondataisavailableatthefallingedgeofUSY.  
This is the simplest way to operate the LTC2381-16.  
When CHAꢁI = 0, the LTC2381-16 operates in Iormal  
mode. ꢁn Iormal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high-impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
COIVERT  
DꢁGꢁTAL HOST  
ꢁRQ  
CIV  
CHAꢁI  
ꢀUSY  
LTC2381-16  
SCK  
RDL/SDꢁ  
SDO  
DATA ꢁI  
CLK  
238116 F10  
COIVERT  
POWER-DOWI  
POWER-UP  
COIVERT  
ACQUꢁRE  
CHAꢁI = 0  
ACQUꢁRE  
t
CYC  
t
CIVH  
t
CIV  
CIVL  
t
t
ACQ  
HOLD  
t
= t  
– t  
ACQ CYC HOLD  
ꢀUSY  
SCK  
t
COIV  
t
SCK  
t
ꢀUSYLH  
t
SCKH  
1
2
3
14  
15  
16  
t
SCKL  
t
HSDO  
t
DSDOꢀUSYL  
t
DSDO  
SDO  
D15  
D14  
D13  
D1  
D0  
238116 F10a  
(RDL/SDꢁ = 0)  
Figure 12. Using a Single TC2381-16 in Normal (ode  
238116f  
16  
LTC2381-16  
TIMING DIAGRAM  
Normal (ode, (ultiple Devices  
timeinordertoavoidbusconflicts. AsshowninFigure13,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO. To ensure the MSꢀ is properly  
output and captured, SCK must be held low at least 1ns  
before and 16ns after bringing RDL/SDꢁ low.  
Figure 13 shows multiple LTC2381-16 devices operating  
in Iormal Mode(CHAꢁI = 0) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
be used to allow only one LTC2381-16 to drive SDO at a  
RDL2  
RDL1  
COIVERT  
CIV  
CIV  
CHAꢁI  
ꢀUSY  
SDO  
ꢁRQ  
CHAꢁI  
LTC2381-16  
LTC2381-16  
A
DꢁGꢁTAL HOST  
SDO  
RDL/SDꢁ  
RDL/SDꢁ  
SCK  
SCK  
DATA ꢁI  
CLK  
238116 F11  
COIVERT  
POWER-DOWI  
COIVERT  
POWER-UP  
ACQUꢁRE  
CHAꢁI = 0  
CIV  
ACQUꢁRE  
t
CIVL  
t
HOLD  
ꢀUSY  
t
COIV  
t
ꢀUSYLH  
RDL/SDꢁ  
A
RDL/SDꢁ  
t
SCK  
t
t
SCKH  
HSCKRDL  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
t
t
SCKL  
SSCKRDL  
HSDO  
t
DꢁS  
t
DSDO  
t
EI  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
D13  
D1  
D0  
A
A
A
A
A
238116 F11a  
Figure 13. Normal (ode with (ultiple Devices Sharing CNV, SCK and SDO  
238116f  
17  
LTC2381-16  
TIMING DIAGRAM  
When CHAꢁI = OV , the LTC2381-16 operates in Chain  
This is useful for applications where hardware constraints  
maylimitthenumberoflinesneededtointerfacetoalarge  
number of converters. Figure 14 shows an example with  
two daisy chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 16 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
DD  
Mode. ꢁnChainMode,SDOisalwaysenabledandRDL/SDꢁ  
serves as the serial data input pin (SDꢁ) where daisychain  
data output from another ADC can be input.  
COIVERT  
OV  
OV  
DD  
DD  
CIV  
CIV  
CHAꢁI  
CHAꢁI  
DꢁGꢁTAL HOST  
LTC2381-16  
LTC2381-16  
RDL/SDꢁ  
SDO  
RDL/SDꢁ  
ꢀUSY  
SDO  
ꢁRQ  
A
DATA ꢁI  
SCK  
SCK  
CLK  
238116 F12  
COIVERT  
POWER-DOWI  
POWER-UP  
COIVERT  
ACQUꢁRE  
ACQUꢁRE  
CHAꢁI = OV  
DD  
RDL/SDꢁ = 0  
A
t
CYC  
t
CIVL  
CIV  
t
HOLD  
ꢀUSY  
t
COIV  
t
ꢀUSYLH  
t
SCKCH  
t
SCKH  
SCK  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
t
SSDꢁSCK  
SCKL  
t
HSDO  
t
HSDꢁSCK  
t
DSDO  
SDO = RDL/SDꢁ  
A
D15  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOꢀUSYL  
D15  
D14  
D13  
D1  
D15  
D14  
D1  
A
D0  
A
A
A
SDO  
238116 F14  
Figure 14. Chain (ode Timing Diagram  
238116f  
18  
LTC2381-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2381-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible.  
ꢁn particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
Recommended ꢀayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1571A, the  
evaluation kit for the LTC2381-16.  
Partial Top Silkscreen  
238116 F13  
238116f  
19  
LTC2381-16  
BOARD LAYOUT  
Partial ꢀayer 1 Component Side  
238116 ꢀL01  
Partial ꢀayer 2 Ground Plane  
238116 ꢀL02  
238116f  
20  
LTC2381-16  
BOARD LAYOUT  
Partial ꢀayer 3 PWR Plane  
238116 ꢀL03  
Partial ꢀayer 4 ꢁottom ꢀayer  
238116 ꢀL04  
238116f  
21  
LTC2381-16  
BOARD LAYOUT  
Partial Schematic of Demoboard  
R E F 1  
8
R E F  
1
G I D  
7
D D  
G I D 1 6  
O V  
1 5  
G I D  
1 0  
D D  
V
2
G I D  
6
3
3
2
1
3
2
1
238116f  
22  
LTC2381-16  
PACKAGE DESCRIPTION  
DE Package  
16-ꢀead Plastic DFN ꢂ4mm × 3mmx  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
R = 0.115  
0.40 0.10  
4.00 0.10  
(2 SꢁDES)  
TYP  
16  
9
0.70 0.05  
R = 0.05  
TYP  
3.30 0.05  
1.70 0.05  
3.30 0.10  
3.60 0.05  
2.20 0.05  
3.00 0.10  
(2 SꢁDES)  
PACKAGE  
OUTLꢁIE  
1.70 0.10  
PꢁI 1 IOTCH  
R = 0.20 OR  
0.35 s 45°  
PꢁI 1  
TOP MARK  
(SEE IOTE 6)  
CHAMFER  
(DE16) DFI 0806 REV Ø  
8
1
0.23 0.05  
0.45 ꢀSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 ꢀSC  
3.15 REF  
ꢀOTTOM VꢁEW—EXPOSED PAD  
3.15 REF  
0.00 – 0.05  
RECOMMEIDED SOLDER PAD PꢁTCH AID DꢁMEISꢁOIS  
APPLY SOLDER MASK TO AREAS THAT ARE IOT SOLDERED  
IOTE:  
1. DRAWꢁIG PROPOSED TO ꢀE MADE VARꢁATꢁOI OF VERSꢁOI (WGED-3) ꢁI JEDEC  
PACKAGE OUTLꢁIE MO-229  
2. DRAWꢁIG IOT TO SCALE  
3. ALL DꢁMEISꢁOIS ARE ꢁI MꢁLLꢁMETERS  
4. DꢁMEISꢁOIS OF EXPOSED PAD OI ꢀOTTOM OF PACKAGE DO IOT ꢁICLUDE  
MOLD FLASH. MOLD FLASH, ꢁF PRESEIT, SHALL IOT EXCEED 0.15mm OI AIY SꢁDE  
5. EXPOSED PAD SHALL ꢀE SOLDER PLATED  
6. SHADED AREA ꢁS OILY A REFEREICE FOR PꢁI 1 LOCATꢁOI OI THE  
TOP AID ꢀOTTOM OF PACKAGE  
(S Package  
16-ꢀead Plastic (SOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 p 0.102  
(.159 p .004)  
(IOTE 3)  
0.889 p 0.127  
(.035 p .005)  
0.280 p 0.076  
(.011 p .003)  
REF  
16151413121110  
9
3.00 p 0.102  
(.118 p .004)  
(IOTE 4)  
DETAꢁL “A”  
0o – 6o TYP  
5.23  
4.90 p 0.152  
(.193 p .006)  
3.20 – 3.45  
(.206)  
0.254  
(.010)  
(.126 – .136)  
MꢁI  
GAUGE PLAIE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
0.50  
(.0197)  
ꢀSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAꢁL “A”  
0.18  
(.007)  
RECOMMEIDED SOLDER PAD LAYOUT  
SEATꢁIG  
PLAIE  
IOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
1. DꢁMEISꢁOIS ꢁI MꢁLLꢁMETER/(ꢁICH)  
2. DRAWꢁIG IOT TO SCALE  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
ꢀSC  
3. DꢁMEISꢁOI DOES IOT ꢁICLUDE MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS.  
MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
4. DꢁMEISꢁOI DOES IOT ꢁICLUDE ꢁITERLEAD FLASH OR PROTRUSꢁOIS.  
ꢁITERLEAD FLASH OR PROTRUSꢁOIS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
5. LEAD COPLAIARꢁTY (ꢀOTTOM OF LEADS AFTER FORMꢁIG) SHALL ꢀE 0.102mm (.004") MAX  
238116f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2381-16  
TYPICAL APPLICATION  
ADC Driver: Single-Ended Input to Differential Output with Filter  
0
–20  
SIR = 91.8dꢀ  
THD = –106dꢀ  
SꢁIAD = 91.6dꢀ  
SFDR = 107dꢀ  
LPF2  
50Ω  
SꢁIGLE-EIDED  
ꢁIPUT SꢁGIAL  
–40  
LT6350  
LPF1  
500Ω  
100Ω  
100Ω  
+
4
5
ꢁI  
–60  
R
R
ꢁIT  
3300pF  
8
1
+
ꢁIT  
LTC2381-16  
–80  
6600pF  
ꢁI  
–100  
–120  
–140  
–160  
–180  
50Ω  
ꢀW = 482kHz  
+
238116 TA03  
2
ꢀW = 48kHz  
+
V
= V /2  
REF  
CM  
0
25  
50  
75  
100  
125  
FREQUEICY (kHz)  
238116 TA04  
RELATED PARTS  
PART NU(ꢁER  
DESCRIPTION  
CO((ENTS  
ADCs  
LT2383/LTC2382  
16-ꢀit, 1Msps/500ksps Serial ADC  
16-ꢀit, 1Msps Parallel/Serial ADC  
16-ꢀit, 500Ksps Parallel/Serial ADC  
16-ꢀit, 250Ksps Parallel/Serial ADC  
2.5V Supply, Differential ꢁnput, 92dꢀ SIR, 2.5V ꢁnput Range,16-Pin MSOP  
and 4mmx3mm16-Pin DFI Packages,Pin Compatible with the LTC2382-16  
LTC2393-16  
LTC2392-16  
LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2392-16, LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2392-16  
LTC1864/LTC1864L  
LTC1865/LTC1865L  
LTC2302/LTC2306  
16-bit, 250ksps/150ksps 1-channel μPower, ADC 5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
16-bit, 250ksps 2-channel μPower ADC  
5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
5V Supply, 14mW at 500ksps, 10-Pin DFI Package  
12-ꢀit, 500ksps, 1-/2-Channel, Low Ioise, ADC  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-10 Package  
DACs  
LTC2641  
16-ꢀit Single Serial V  
DACs  
DACs  
1LSꢀ ꢁIL, 1LSꢀ DIL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, ꢁnternal Reference, 1LSꢀ ꢁIL (12ꢀits)  
OUT  
LTC2630  
12-/10-/8-ꢀit Single V  
OUT  
REFERENCES  
LTC6652  
Precision Low Drift Low Ioise ꢀuffered Reference 2.5V, 5ppm/°C Max Tempco, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
Precision Low Drift Low Ioise ꢀuffered Reference 2.5V, 5ppm/°C Max Tempco, 0.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6655  
A(PꢀIFIERS  
LT6350  
Low Ioise Single-Ended-To-Differential ADC Driver Rai-to-Rail ꢁnput and Outputs, 240ns 0.01% Settling Time, DFI-8 or  
MSOP-8 Packages  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with Unity  
Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at 1MHz,  
TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢁnput/Output  
Ioise Low Power Amplifiers  
1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
LTC1992  
Low Power, Fully Differential ꢁnput/Output  
Amplifier/Driver Family  
1mA Supply Current  
238116f  
LT 0810 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2381CMS-16#PBF

LTC2381-16 - 16-Bit, 250ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear
Linear

LTC2381CMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381HMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381IDE-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381IMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2382-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2382CDE-16#PBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CDE-16#TRPBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CDE-16PBF

16-Bit, 500ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2382CMS-16#PBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CMS-16#TRPBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear