LTC2387IUH-16#PBF [Linear]

LTC2387-16 - 16-Bit, 15Msps SAR ADC; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C;
LTC2387IUH-16#PBF
型号: LTC2387IUH-16#PBF
厂家: Linear    Linear
描述:

LTC2387-16 - 16-Bit, 15Msps SAR ADC; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C

转换器
文件: 总22页 (文件大小:1149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2387-16  
16-Bit, 15Msps SAR ADC  
FEATURES  
DESCRIPTION  
TheLTC®2387-16isalownoise,highspeed,16-bit15Msps  
successive approximation register (SAR) ADC ideally  
suited for a wide range of applications. The combination  
of excellent linearity and wide dynamic range makes the  
LTC2387-16 ideal for high speed imaging and instru-  
mentation applications. No-latency operation provides a  
unique solution for high speed control loop applications.  
The very low distortion at high input frequencies enables  
communications applications requiring wide dynamic  
range and significant signal bandwidth.  
n
15Msps Throughput Rate  
n
No Pipeline Delay, No Cycle Latency  
n
93.8dB SNR (Typ) at f = 1MHz  
102dB SFDR (Typ) at f = 1MHz  
IN  
IN  
n
n
n
n
n
n
n
n
n
n
Nyquist Sampling Up to 7.5MHz Input  
Guaranteed 16-Bit, No Missing Codes  
±±.8LSB ꢀNL (Max)  
8.192V Differential ꢀnputs  
P-P  
5V and 2.5V Supplies  
ꢀnternal 2±ppm/°C (Max) Reference  
Serial LVDS ꢀnterface  
To support high speed operation while minimizing the  
number of data lines, the LTC2387-16 features a serial  
LVDS digital interface. The LVDS interface has one-lane  
and two-lane output modes, allowing the user to optimize  
the interface data rate for each application.  
125mW Power Dissipation  
32-Pin (5mm × 5mm) QFN Package  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 77±5765, 82329±5, 881±443. Other patents are pending.  
n
High Speed Data Acquisition  
n
ꢀmaging  
n
Communications  
n
Control Loops  
n
ꢀnstrumentation  
n
ATE  
TYPICAL APPLICATION  
FFT, fSMPL = 15Msps, fIN = 2kHz  
0
5V  
2.5V  
2.5V  
SNR = 94.0dB  
–20  
–40  
THD = –117dB  
SINAD = 93.9dB  
SFDR = 119dB  
0.1µF  
0.1µF  
0.1µF  
–60  
V
V
OV  
DD  
CLK  
DCO  
DA  
DD  
DDL  
24.9Ω  
+
LVDS  
INTERFACE  
IN  
4.096V  
–80  
82pF  
+
DB  
0V  
4.096V  
–100  
–120  
–140  
–160  
LTC2387-16  
TWOLANES  
TESTPAT  
PD  
82pF  
24.9Ω  
0V  
IN  
V
CM  
SAMPLE  
CLOCK  
CNV  
GND  
0.1µF  
REFBUF REFGND REFIN  
0
2.5  
5
7.5  
0.1µF  
FREQUENCY (MHz)  
238716 TA1b  
238716 TA01a  
10µF  
238716f  
1
For more information www.linear.com/LTC2387-16  
LTC2387-16  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (V , OV )...................................2.8V  
DDL  
DD  
Analog ꢀnput Voltage (Note 3)  
+
32 31 30 29 28 27 26 25  
ꢀN , ꢀN .........................(GND – ±.3V) to (V + ±.3V)  
DD  
+
GND  
1
2
3
4
5
6
7
8
24 CLK  
23 CLK  
REFBUF.........................(GND – ±.3V) to (V + ±.3V)  
DD  
+
IN  
REFꢀN (Note 4)...........................(GND – ±.3V) to 2.8V  
IN  
OV  
DD  
22  
21  
Digital ꢀnput Voltage (Note 3)  
GND  
REFGND  
REFGND  
REFBUF  
REFBUF  
GND  
33  
GND  
+
PD, TESTPAT ............. (GND – ±.3V) to (OV + ±.3V)  
20 DCO  
DD  
DD  
+
CLK , CLK ................ (GND – ±.3V) to (OV + ±.3V)  
DCO  
+
19  
+
18 DA  
17 DA  
TWOLANES, CNV ,  
CNV ...........................(GND – ±.3V) to (V  
+ ±.3V)  
DDL  
9
10 11 12 13 14 15 16  
Power Dissipation.............................................. 5±±mW  
Operating Temperature Range  
LTC2387C................................................ ±°C to 7±°C  
LTC2387ꢀ .............................................–4±°C to 85°C  
Storage Temperature Range .................. –65°C to 15±°C  
UH PACKAGE  
32-LEAD (5mm × 5mm) PLASTIC QFN  
= 125°C, θ = 34°C/W  
T
JMAX  
JA  
EXPOSED PAD (PꢀN 33) ꢀS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2387CUH-16#PBF  
LTC2387ꢀUH-16#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
32-Lead (5mm × 5mm) Plastic QFN  
32-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
±°C to 7±°C  
–4±°C to 85°C  
LTC2387CUH-16#TRPBF 238716  
LTC2387ꢀUH-16#TRPBF 238716  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 5±± unit reels through  
designated sales channels with #TRMPBF suffix.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
–±.1  
–±.1  
TYP  
MAX  
UNITS  
+
+
l
l
l
l
l
V
V
V
V
Absolute ꢀnput Range (ꢀN )  
V
V
+ ±.1  
V
V
ꢀN  
ꢀN  
ꢀN  
REFBUF  
REFBUF  
+
Absolute ꢀnput Range (ꢀN )  
(Note 6)  
+ ±.1  
+
– V  
ꢀnput Differential Voltage Range  
Common Mode ꢀnput Range  
Analog ꢀnput DC Leakage Current  
Analog ꢀnput Capacitance  
V
– V  
–V  
V
REFBUF  
V
ꢀN  
ꢀN  
ꢀN  
REFBUF  
+
(V + V )/2  
V
/2 – ±.1  
REFBUF  
V
/2  
V /2 + ±.1  
REFBUF  
V
ꢀNCM  
ꢀN  
ꢀN  
REFBUF  
–1  
1
μA  
ꢀN  
C
Sample Mode  
Hold Mode  
2±  
2
pF  
pF  
ꢀN  
CMRR  
ꢀnput Common Mode Rejection Ratio  
f
= 1MHz  
75  
dB  
ꢀN  
238716f  
2
For more information www.linear.com/LTC2387-16  
LTC2387-16  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
16  
Bits  
Transition Noise  
±.35  
±±.15  
±±.±6  
±±.4  
LSB  
RMS  
l
l
l
ꢀNL  
ꢀntegral Linearity Error  
Differential Linearity Error  
Zero-Scale Error  
REFBUF = 4.±96V (Notes 7, 9)  
(Note 8)  
–±.8  
–±.8  
–4  
±.8  
±.8  
4
LSB  
DNL  
ZSE  
LSB  
LSB  
Zero-Scale Error Drift  
Full-Scale Error  
±.±±5  
LSB/°C  
l
l
FSE  
REFBUF = 4.±96V (REFBUF Overdriven) (Notes 8, 9)  
REFꢀN = 2.±48V (REFꢀN Overdriven) (Note 8)  
–6.5  
–4±  
±1.3  
±7  
6.5  
4±  
LSB  
LSB  
Full-Scale Error Drift  
REFBUF = 4.±96V (REFBUF Overdriven) (Note 9)  
REFꢀN = 2.±48V (REFꢀN Overdriven)  
±±.1  
±1.5  
ppm/°C  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS. (Notes 5, 10)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
SꢀNAD  
Signal-to-(Noise + Distortion) Ratio  
f
ꢀN  
f
ꢀN  
f
ꢀN  
= 2kHz  
= 1MHz  
= 5MHz  
91  
91  
93.9  
93.2  
82.6  
dB  
dB  
dB  
l
l
SNR  
THD  
Signal-to-Noise Ratio  
f
f
f
= 2kHz  
= 1MHz  
= 5MHz  
91.2  
91.2  
94  
dB  
dB  
dB  
ꢀN  
ꢀN  
ꢀN  
93.8  
93.1  
l
l
Total Harmonic Distortion  
(First Five Harmonics)  
f
ꢀN  
f
ꢀN  
f
ꢀN  
= 2kHz  
= 1MHz  
= 5MHz  
–117  
–1±1  
–83  
–1±1  
–96  
dB  
dB  
dB  
l
l
SFDR  
Spurious Free Dynamic Range  
–3dB ꢀnput Bandwidth  
f
ꢀN  
f
ꢀN  
f
ꢀN  
= 2kHz  
= 1MHz  
= 5MHz  
1±±  
97  
119  
1±2  
84  
dB  
dB  
dB  
2±±  
MHz  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
= ±μA  
MIN  
TYP  
2.±48  
±5  
MAX  
2.±53  
±2±  
UNITS  
V
V
REFꢀN  
ꢀnternal Reference Output Voltage  
2.±43  
OUT  
l
l
V
REFꢀN  
Temperature Coefficient  
(Note 11)  
ppm/°C  
kΩ  
REFꢀN Output ꢀmpedance  
Line Regulation  
15  
V
REFꢀN  
V
= 4.75V to 5.25V  
DD  
±.3  
mV/V  
V
REFꢀN ꢀnput Voltage Range  
(REFꢀN Overdriven) (Note 6)  
2.±±8  
2.±48  
2.±88  
238716f  
3
For more information www.linear.com/LTC2387-16  
LTC2387-16  
REFERENCE BUFFER CHARACTERISTICS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
= 2.±48V  
MIN  
4.±9±  
4.±16  
TYP  
MAX  
4.1±2  
4.176  
1.8  
UNITS  
l
l
l
V
Reference Buffer Output Voltage  
REFBUF ꢀnput Voltage Range  
REFBUF Load Current  
V
4.±96  
4.±96  
V
V
REFBUF  
REFꢀN  
(REFBUF Overdriven) (Notes 6, 9)  
V
V
= 4.±96V (REFBUF Overdriven) (Notes 9, 12)  
= 4.±96V, Sleep Mode (REFBUF Overdriven) (Note 9)  
1.6  
±.5  
mA  
mA  
REFBUF  
REFBUF  
REFBUF  
l
V
Common Mode Output  
V
= 4.±96V, ꢀ = ±μA  
OUT  
2.±28  
2.±48  
15  
2.±68  
V
CM  
REFBUF  
V
Output ꢀmpedance  
–1mA < ꢀ  
< 1mA  
OUT  
Ω
CM  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PD, TESTPAT, TWOLANES  
l
l
l
V
V
High Level ꢀnput Voltage  
Low Level ꢀnput Voltage  
Digital ꢀnput Current  
V
V
V
= OV = 2.5V  
1.7  
V
V
ꢀH  
ꢀL  
DDL  
DDL  
DD  
= OV = 2.5V  
±.6  
1±  
DD  
ꢀN  
= ±V to 2.5V  
–1±  
μA  
pF  
ꢀN  
C
Digital ꢀnput Capacitance  
3
2
ꢀN  
+
CNV , Single-Ended Convert Start Mode (CNV Tied to GND)  
l
l
V
ꢀH  
V
ꢀL  
C
ꢀN  
High Level ꢀnput Voltage  
Low Level ꢀnput Voltage  
Digital ꢀnput Capacitance  
V
V
= 2.5V  
= 2.5V  
1.7  
V
V
DDL  
DDL  
±.6  
pF  
+
CNV /CNV , Differential Convert Start Mode  
l
l
V
V
Differential ꢀnput Voltage  
(Note 13)  
(Note 13)  
175  
±.8  
35±  
65±  
1.7  
mV  
V
ꢀD  
Common Mode ꢀnput Voltage  
1.25  
ꢀCM  
+
CLK /CLK (LVDS Clock Input)  
l
l
V
V
Differential ꢀnput Voltage  
175  
±.8  
35±  
65±  
1.7  
mV  
V
ꢀD  
Common Mode ꢀnput Voltage  
1.25  
ꢀCM  
+
+
+
DCO /DCO , DA /DA , DB /DB (LVDS Outputs)  
l
l
V
OD  
V
OS  
Differential Output Voltage  
1±±Ω Differential Load  
1±±Ω Differential Load  
247  
35±  
454  
mV  
V
Common Mode Output Voltage  
1.125  
1.25  
1.375  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
4.75  
TYP  
5
MAX  
5.25  
UNITS  
l
l
l
V
V
Supply Voltage  
Supply Voltage  
Supply Voltage  
V
V
V
DD  
(Note 6)  
2.375  
2.375  
2.5  
2.5  
2.625  
2.625  
DDL  
OV  
(Note 6)  
DD  
l
l
l
l
l
Supply Current  
15Msps Sample Rate  
15Msps Sample Rate  
15Msps Sample Rate  
Power-Down Mode (ꢀ  
Power-Down Mode (ꢀ  
5
31.4  
8.8  
1
6
mA  
mA  
mA  
μA  
VDD  
VDDL  
OVDD  
POWERDOWN  
POWERDOWN  
Supply Current  
35  
Supply Current  
Power-Down Mode Current  
Power-Down Mode Current  
1±.3  
2±  
25±  
)
VDD  
VDDL  
+ ꢀ  
OVDD  
)
2
μA  
l
l
P
Power Dissipation  
Power-Down Mode  
15Msps Sample Rate  
Power-Down Mode (ꢀ  
125  
1±  
144  
725  
mW  
μW  
D
+ ꢀ  
+ ꢀ  
)
OVDD  
VDD  
VDDL  
ꢀncrease in ꢀ  
ꢀncrease in ꢀ  
with Differential CNV Mode Enabled (No ꢀncrease During Power-Down)  
with Two-Lane Mode Enabled (No ꢀncrease During Power-Down)  
2.1  
3.6  
mA  
DꢀFFCNV  
VDDL  
OVDD  
mA  
TWOLANE  
238716f  
4
For more information www.linear.com/LTC2387-16  
LTC2387-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
±.±2  
54  
TYP  
MAX  
15  
UNITS  
Msps  
ns  
l
l
f
t
t
t
t
t
t
t
Sampling Frequency  
SMPL  
CONV  
ACQ  
CNVto Output Data Ready  
Acquisition Time  
58  
63  
t
– 39  
ns  
CYC  
l
l
l
l
l
Time Between Conversions  
CNV High Time  
66.6  
5
5±,±±±  
49  
ns  
CYC  
(Note 13)  
(Note 13)  
(Note 13)  
(Note 13)  
ns  
CNVH  
CNVL  
CNV Low Time  
8
ns  
CNVto First CLKfrom the Same Conversion  
65  
ns  
FꢀRSTCLK  
LASTCLK  
CNVto Last CLKfrom the Previous  
Conversion  
ns  
l
l
l
l
l
t
t
t
t
t
t
t
CLK High Time  
1.25  
1.25  
±.7  
ns  
ns  
ns  
ns  
ps  
ns  
CLKH  
CLKL  
CLK Low Time  
CLK to DCO Delay  
CLK to DA/DB Delay  
DCO to DA/DB skew  
Sampling Delay Time  
Sampling Delay Jitter  
(Note 13)  
(Note 13)  
1.3  
1.3  
±
2.3  
2.3  
2±±  
CLKDCO  
CLKD  
SKEW  
AP  
±.7  
t
– t  
(Note 13)  
CLKDCO  
–2±±  
CLKD  
(Note 13)  
(Note 13)  
±
±.25  
ps  
RMS  
JꢀTTER  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: ꢀntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 8: Zero-scale error is the offset voltage measured from –±.5LSB  
when the output code flickers between ±±±± ±±±± ±±±± ±±±± and  
1111 1111 1111 1111. Full-scale error is the worst-case deviation of the  
first and last code transitions from ideal and includes the effect of offset  
error.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above V  
,
DD  
V
or OV , they will be clamped by internal diodes. This product can  
DDL  
DD  
handle input currents up to 1±±mA below ground or above V , V  
or  
DD DDL  
OV without latchup.  
Note 4: When this pin voltage is taken below ground, it will be clamped by  
Note 9: When REFBUF is overdriven, the internal reference buffer must be  
turned off by setting REFꢀN = ±V.  
DD  
an internal diode. When this pin voltage is taken above V , it is clamped  
by a diode in series with a 2k resistor. This product can handle input  
currents up to 1±±mA below ground without latchup.  
Note 10: All specifications in dB are referred to a full-scale ±V  
differential input.  
Note 11: Temperature coefficient is calculated by dividing the maximum  
DDL  
REFBUF  
Note 5: V = 5V, V  
= 2.5V, OV = 2.5V, f = 15MHz,  
change in output voltage by the specified temperature range.  
DD  
DDL  
DD  
SMPL  
REFꢀN = 2.±48V, single-ended CNV, one-lane output mode unless  
otherwise noted.  
Note 6: Recommended operating conditions.  
Note 12: f  
= 15MHz, ꢀ  
varies linearly with sample rate.  
SMPL  
REFBUF  
Note 13: Guaranteed by design, not subject to test.  
238716f  
5
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 5V, VDDL = 2.5V, OVDD = 2.5V,  
REFIN = 2.048V, fSMPL = 15Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code (ppm)  
Differential Nonlinearity vs  
Output Code  
Integral Nonlinearity vs  
Output Code (LSB)  
0.5  
0.4  
0.5  
0.4  
6.0  
4.5  
0.3  
0.3  
3.0  
0.2  
0.2  
1.5  
0.1  
0.1  
0
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1.5  
–3.0  
–4.5  
–6.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
238716 G01a  
238716 G02  
238716 G01b  
32k Point FFT fSMPL = 15Msps,  
fIN = 2kHz  
32k Point FFT fSMPL = 15Msps,  
fIN = 200kHz  
DC Histogram  
225000  
200000  
175000  
150000  
125000  
100000  
75000  
50000  
25000  
0
0
–20  
0
–20  
σ = 0.35  
SNR = 94.0dB  
SNR = 94.0dB  
THD = –117dB  
THD = –109dB  
SINAD = 93.8dB  
SFDR = 109dB  
SINAD = 93.9dB  
–40  
–40  
SFDR = 119dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
N–3  
N–2  
N–1  
N
N+1  
N+2  
N+3  
0
2.5  
5
7.5  
0
2.5  
5
7.5  
OUTPUT CODE  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
238716 G03  
238716 G04  
238716 G05  
32k Point FFT fSMPL = 15Msps,  
fIN = 1MHz  
32k Point FFT fSMPL = 15Msps,  
fIN = 5MHz  
SNR, SINAD vs Input Frequency  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
0
–20  
0
–20  
SNR  
SNR = 93.1dB  
THD = –83dB  
SINAD = 82.6dB  
SFDR = 84dB  
SNR = 93.8dB  
THD = –102dB  
SINAD = 93.2dB  
SFDR = 103dB  
–40  
–40  
SINAD  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0.01  
0.1  
1
10  
0
2.5  
5
7.5  
0
2.5  
5
7.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
238716 G08  
238716 G07  
238716 G06  
238716f  
6
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 5V, VDDL = 2.5V, OVDD = 2.5V,  
REFIN = 2.048V, fSMPL = 15Msps, unless otherwise noted.  
THD vs Input Frequency  
and Amplitude  
SFDR vs Input Level, fIN = 2kHz  
SFDR vs Input Level, fIN = 1MHz  
150  
140  
130  
120  
110  
100  
90  
–70  
–80  
150  
140  
130  
120  
110  
100  
90  
–1dBFS  
–3dBFS  
–6dBFS  
–10dBFS  
dBFS  
dBFS  
–90  
–100  
–110  
–120  
–130  
–140  
dBc  
dBc  
80  
80  
70  
70  
60  
60  
50  
50  
–70 –60 –50 –40 –30 –20 –10  
0
–70 –60 –50 –40 –30 –20 –10  
0
0.01  
0.1  
1
10  
INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
FREQUENCY (MHz)  
238716 G11  
238716 G10  
238716 G09  
SNR, SINAD vs Temperature,  
THD, Harmonics vs Temperature,  
fIN = 2kHz, 1dBFS  
fIN = 2kHz, 1dBFS  
INL/DNL vs Temperature  
0.40  
0.30  
95  
94  
93  
92  
91  
–105  
–110  
–115  
–120  
–125  
SNR  
SINAD  
MAX INL  
MAX DNL  
MIN DNL  
MIN INL  
THD  
2ND  
3RD  
0.20  
0.10  
–0.00  
–0.10  
–0.20  
–0.30  
–0.40  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238716 G14  
238716 G13  
TEMPERATURE (°C)  
238716 G12  
Full-Scale Error vs Temperature,  
REFBUF = 4.096V  
Zero-Scale Error vs Temperature  
Supply Current vs Temperature  
35  
30  
25  
20  
15  
10  
5
1.5  
1.0  
1.5  
1.0  
0.5  
0.5  
+ FS  
I
I
I
VDDL  
VDD  
OVDD  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
– FS  
0
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238716 G15  
238716 G16  
238716 G17  
238716f  
7
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 5V, VDDL = 2.5V, OVDD = 2.5V,  
REFIN = 2.048V, fSMPL = 15Msps, unless otherwise noted.  
Analog Input Current  
vs Differential Input Voltage  
Internal Reference Output  
vs Temperature  
Supply Current vs Sample Rate  
35  
30  
25  
20  
15  
10  
5
1.00  
0.75  
0.50  
0.25  
0
2.050  
2.049  
2.048  
2.047  
f
= 15Msps  
SMPL  
THREE TYPICAL UNITS  
IN  
I
I
I
VDDL  
VDD  
OVDD  
–0.25  
–0.50  
–0.75  
–1.00  
+
IN  
0
0
5
10  
15  
–4.096  
–2.048  
0
2.048  
4.096  
–40  
–20  
0
20  
40  
60  
80  
SAMPLE RATE (MHz)  
DIFFERENTIAL INPUT (V)  
TEMPERATURE (°C)  
238716 G18  
238716 G19  
238716 G20  
PIN FUNCTIONS  
GND (Pins 1, 4, 10, 21, 26, 29 ): Ground. Connect to a  
can be applied to REFIN if a more accurate reference is  
required.Forincreasedfilteringofreferencenoise,bypass  
this pin to GND using a 0.1µF or larger ceramic capacitor.  
If the internal reference buffer is not used, tie REFIN to  
GND to power down the buffer and connect an external  
buffered reference to REFBUF.  
solid ground plane in the PCB underneath the ADC.  
+
IN , IN (Pins 2, 3): Positive and Negative Differential  
Analog Inputs. The inputs must be driven differentially  
and 180° out of phase, with a common mode voltage of  
2.048V.Thedifferentialinputrangeis±4.0ꢀ 6V(eachinput  
pin swings from 0V to 4.0ꢀ 6V.)  
V
(Pins 11, 12): 5V Analog Power Supply. The range  
DD  
together and bypassed to GND with 0.1μF and 10μF ce-  
ramic capacitors.  
DD  
of V is 4.75V to 5.25V. The two pins should be shorted  
REFGND (Pins 5, 6): Reference Ground. The two pins  
should be shorted together and connected to the refer-  
ence bypass capacitor with a short, wide trace. In ad-  
dition, connect the pins to the exposed pad (Pin 33). A  
suggested layout is shown in the ADC Reference section  
of the data sheet.  
PD (Pin 13): Digital input that enables power-down mode.  
When PD is low, the LTC2387 enters power-down mode,  
and all circuitry (including the LVDS interface) is shut  
down. When PD is high, the part operates normally. Logic  
REFBUF (Pins 7, 8): Internal Reference Buffer Output.  
The output voltage of the internal 2× gain reference buffer,  
nominally 4.0ꢀ 6V, is provided on this pin. The two pins  
should be shorted together and bypassed to REFGND with  
a 10µF (X7R, 0805 size) ceramic capacitor. If the internal  
buffer is not required, tie REFIN to GND to power down  
the buffer and connect an external 4.0ꢀ 6V reference to  
REFBUF.  
levels are determined by OV .  
DD  
TESTPAT (Pin 14): Digital input that forces the LVDS data  
outputs to be a test pattern. When TESTPAT is high, the  
digital outputs are a test pattern. When TESTPAT is low,  
the digital outputs are the ADC conversion result. Logic  
levels are determined by OV .  
DD  
+
+
DB /DB , DA /DA (Pins 15/16, 17/18): Serial LVDS  
+
REFIN(Pin9):InternalReferenceOutput/ReferenceBuffer  
Input. The output voltage of the internal reference, nomi-  
nally 2.048V, is output on this pin. An external reference  
Data Outputs. In one-lane output mode, DB /DB are not  
used and their LVDS driver is disabled to reduce power  
consumption.  
238716f  
8
For more information www.linear.com/LTC2387-16  
LTC2387-16  
PIN FUNCTIONS  
DCO /DCO (Pins 19/20): LVDS Data Clock Output. This  
is an echoed version of CLK /CLK that can be used to  
latch the data outputs.  
+
+
into the hold mode and starts a conversion cycle. CNV  
+
can also be driven with a 2.5V CMOS signal if CNV is  
tied to GND.  
OV (Pin 22): 2.5V Output Power Supply. The range of  
V
(Pins 30, 31): 2.5V Analog Power Supply. The  
DD  
DDL  
range of V  
OV is 2.375V to 2.625V. Bypass to GND with a 0.1μF  
is 2.375V to 2.625V. The two pins should  
DD  
DDL  
ceramic capacitor.  
be shorted together and bypassed to GND with 0.1μF and  
10μF ceramic capacitors.  
+
CLK /CLK (Pins 23/24): LVDS Clock Input. This is an  
externally applied clock that serially shifts out the conver-  
sion result.  
V
CM  
(Pin 32): Common Mode Output. V , nominally  
CM  
2.048V, can be used to set the common mode of the ana-  
log inputs. Bypass to GND with a 0.1μF ceramic capacitor  
TWOLANES (Pin 25): Digital input that enables two-lane  
close to the pin. If V is not used, the bypass capacitor  
CM  
output mode. When TWOLANES is high (two-lane output  
is not necessary as long as the parasitic capacitance on  
+
mode), the ADC outputs two bits at a time on DA /DA  
the V pin is under 10pF.  
+
CM  
and DB /DB . When TWOLANES is low (one-lane output  
+
mode), the ADC outputs one bit at a time on DA /DA , and  
Exposed Pad (Pin 33): The exposed pad on the bottom  
of the package. Connect to the ground plane of the PCB  
using multiple vias.  
+
DB /DB aredisabled.LogiclevelsaredeterminedbyV  
.
DDL  
+
CNV /CNV (Pins 27/28): Conversion Start LVDS Input.  
+
A rising edge on CNV puts the internal sample-and-hold  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DDL  
OV  
DD  
DD  
CNV  
TWOLANES  
CONTROL  
TESTPAT  
LOGIC  
PD  
CLK  
+
IN  
IN  
+
DCO  
SERIAL  
LVDS  
INTERFACE  
16-BIT, 15Msps ADC  
DA  
DB  
V
CM  
0.5  
15k  
2.048V  
REFERENCE  
2
GND  
REFGND  
REFBUF  
REFIN  
238716 BD  
238716f  
9
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TIMING DIAGRAM  
238716f  
10  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TIMING DIAGRAM  
238716f  
11  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
TIMING DIAGRAM  
Data Output Timing  
t
t
CLKL  
CLKH  
+
CLK  
CLK  
t
t
CLKDCO  
CLKDCO  
+
DCO  
DCO  
t
t
CLKD  
CLKD  
DA  
+
DA  
DB  
+
DB  
238716 TD03  
APPLICATIONS INFORMATION  
OVERVIEW  
CONVERTER OPERATION  
TheLTC2387-16isalownoise,highspeed,16-bitsucces-  
siveapproximationregister(SAR)ADC.Operatingfrom5V  
and 2.5V supplies, the LTC2387-16 has a fully differential  
±4.0ꢀ 6V input range, making it ideal for applications that  
require a wide dynamic range. The LTC2387-16 achieves  
±0.8 LSB INL (maximum), no missing codes at 16-bits  
and ꢀ 4dB SNR (typical).  
The LTC2387-16 operates in two phases. During the ac-  
quisition phase, the sample capacitors are connected to  
the analog input pins IN and IN to sample the differential  
analog input voltage. A rising edge on the CNV pin initiates  
a conversion. During the conversion phase, the ADC is  
sequencedthroughasuccessiveapproximationalgorithm,  
comparing the sampled input with binary-weighted frac-  
+
tions of the reference voltage (e.g. V  
/2, V  
/4  
REFBUF  
REFBUF  
The LTC2387-16 includes a precision internal 2.048V  
reference, with a guaranteed 0.25% initial accuracy and  
a ±20ppm/°C (maximum) temperature coefficient, as well  
as an internal reference buffer. The LTC2387-16 also has  
a high speed serial LVDS interface that can output one or  
two bits at a time. The fast 15Msps throughput with no  
pipeline latency makes the LTC2387-16 ideally suited for  
awidevarietyofhighspeedapplications.TheLTC2387-16  
dissipates only 125mW at 15Msps and has a power-down  
mode to reduce the power consumption to 10μW during  
inactive periods.  
… V  
/65536) using a differential comparator. At the  
REFBUF  
end of conversion, control logic prepares the 16-bit digital  
output code for serial transfer.  
TRANSFER FUNCTION  
The LTC2387-16 digitizes the full-scale voltage of 2×  
16  
REFBUF into 2 levels, resulting in an LSB size of 125μV  
withREFBUF=4.0ꢀ 6V.Theoutputdataisintwo’scomple-  
ment format. The ideal transfer function is shown in  
Figure 1. The ideal offset binary transfer function can be  
obtained from the two’s complement transfer function by  
invertingthemostsignificantbit(MSB)ofeachoutputcode.  
238716f  
12  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
The inputs draw a small current spike while charging the  
SAMPLE  
consistentanddoesnotdependonthepreviouslysampled  
input voltage. During conversion and power-down, the  
analog inputs draw only a small leakage current.  
011...111  
C
capacitorsduringacquisition.Thiscurrentspikeis  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Input Drive Circuits  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2387-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC signals because the ADC inputs  
draw a current spike when entering acquisition.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
–1 0V  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
238716 F01  
Figure 1. LTC2387-16 Transfer Function  
ANALOG INPUTS  
The LTC2387-16 has a fully differential ±4.0ꢀ 6V input  
range. The IN and IN pins should be driven 180 degrees  
out-of-phase with respect to each other, centered around  
a common mode voltage (IN + IN )/2 that is restricted  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2387-16. The ampli-  
fier provides low output impedance enabling fast settling  
of the analog signal during the acquisition phase. It also  
providesisolationbetweenthesignalsourceandthecurrent  
spike drawn by the ADC inputs when entering acquisition.  
+
+
to (V  
/2 ± 0.1V). The ADC samples and digitizes the  
REFBUF  
+
voltage difference between the two analog input pins (IN  
The LTC2387-16 is optimized for pulsed inputs that are  
fully settled when sampled, or dynamic signals up to the  
Nyquist frequency (7.5MHz). Input signals that change  
faster than 300mV/ns when they are sampled are not  
− IN ), and any unwanted signal that is common to both  
inputs is reduced by the common mode rejection ratio  
(CMRR) of the ADC. The analog inputs can be modeled  
by the equivalent circuit shown in Figure 2. The diodes  
and 10Ω resistors at the input provide ESD and overdrive  
protection. In the acquisition phase, each input sees ap-  
recommended. This is equivalent to an 8V sine wave  
P-P  
at 12MHz.  
proximately 18pF (C  
) from the sampling capacitor  
SAMPLE  
Input Filtering  
in series with 28Ω (R ) from the on-resistance of the  
ON  
sampling switch. C  
is a lumped capacitance on the  
The noise and distortion of the buffer amplifier and other  
supporting circuitry must be considered since they add  
to the ADC noise and distortion. A buffer amplifier with  
low noise density must be selected to minimize SNR  
degradation. A filter network should be placed between  
the buffer output and ADC input to both minimize the  
noise contribution of the buffer and reduce disturbances  
reflected into the buffer from ADC sampling transients. A  
simple one-pole lowpass RC filter is sufficient for many  
applications. It is important that the RC time constant of  
this filter be small enough to allow the analog inputs to  
PAR  
order of 2pF formed primarily of diode junctions.  
V
DD  
C
C
SAMPLE  
18pF  
10Ω  
28Ω  
28Ω  
+
IN  
C
PAR  
2pF  
BIAS  
VOLTAGE  
V
DD  
SAMPLE  
18pF  
10Ω  
C
IN  
settlewithintheADCacquisitiontime(t ),asinsufficient  
PAR  
ACQ  
2pF  
settling can limit INL and THD performance.  
238716 F02  
High quality capacitors and resistors should be used in  
Figure 2. Equivalent Circuit for the Differential Analog  
Inputs of the LTC2387-16  
the RC filters since these components can add distortion.  
238716f  
13  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
NPO type dielectric capacitors have excellent linearity.  
Carbon surface mount resistors can generate distortion  
from self-heating and from damage that may occur during  
soldering. Metal film surface mount resistors are much  
less susceptible to both problems.  
Input Currents  
One of the biggest challenges in coupling an amplifier to  
the LTC2387-16 is in dealing with current spikes drawn  
by analog inputs at the start of each acquisition phase.  
Theanaloginputsmaybemodeledasaswitchedcapacitor  
loadonthedrivecircuit.Adrivecircuitmayrelypartiallyon  
attenuating switched-capacitor current spikes with small  
filter capacitors placed directly at the ADC inputs and par-  
tially on the driver amplifier having sufficient bandwidth to  
recoverfromtheresidualdisturbance.Amplifiersoptimized  
for DC performance may not have sufficient bandwidth  
to fully recover at the ADC’s maximum conversion rate,  
whichcanproducenonlinearityandothererrors.Coupling  
filter circuits may be classified in two broad categories:  
Figure 3 shows a typical input drive circuit with an RC  
filter. The optimal values for R and C are application spe-  
cific and may require experimentation. Setting R = 24.9Ω  
gives good performance over a wide range of conditions.  
4.096V  
24.9Ω  
0V  
+
C
FILT  
IN  
LTC2387-16  
4.096V  
IN  
C
FILT  
Fully Settled – This case is characterized by filter time  
constants and an overall settling time that are consider-  
ably shorter than the sample period. When acquisition  
begins, the coupling filter is disturbed. For a typical first  
order RC filter, the disturbance will look like an initial step  
with an exponential decay. The amplifier will have its own  
response to the disturbance, which may include ringing. If  
the input settles completely (to within the accuracy of the  
LTC2387-16),thedisturbancewillnotcontributeanyerror.  
0V  
238716 F03  
24.9Ω  
Figure 3. Typical Input Drive Circuit  
The value for C  
involves a trade off: larger values give  
FILT  
betternoise,andsmallervaluesgivebetterfull-scaleerror.  
Figure 4 shows a range of capacitor values to consider as  
a starting point based on the sample rate.  
PartiallySettledInthiscase, thebeginningofacquisition  
causes a disturbance of the coupling filter, which then  
begins to settle out towards the nominal input voltage.  
However, acquisition ends (and the conversion begins)  
before the input settles to its final value. This generally  
produces a gain error, but as long as the settling is linear,  
no distortion is produced. The coupling filter’s response  
is affected by the amplifier’s output impedance and other  
parameters. A linear settling response to fast switched-  
capacitor current spikes can NOT always be assumed for  
precision, low bandwidth amplifiers. The coupling filter  
serves to attenuate the current spikes’ high-frequency  
energy before it reaches the amplifier.  
400  
350  
MAX VALUE (LOWER NOISE)  
300  
250  
200  
150  
100  
50  
MIN VALUE  
(LOWER FULL–SCALE ERROR)  
9
10  
11  
12  
13  
14  
15  
SAMPLE RATE (Msps)  
238716 F04  
Figure 4. Suggested Range of CFILT Values vs Sample Rate  
238716f  
14  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
ADC REFERENCE  
REFIN  
0.1µF  
10µF  
TheinternalreferencecircuitryoftheLTC2387-16isshown  
in Figure 5. There is a low noise, low drift (20ppm/°C),  
bandgapreferenceconnectedtoREFIN(Pin9).Aninternal  
reference buffer gains the REFIN voltage by 2× to 4.096V  
at REFBUF (Pins 7, 8). The voltage difference between  
REFBUFandREFGNDdeterminesthefull-scaleinputrange  
of the ADC. The reference and reference buffer can also  
be externally driven if desired.  
LTC2387-16  
REFBUF  
REFBUF  
REFGND  
REFGND  
238716 F06  
Figure 6. Configuration for Using the Internal Reference  
Figure 7 shows a suggested layout for the REFBUF capaci-  
tor. The capacitor should be connected to REFBUF and  
REFGND through short, wide traces. REFGND should also  
be connected with a wide trace to the grounded exposed  
pad (Pin 33).  
LTC2387-16  
15k  
REFIN  
2.048V  
9
REFERENCE  
REFBUF  
8
7
6
5
2×  
1
2
3
4
5
6
7
8
ADC  
CORE  
8k  
REFGND  
238716 F05  
Figure 5. LTC2387-16 Internal Reference Circuitry  
9
10 11 12  
Internal Reference with Internal Reference Buffer  
To use the internal reference and internal reference buf-  
fer, bypass REFIN to GND with a 0.1μF ceramic capacitor  
(Figure 6). Bypass REFBUF to REFGND with a single 10μF  
(X7R,0805size)ceramiccapacitor.TheREFBUFcapacitor  
shouldbeascloseaspossibletotheLTC2387-16package  
to minimize wiring inductance. Do not place this capaci-  
tor on the opposite side of the board. Adding a second,  
smaller capacitor in parallel with the 10μF may degrade  
performance and is not recommended.  
238716 F07  
Figure 7. Suggested REFBUF Bypass Capacitor Layout  
238716f  
15  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
External Reference with Internal Reference Buffer  
REFIN  
If more accuracy and/or lower drift is desired, REFIN can  
be directly overdriven by an external 2.048V reference as  
shown in Figure 8. Linear Technology offers a portfolio of  
high performance references designed to meet the needs  
of many applications. With its small size, low power, and  
high accuracy, the LTC6655-2.048 is well suited for use  
with the LTC2387-16 when overdriving the internal ref-  
erence. The LTC6655-2.048 offers 0.025% (max) initial  
accuracy and 2ppm/°C (max) temperature coefficient for  
highprecisionapplications.BypassingtheLTC6655-2.048  
with a 2.7μF to 10μF ceramic capacitor close to the REFIN  
pin is recommended.  
LTC2387-16  
LTC6655-4.096  
5V  
V
V
REFBUF  
REFBUF  
IN  
OUT_F  
SHDN  
V
OUT_S  
GND  
10µF  
0.1µF  
REFGND  
REFGND  
238716 F09  
Figure 9. Overdriving REFBUF Using the LTC6655-4.096  
Common Mode Output  
TheV pinisanoutputthatprovidesone-halfthevoltage  
CM  
present on the REFBUF pin. This voltage can be used to  
setthecommonmodeofadifferentialamplifierdrivingthe  
LTC6655-2.048  
analog inputs. Bypass V to GND with a 0.1μF ceramic  
CM  
5V  
V
V
V
REFIN  
IN  
SHDN  
OUT_F  
capacitor. If V is not used it can be left floating, but the  
CM  
OUT_S  
LTC2387-16  
2.7µF  
10µF  
GND  
0.1µF  
parasitic capacitance on the pin needs to be under 10pF.  
REFBUF  
REFBUF  
TheV outputhas1/fnoisewhichformostdrivercircuits  
CM  
will be removed by the ADC common mode rejection ratio.  
REFGND  
REFGND  
V
is not recommended for single-ended to differential  
CM  
238716 F08  
circuits that pass the V noise to only one ADC input.  
CM  
Figure 8. Using the LTC6655-2.048 as an External Reference  
DYNAMIC PERFORMANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2387-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
External Reference Buffer  
The internal reference buffer can also be overdriven with  
an external 4.096V reference at REFBUF as shown in  
Figure 9. To do so, REFIN must be grounded to disable  
the reference buffer. The external reference must have a  
fast transient response and be able to drive the 0.5mA  
to 1.6mA load at the REFBUF pin. The LTC6655-4.096 is  
recommended when overdriving REFBUF.  
238716f  
16  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
Signal-to-Noise and Distortion Ratio (SINAD)  
0
–20  
SNR = 94.0dB  
THD = –117dB  
SINAD = 93.9dB  
SFDR = 119dB  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure10showsthattheLTC2387-16achieves  
a typical SINAD of 93.9dB at a 15MHz sampling rate with  
a 2kHz input.  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
2.5  
5
7.5  
Signal-to-Noise Ratio (SNR)  
FREQUENCY (MHz)  
238716 F10  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 10 shows  
that the LTC2387-16 achieves a typical SNR of 94dB at a  
15MHz sampling rate with a 2kHz input.  
Figure 10. 32k Point FFT of the  
LTC2387-16, fSMPL = 15Msps, fIN = 2kHz  
POWER CONSIDERATIONS  
The LTC2387-16 requires three power supplies: V (5V),  
DD  
V
DDL  
(2.5V), and OV (2.5V). Bypass V to GND with  
DD DD  
a 0.1μF ceramic capacitor close to the pair of pins and a  
10μF ceramic capacitor in parallel. Bypass V to GND  
Total Harmonic Distortion (THD)  
DDL  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
with a 0.1μF ceramic capacitor close to the pair of pins  
and a 10μF ceramic capacitor in parallel. OV can come  
DD  
from the same source as V  
but it should be isolated  
by a ferrite bead and have its own 0.1μF bypass capacitor.  
DDL  
/2).  
SMPL  
Power Supply Sequencing  
2
V22 +V32 +V42 ++ Vn  
THD=20log  
The LTC2387-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2387-16  
has a power-on-reset (POR) circuit that will reset the  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
second through nth harmonics. Figure 10 shows that the  
LTC2387-16achievesatypicalTHDof117dBata15MHz  
sampling rate with a 2kHz input.  
n
LTC2387-16 at initial power-up or whenever V or V  
DD  
DDL  
drops well below their minimum values. Once the supply  
voltage re-enters the nominal supply voltage range, the  
POR will reinitialize the ADC.  
238716f  
17  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
Power-Down Mode  
+
edge of CNV should be driven by a clean low jitter signal.  
Note that the ADC is less sensitive to jitter on the falling  
When PD is pulled low, LTC2387-16 enters power-down  
mode. In this state, all internal functions, including the  
referenceandLVDSoutputs,areturnedoffandsubsequent  
conversionrequestsareignored. Thepowerconsumption  
drops to a typical value of 10µW. This mode can be used  
if the LTC2387-16 is inactive for a long period of time and  
the user wants to minimize power dissipation.  
+
edge of CNV .  
In applications that are insensitive to jitter, CNV can be  
driven directly from an FPGA.  
Internal Conversion Clock  
The LTC2387-16 has an internal clock that is trimmed  
to achieve a maximum conversion time of 63ns. With a  
typical acquisition time of 27.7ns, throughput perfor-  
mance of 15Msps is guaranteed.  
The amount of time required to recover from power-down  
modedependsonhowREFBUFisconfigured. Whenusing  
the internal reference buffer with a 10µF bypass capacitor,  
the ADC will stabilize after 20ms. If REFBUF is externally  
driven, the recovery time can be significantly less.  
DIGITAL INTERFACE  
The LTC2387-16 has a serial LVDS digital interface that  
is easy to connect to an FPGA. Three LVDS pairs are re-  
quired: CLK , DCO , and DA . A fourth LVDS pair, DB ,  
is optional (Figure 11).  
TIMING AND CONTROL  
CNV Timing  
±
±
±
±
+
TheLTC2387-16conversioniscontrolledbytheCNV and  
+
CNV inputs. CNV /CNV can be driven directly with an  
LTC2387-16  
FPGA  
+
+
CLK  
+
LVDS signal. Alternatively, CNV can be driven with a 0V  
100Ω  
to 2.5V CMOS signal when CNV is tied to GND. A rising  
+
CLK  
+
edge on CNV will sample the analog inputs and start a  
DCO  
+
+
conversion. The pulse width of CNV should meet the  
100Ω  
t
and t  
specifications in the timing table.  
+
CNVH  
CNVL  
DCO  
DA  
AftertheLTC2387-16ispoweredon, orexitspower-down  
mode, conversion data is invalid for the first two conver-  
sion cycles. Subsequent results are accurate as long as  
+
100Ω  
100Ω  
+
DA  
DB  
+
thetimebetweenconversionsmeetsthet specification.  
CYC  
OPTIONAL  
DB  
If the analog input signal has not completely settled when  
it is sampled, the ADC noise performance will be affected  
by jitter on the rising edge of CNV . In this case the rising  
238716 F11  
+
Figure 11. Digital Output Interface to an FPGA  
238716f  
18  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
The LVDS signals should be routed on the PC board as  
100Ω differential transmission lines and terminated at the  
receiver with 100Ω resistors.  
Data must be clocked out after the current conversion is  
complete,andbeforethenextconversionfinishes.Thevalid  
time window for clocking out data is shown in Figure 13.  
Note that it is allowed to be still clocking out data when  
the next conversion begins.  
+
A conversion is started by the rising edge of CNV . When  
the conversion is complete, the most-significant data bit  
±
is output on DA . Data is then ready to be shifted out by  
Two-Lane Output Mode  
±
applying a burst of eight clock pulses to the CLK input.  
±
±
At high sample rates the required LVDS interface data rate  
can reach >400Mbps. Most FPGAs can support this, but  
if a lower data rate is desired, the two-lane output mode  
can be used. When the TWOLANES input pin is tied high,  
The data on DA is updated by every edge of CLK . An  
±
±
echoed version of CLK is output on DCO . The edges of  
±
±
±
DA and DCO are aligned, so DCO can be used to latch  
±
DA in the FPGA. The timing of a single conversion is  
shown in Figure 12.  
CNV  
1
2
3
4
5
6
7
8
CLK  
DCO  
t
CONV  
D15  
14 13 12  
11 10 D9  
D8 D7  
D6 D5 D4  
D3 D2  
D1 D0  
LSB  
DA  
238716 F12  
MSB  
Figure 12. Timing Diagram for a Single Conversion in One-Lane Mode  
CONVERSION N  
CONVERSION N+1  
CNV  
CLK  
t
t
FIRSTCLK  
LASTCLK  
1
2
3
4
5
6
7
8
238716 F13  
TIME WINDOW FOR CLOCKING OUT CONVERSION N  
Figure 13. Valid Time Window for Clocking Out Data  
238716f  
19  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
APPLICATIONS INFORMATION  
±
the optional LVDS output DB is enabled, and data is out-  
(except for REFBUF). The traces connecting the pins and  
bypass capacitors must be kept short and should be made  
as wide as possible.  
±
±
±
put two bits at a time on DA and DB . Enabling the DB  
output increases the supply current from OV by about  
DD  
3.6mA. In two-lane mode, four clock pulses are required  
Of particular importance is the capacitor between REFBUF  
and REFGND, which should be a 10μF (X7R, 0805 size)  
ceramic capacitor. This capacitor should be on the same  
side of the circuit board as the ADC, and as close to the  
device as possible. Adding a second, smaller capacitor in  
parallel with the 10μF may degrade performance and is  
not recommended.  
±
for CLK (see Timing Diagrams).  
Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
ADC, there is a test mode that forces the ADC data outputs  
to known values:  
One-Lane Mode: 1010 0000 0111 1111  
Two-Lane Mode: 1100 1100 0011 1111  
Theanaloginputs,convertstart,anddigitaloutputsshould  
not be routed next to each other. Ground fill and grounded  
vias should be used as barriers to isolate these signals  
from each other.  
The test pattern is enabled when the TESTPAT pin is  
brought high.  
Exposed Package Pad  
BOARD LAYOUT  
For good electrical and thermal performance, the exposed  
pad on the bottom of the package must be soldered to a  
large grounded pad on the PC board. This pad should be  
connectedtotheinternalgroundplanesbyanarrayofvias.  
The LTC2387-16 requires a printed circuit board with a  
clean unbroken ground plane. A multilayer board with an  
internal ground plane in the first layer beneath the ADC is  
recommended. Layoutfortheprinted circuitboardshould  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
Mechanical Stress Shift  
The mechanical stress of mounting a part to a board can  
cause subtle changes to the SNR and internal voltage  
reference. The best soldering method is to use IR reflow  
or convection soldering with a controlled temperature  
profile. Hand soldering with a heat gun or a soldering iron  
is not recommended.  
High quality ceramic bypass capacitors should be used  
at the V , V , OV , V , REFIN, and REFBUF pins.  
DD DDL  
DD CM  
Bypass capacitors must be located as close to the pins as  
possible. Size 0402 ceramic capacitors are recommended  
238716f  
20  
For more information www.linear.com/LTC2387-16  
LTC2387-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2387-16#packaging for the most recent package drawings.  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693 Rev D)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
3.50 REF  
(4 SIDES)  
3.45 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
OR 0.35 × 45° CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.115  
TYP  
0.75 ±0.05  
5.00 ±0.10  
(4 SIDES)  
31 32  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 ±0.10  
3.50 REF  
(4-SIDES)  
3.45 ±0.10  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
238716f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
21  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2387-16  
TYPICAL APPLICATION  
Input Drive Circuit with Low Distortion up to 1MHz  
0
–20  
5V  
0.1µF  
2.5V 2.5V  
SNR = 93dB  
THD = –115dB  
SINAD = 93dB  
SFDR = 115dB  
0.1µF  
0.1µF  
–40  
4.096V  
24.9Ω  
0V  
–60  
V
V
OV  
DD  
DD  
DDL  
CLK  
DCO  
DA  
LVDS  
+
–80  
82pF  
IN  
INTERFACE  
1/2 LT6201  
f
IN  
< 1MHz  
DB  
LTC2387-16  
–100  
–120  
–140  
–160  
TWOLANES  
TESTPAT  
PD  
4.096V  
IN  
82pF  
0V  
REFBUF REFGND  
REFIN  
CNV  
15MHz  
SAMPLE  
CLOCK  
24.9Ω  
238716 TA02  
1/2 LT6201  
0.1µF  
0
2.5  
5
7.5  
10µF  
FREQUENCY (MHz)  
238716 TA02b  
128k Point FFT, fSMPL = 15Msps,  
fIN = 50kHz  
Low Power, Low Noise Input Drive Circuit for Signals up to 8kHz  
0
+7.5V  
SNR = 94.0dB  
4.096V  
–20  
THD = –114dB  
1/2 LT6237  
5.1Ω  
SINAD = 94.0dB  
SFDR = 116dB  
0V  
24.9Ω  
–40  
10nF  
20Ω  
f
< 8kHz  
C1  
–60  
–80  
+
IN  
IN  
27nF  
68pF  
4.096V  
LTC2387-16  
1/2 LT6237  
5.1Ω  
–100  
–120  
–140  
–160  
0V  
C2  
27nF  
IN  
68pF  
24.9Ω  
10nF  
20Ω  
238716 TA03  
-2.5V  
C1, C2: GRM3195C1H273JA01D OR OTHER NP0 CAPACITOR  
0
50  
100  
150  
200  
FREQUENCY (kHz)  
238716 TA03b  
128k Point FFT, fSMPL = 15Msps,  
fIN = 8kHz (Zoomed View)  
RELATED PARTS  
PART NUMBER DESCRIPTION  
ADCs  
COMMENTS  
LTC2378-20  
LTC2387-18  
LTC2271  
20-Bit, 1Msps, Low Power SAR ADC  
104dB SNR, 125dB THD, 21mW at 1Msps  
18-Bit, 15Msps SAR ADC  
95.7dB SNR, 102dB SFDR, ±3LSB INL (Max)  
84.1dB SNR, 99dB SFDR, 92mW per Channel  
16-Bit, 20Msps Serial Dual ADC  
References  
LTC6655  
Precision Low Drift Low Noise Buffered Reference 5V/2.5V/2.048V/1.2V, 2ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
Precision Low Drift Low Noise Buffered Reference 5V/2.5V/2.048V/1.2V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Amplifiers  
LT6200  
Low Noise Op-Amp  
0.95nV/√Hz, Up to 1.6GHz GBW  
238716f  
LT 1015 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2015  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2387-16  

相关型号:

LTC2389-16

16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog
Linear

LTC2389-18

16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog
Linear

LTC2389CLX-16#PBF

LTC2389-16 - 16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 96dB SNR; Package: LQFP; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2389CUK-16#PBF

LTC2389-16 - 16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 96dB SNR; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2389IUK-16#PBF

LTC2389-16 - 16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 96dB SNR; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2389IUK-18#PBF

LTC2389-18 - 18-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 99.8dB SNR; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2391-16

16-Bit, 250ksps SAR ADC with 94dB SNR
Linear

LTC2391CLX-16

16-Bit, 250ksps SAR ADC with 94dB SNR
Linear

LTC2391CLX-16#PBF

LTC2391-16 - 16-Bit, 250ksps SAR ADC with 94dB SNR; Package: LQFP; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2391CLX-16PBF

16-Bit, 250ksps SAR ADC with 94dB SNR
Linear

LTC2391CUK-16

16-Bit, 250ksps SAR ADC with 94dB SNR
Linear

LTC2391CUK-16#PBF

LTC2391-16 - 16-Bit, 250ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear