LTC2392CLX-16PBF [Linear]

16-Bit, 500ksps SAR ADC with 94dB SNR; 16位, 500KSPS SAR型ADC的SNR 94分贝
LTC2392CLX-16PBF
型号: LTC2392CLX-16PBF
厂家: Linear    Linear
描述:

16-Bit, 500ksps SAR ADC with 94dB SNR
16位, 500KSPS SAR型ADC的SNR 94分贝

文件: 总24页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2392-16  
16-Bit, 500ksps SAR ADC  
with 94dB SNR  
Features  
Description  
The LTC®2392-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2392-16 supports a large  
±±.ꢀ96V fully differential input range, making it ideal for  
high performance applications which require maximum  
dynamicrange.TheLTC2392-16achieves±2LSBINLmax,  
no missing codes at 16-bits and 9±dB SNR (typ).  
n
500ksps Throughput Rate  
n
±±2LS ꢀI2 ꢁ(aꢂx  
n
Guaranteed 16-Sit Io (issing Codes  
n
94dS LIR ꢁTypx at f = ±0kHz  
ꢀI  
n
Guaranteed Operation to 125/C  
n
Single 5V Supply  
n
1.8V to 5V IꢁO Voltages  
n
11ꢀmW Power Dissipation  
The LTC2392-16 includes a precision internal reference  
with a guaranteed ꢀ.5% initial accuracy and a ±2ꢀppmꢁ/C  
(max) temperature coefficient. Fast 5ꢀꢀksps throughput  
with no cycle latency in both parallel and serial interface  
modesmakestheLTC2392-16ideallysuitedforawideva-  
rietyofhighspeedapplications. Aninternaloscillatorsets  
theconversiontime,easingexternaltimingconsiderations.  
TheLTC2392-16dissipatesonly11ꢀmWat5ꢀꢀksps,while  
both nap and sleep power-down modes are provided to  
further reduce power during inactive periods.  
n
±±.ꢀ96V Differential Input Range  
n
Internal Reference (2ꢀppmꢁ/C Max)  
n
No Pipeline Delay, No Cycle Latency  
n
Parallel and Serial Interface  
Internal Conversion Clock  
n
n
±8-Pin 7mm × 7mm LQFP and QFN Packages  
applications  
n
Medical Imaging  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
High Speed Data Acquisition  
n
Digital Signal Processing  
Industrial Process Control  
Instrumentation  
ATE  
n
n
n
typical application  
16k Point FFT fL = 500ksps,  
fꢀI = ±0kHz  
5V  
5V  
0.1µF  
1.8V TO 5V  
4.7µF  
0
–20  
SNR = 94dB  
10µF  
0.1µF  
10µF  
THD –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
–40  
ANALOG INPUT  
0V TO 4.096V  
AVP  
DVP  
OVP  
PARALLEL  
OR  
SERIAL  
INTERFACE  
–60  
249Ω  
16 BIT  
+
IN  
–80  
–100  
–120  
–140  
–160  
2200pF  
249Ω  
LTC2392-16  
LT6350  
SER/PAR  
BYTESWAP  
OB/2C  
CS  
IN  
RD  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
BUSY  
VCM REFIN REFOUT CNVST PD RESET GND OGND  
10µF 1µF  
239216 TA01  
–180  
0
100  
150  
200  
250  
50  
SAMPLE CLOCK  
FREQUENCY (kHz)  
239216 G08  
239216f  
LTC2392-16  
absolute maximum ratings ꢁIotes 1, ±x  
Supply Voltage (V , V , V ) ..........................6.ꢀV  
Operating Temperature Range  
AVP DVP OVP  
Analog Input Voltage (Note 3)  
LTC2392C ................................................ ꢀ/C to 7ꢀ/C  
LTC2392I.............................................. –±ꢀ/C to 85/C  
LTC2392H .......................................... –±ꢀ/C to 125/C  
Storage Temperature Range................... –65/C to 15ꢀ/C  
+
IN , IN , REFIN, CNVST .. (GND – ꢀ.3V) to (V  
+ ꢀ.3V)  
+ ꢀ.3V)  
+ ꢀ.3V)  
AVP  
OVP  
OVP  
Digital Input Voltage........(GND – ꢀ.3V) to (V  
Digital Output Voltage .....(GND – ꢀ.3V) to (V  
Power Dissipation...............................................5ꢀꢀmW  
pin conFiguration  
TOP VIEW  
TOP VIEW  
GND 1  
AVP 2  
DVP 3  
36 VCM  
35 GND  
34 CNVST  
33 PD  
32 RESET  
31 CS  
GND  
AVP  
1
2
3
4
5
6
7
8
9
36 VCM  
35 GND  
34 CNVST  
33 PD  
32 RESET  
31 CS  
30 RD  
29 BUSY  
28 D15  
27 D14  
26 D13  
25 D12  
DVP  
SER/PAR 4  
GND 5  
OB/2C 6  
GND 7  
BYTESWAP 8  
D0 9  
SER/PAR  
GND  
OB/2C  
GND  
BYTESWAP  
D0  
49  
GND  
30 RD  
29 BUSY  
28 D15  
27 D14  
26 D13  
25 D12  
D1 10  
D2 11  
D3 12  
D1 10  
D2 11  
D3 12  
UK PACKAGE  
48-LEAD (7mm s 7mm) PLASTIC QFN  
LX PACKAGE  
T
JMAX  
= 125/C, θ = 29/CꢁW  
JA  
48-LEAD (7mm s 7mm) PLASTIC LQFP  
EXPOSED PAD (PIN ±9) IS GND, MUST BE SOLDERED TO PCB  
T
= 125/C, θ = 55/CꢁW  
JA  
JMAX  
orDer inFormation  
2EAD FREE FꢀIꢀLH  
LTC2392CUK-16#PBF  
LTC2392IUK-16#PBF  
2EAD FREE FꢀIꢀLH  
LTC2392CLX-16#PBF  
LTC2392ILX-16#PBF  
LTC2392HLX-16#PBF  
TAPE AID REE2  
PART (ARKꢀIG*  
PACKAGE DELCRꢀPTꢀOI  
TE(PERATURE RAIGE  
ꢀ/C to 7ꢀ/C  
LTC2392CUK-16#TRPBF LTC2392UK-16  
±8-Lead 7mm × 7mm Plastic QFN  
±8-Lead 7mm × 7mm Plastic QFN  
PACKAGE DELCRꢀPTꢀOI  
LTC2392IUK-16#TRPBF  
TRAY  
LTC2392UK-16  
PART (ARKꢀIG*  
LTC2392LX-16  
LTC2392LX-16  
LTC2392LX-16  
–±ꢀ/C to 85/C  
TE(PERATURE RAIGE  
ꢀ/C to 7ꢀ/C  
LTC2392CLX-16#PBF  
LTC2392ILX-16#PBF  
LTC2392HLX-16#PBF  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
–±ꢀ/C to 85/C  
–±ꢀ/C to 125/C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http:ꢁꢁwww.linear.comꢁleadfreeꢁ  
For more information on tape and reel specifications, go to: http:ꢁꢁwww.linear.comꢁtapeandreelꢁ  
239216f  
LTC2392-16  
analog input The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = ±5°C. ꢁIote 4x  
LY(SO2  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
–ꢀ.ꢀ5  
–ꢀ.ꢀ5  
TYP  
(AX  
AVP  
AVP  
UIꢀTL  
+
+
l
l
l
l
l
V
V
V
V
Absolute Input Range (IN )  
(Note 5)  
V
V
IN  
IN  
IN  
+
Absolute Input Range (IN )  
(Note 5)  
+
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Analog Input Leakage Current  
Analog Input Capacitance  
V
= V – V  
–V  
V
REF  
V
IN  
IN  
IN  
IN  
REF  
V
ꢁ2 – ꢀ.ꢀ5  
REF  
V
ꢁ2  
REF  
V
ꢁ2 + ꢀ.ꢀ5  
±1  
V
CM  
REF  
I
IN  
µA  
C
IN  
Sample Mode  
Hold Mode  
±5  
5
pF  
pF  
CMRR  
Input Common Mode Rejection Ratio  
7ꢀ  
dB  
converter characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LY(SO2  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
16  
TYP  
(AX  
UIꢀTL  
Bits  
l
l
Resolution  
No Missing Codes  
Transition Noise  
16  
Bits  
ꢀ.3  
±1  
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Bipolar Full-Scale Error  
(Note 6)  
(Note 7)  
–2  
–1  
–7  
2
1
7
LSB  
DNL  
BZE  
LSB  
LSB  
1
ppmꢁ/C  
l
FSE  
External Reference  
Internal Reference (Note 7)  
ꢀ.13  
ꢀ.1  
%
%
Bipolar Full-Scale Error Drift  
±1ꢀ  
ppmꢁ/C  
Dynamic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = ±5°C. AꢀI = –1dSFL ꢁIotes 4, 8x  
LY(SO2  
SINAD  
SNR  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
91  
TYP  
93.5  
9±  
(AX  
UIꢀTL  
dB  
l
l
l
Signal-to-(Noise + Distortion) Ratio  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
–3dB Input Bandwidth  
Aperture Delay  
f
f
f
f
= 2ꢀkHz  
IN  
IN  
IN  
IN  
= 2ꢀkHz  
92  
dB  
THD  
= 2ꢀkHz, First 5 Harmonics  
= 2ꢀkHz  
–1ꢀ3  
1ꢀ±  
5ꢀ  
–95  
dB  
SFDR  
dB  
MHz  
ns  
ꢀ.5  
7
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
6ꢀ  
ns  
239216f  
LTC2392-16  
internal reFerence characteristics The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
TYP  
±.ꢀ96  
±1ꢀ  
2.6  
(AX  
±.116  
±2ꢀ  
UIꢀTL  
V
V
REF  
V
REF  
V
REF  
Output Voltage  
Output Tempco  
Output Impedance  
I
I
= ꢀ  
±.ꢀ76  
OUT  
OUT  
l
= ꢀ (I-, H-Grades) (Note 11)  
ppmꢁ/C  
kΩ  
–ꢀ.1mA ≤ I  
≤ ꢀ.1mA  
OUT  
External Reference Voltage  
REFIN Input Impedance  
2.5  
±.ꢀ96  
85  
AVP – ꢀ.5  
V
kΩ  
V
Line Regulation  
AVP = ±.75V to 5.25V  
= ꢀ  
ꢀ.3  
mVꢁV  
V
REF  
VCM Output Voltage  
I
2.ꢀ8  
OUT  
Digital inputs anD Digital outputs The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LY(SO2  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
TYP  
(AX  
UIꢀTL  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
ꢀ.8 • OVP  
IH  
IL  
ꢀ.5  
1ꢀ  
V
I
IN  
V
= ꢀV to OVP  
IN  
–1ꢀ  
OVP – ꢀ.2  
–1ꢀ  
µA  
pF  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –5ꢀꢀµA  
O
V
OH  
OL  
I = 5ꢀꢀµA  
O
ꢀ.2  
1ꢀ  
V
I
I
I
V
V
V
= ꢀV to OVP  
= ꢀV  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
–1ꢀ  
1ꢀ  
SOURCE  
SINK  
= OVP  
power requirements The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LY(SO2  
, V  
PARA(ETER  
Supply Voltage  
Supply Voltage  
COIDꢀTꢀOIL  
(ꢀI  
±.75  
1.71  
TYP  
(AX  
5.25  
5.25  
UIꢀTL  
l
V
5
V
V
AVP DVP  
V
OVP  
l
l
I
DD  
Supply Current  
Power Down Mode  
5ꢀꢀksps Sample Rate with Nap Mode  
Conversion Done and All Digital Inputs Tied to OVP  
22  
35  
27  
25ꢀ  
mA  
µA  
P
D
Power Dissipation  
Power Down Mode  
5ꢀꢀksps Sample Rate with Nap Mode  
Conversion Done and All Digital Inputs Tied to OVP  
11ꢀ  
175  
135  
125ꢀ  
mW  
µW  
239216f  
LTC2392-16  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LY(SO2  
PARA(ETER  
COIDꢀTꢀOIL  
(ꢀI  
TYP  
(AX  
5ꢀꢀ  
UIꢀTL  
ksps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Sampling Frequency  
Conversion Time  
SMPL  
13ꢀꢀ  
685  
CONV  
Acquisition Time  
ns  
ACQ  
±
CNVST Low Time  
2ꢀ  
ns  
CNVST High Time  
25ꢀ  
ns  
5
C = 15pF  
L
15  
ns  
CNVSTto BUSY Delay  
RESET Pulse Width  
SCLK Period  
6
5
12.5  
±
ns  
7
(Note 9)  
ns  
8
SCLK High Time  
ns  
9
SCLK Low Time  
±
ns  
1ꢀ  
t , t  
SCLK Rise and Fall Times  
SDIN Setup Time  
(Note 1ꢀ)  
1
µs  
r
f
l
l
l
l
l
l
l
l
t
11  
t
12  
t
13  
t
1±  
t
15  
t
16  
t
17  
t
18  
2
1
2
ns  
SDIN Hold Time  
ns  
C = 15pF  
L
8
8
ns  
SDOUT Delay After SCLK↑  
SDOUT Delay After CS↓  
CSto SCLK Setup Time  
Data Valid to BUSY↓  
Data Access Time after RDor BYTESWAP↑  
Bus Relinquish Time  
ns  
2ꢀ  
1
ns  
ns  
1ꢀ  
ns  
1ꢀ  
ns  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iote 7: Bipolar zero error is the offset voltage measured from –ꢀ.5LSB  
when the output code flickers between ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 1111  
1111 1111 1111. Bipolar full-scale error is the worst-case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Iote ±: All voltage values are with respect to ground.  
Iote 8: All specifications in dB are referred to a full-scale ±±.ꢀ96V input  
with a ±.ꢀ96V reference voltage.  
Iote 3: When these pin voltages are taken below ground or above  
AVP, DVP or OVP, they will be clamped by internal diodes. This product can  
handle input currents up to 1ꢀꢀmA below ground or above AVP, DVP or  
OVP without latchup.  
Iote 9: t of 8ns maximum allows a shift clock frequency up to  
13  
2 • (t + t  
) for falling edge capture with 5ꢀ% duty cycle and up to  
SETUP  
13  
8ꢀMHz for rising capture. t  
is the set-up time of the receiving logic.  
SETUP  
Iote 4: AVP = DVP = OVP = 5V, f  
= 5ꢀꢀksps, external reference equal  
SMPL  
to ±.ꢀ96V unless otherwise noted.  
Iote 10: Guaranteed by design.  
Iote 5: Recommended operating conditions.  
Iote 11: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Iote 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
4V  
t
WIDTH  
0.5V  
50%  
50%  
t
t
DELAY  
DELAY  
239216 F01  
4V  
4V  
0.5V  
0.5V  
Figure 1. Voltage 2evels for Timing Lpecifications  
239216f  
LTC2392-16  
typical perFormance characteristics TA = ±5°C, fL(P2 = 500ksps, unless otherwise noted.  
ꢀntegral Ionlinearity  
vs Output Code  
Differential Ionlinearity  
vs Output Code  
DC Histogram  
ꢁEꢂternal Referencex  
1.5  
1.0  
2000000  
1800000  
1600000  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
32764  
32766 32768 32770 32772  
CODE  
0
16384  
32768  
49152  
65536  
32768  
0
16384  
49152  
65536  
OUTPUT CODE  
OUTPUT CODE  
239216 G02  
239216 G03  
239216 G01  
DC Histogram  
ꢁꢀnternal Referencex  
ꢀnternal Reference Output  
vs Temperature  
Offset Error vs Temperature  
2000000  
1800000  
1600000  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
4.0945  
4.0940  
4.0935  
4.0930  
4.0925  
1.0  
0.8  
TC = 4ppm/°C  
0.6  
0.4  
0.2  
0
32764 32766 32768 32770 32772  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
CODE  
TEMPERATURE (°C)  
239216 G04  
239216 G06  
239216 G05  
16k Point FFT fL = 500ksps,  
fꢀI = ±0kHz  
16k Point FFT fL = 500ksps,  
fꢀI = 100kHz  
Full-Lcale Error vs Temperature  
10  
8
0
–20  
0
–20  
SNR = 94dB  
SNR = 94dB  
THD –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
THD –97.3dB  
SINAD = 92.3dB  
SFDR = 101.7dB  
6
–40  
–40  
4
–60  
–60  
2
–80  
–80  
0
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–2  
–4  
–6  
–8  
–10  
–180  
–180  
–55 –35 –15  
5
25 45 65 85 105 125  
0
100  
150  
200  
250  
50  
0
100  
150  
200  
250  
50  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
239216 G07  
239216 G08  
239216 G09  
239216f  
LTC2392-16  
typical perFormance characteristics TA = ±5°C, fL(P2 = 500ksps, unless otherwise noted.  
THD, Harmonics  
vs ꢀnput Frequency  
LIR, LꢀIAD at fꢀI = ±0kHz  
vs Temperature  
LIR, LꢀIAD vs ꢀnput Frequency  
96  
94  
92  
90  
88  
86  
84  
82  
80  
96  
95  
94  
93  
92  
–70  
–75  
SNR  
–80  
SINAD  
–85  
SNR  
–90  
–95  
SINAD  
THD  
3RD  
–100  
–105  
–110  
–115  
–120  
2ND  
100 125  
0
25 50 75  
150 175 200  
100 125  
85  
105 125  
0
25 50 75  
150 175 200  
–55 –35 –15  
5
25 45 65  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
239216 G10  
239216 G11  
239216 G12  
THD, Harmonics at fꢀI = ±0kHz  
vs Temperature  
Lupply Current vs Lampling  
Frequency  
LIR, LꢀIAD vs ꢀnput 2evel  
30  
95.0  
94.5  
94.0  
93.5  
93.0  
–95  
–100  
–105  
–110  
–115  
–120  
SNR  
25  
20  
SINAD  
THD  
2ND  
3RD  
15  
10  
5
0
–20  
–10  
–40  
0
0.1  
1
10  
100  
1000  
–30  
–55 –35 –15  
5
25 45 65 85 105 125  
SAMPLING FREQUENCY (kHz)  
TEMPERATURE (°C)  
INPUT LEVEL (dB)  
239216 G15  
239216 G14  
239216 G13  
Power-Down Current  
vs Temperature  
Lupply Current vs Temperature  
90  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
AVP  
DVP  
DVP  
OVP  
AVP  
OVP  
0
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
239216 G17  
239216 G16  
239216f  
LTC2392-16  
pin Functions  
GID ꢁPins 1, 5, 7, ±0, 35, 41, 44, 48, Eꢂposed Pad Pin  
49x: Ground. All GND pins must be connected to a solid  
ground plane. Exposed pad must be soldered directly to  
the ground plane.  
D6 ꢁPin 15x: Data Bit 6. When SERꢁPAR = ꢀ this pin is  
Bit 6 of the parallel port data output bus.  
D7 ꢁPin 16x: Data Bit 7. When SERꢁPAR = ꢀ this pin is  
Bit 7 of the parallel port data output bus.  
AVP ꢁPins ±, 40, 45, 46, 47x: 5V Analog Power Supply.  
The range of AVP is ±.75V to 5.25V. Bypass AVP to GND  
with a good quality ꢀ.1µF and a 1ꢀµF ceramic capacitor  
in parallel.  
OGID ꢁPin 17x: Digital Ground for the InputꢁOutput  
Interface.  
OVP ꢁPin 18x: Digital Power Supply for the InputꢁOutput  
Interface. The range for OVP is 1.8V to 5V. Bypass OVP  
to OGND with a good quality ±.7µF ceramic capacitor  
close to the pin.  
DVP ꢁPins 3, 19x: 5V Digital Power Supply. The range of  
DVP is ±.75V to 5.25V. Bypass DVP to GND with a good  
quality ꢀ.1µF and a 1ꢀµF ceramic capacitor in parallel.  
D8 ꢁPin ±1x: Data Bit 8. When SERꢁPAR = ꢀ this pin is  
Bit 8 of the parallel port data output bus.  
LER/PAR ꢁPin 4x: SerialꢁParallel Selection Input. This pin  
controls the digital interface. A logic high on this pin se-  
lects the serial interface and a logic low selects the parallel  
interface. In the serial mode the non-active digital outputs  
are high impedance.  
D9/LDꢀI ꢁPin ±±x: Data Bit 9ꢁSerial Data Input. When  
SERꢁPAR = ꢀ this pin is Bit 9 of the parallel port data  
output bus. When SERꢁPAR = 1, (serial mode) this is  
the serial data input. SDIN can be used as a data input to  
daisy-chain two or more conversion results into a single  
SDOUT line. The digital data level on SDIN is output on  
SDOUT with a delay of 16 SCLK periods after the start of  
the read sequence.  
OS/2C ꢁPin 6x: Offset BinaryꢁTwo’s Complement Input.  
When OBꢁ2C is high, the digital output is offset binary.  
When low, the MSB is inverted resulting in two’s comple-  
ment output.  
SYTELWAP ꢁPin 8x: BYTESWAP Input. With BYTESWAP  
low, data will be output with Pin 28 (D15) being the  
MSB and Pin 9 (Dꢀ) being the LSB. With BYTESWAP  
high, the upper eight bits and the lower eight bits will  
be switched. The MSB is output on Pin 16 and Bit 8 is  
output on Pin 9. Bit 7 is output on Pin 28 and the LSB is  
output on Pin 21.  
D10/LDOUTPin±3x:DataBit1ꢀꢁSerialDataOuput.When  
SERꢁPAR = ꢀ this pin is Bit 1ꢀ of the parallel port data  
output bus. When SERꢁPAR = 1, (serial mode) this is the  
serial data output. The conversion result can be clocked  
out serially on this pin synchronized to SCLK. The data  
is clocked out MSB first on the rising edge of SCLK and  
is valid on the falling edge of SCLK. The data format is  
determined by the logic level of OBꢁ2C.  
D0 ꢁPin 9x: Data Bit ꢀ. When SERꢁPAR = ꢀ this pin is Bit ꢀ  
of the parallel port data output bus.  
D11/LC2K ꢁPin ±4x: Data Bit 11ꢁSerial Clock Input. When  
SERꢁPAR = ꢀ this pin is Bit 11 of the parallel port data  
output bus. When SERꢁPAR = 1, (serial mode) this is the  
serial clock input.  
D1 ꢁPin 10x: Data Bit 1. When SERꢁPAR = ꢀ this pin is  
Bit 1 of the parallel port data output bus.  
D± ꢁPin 11x: Data Bit 2. When SERꢁPAR = ꢀ this pin is  
Bit 2 of the parallel port data output bus.  
D1± ꢁPin ±5x: Data Bit 12. When SERꢁPAR = ꢀ this pin is  
Bit 12 of the parallel port data output bus.  
D3 ꢁPin 1±x: Data Bit 3. When SERꢁPAR = ꢀ this pin is  
Bit 3 of the parallel port data output bus.  
D13 ꢁPin ±6x: Data Bit 13. When SERꢁPAR = ꢀ this pin is  
Bit 13 of the parallel port data output bus.  
D4 ꢁPin 13x: Data Bit ±. When SERꢁPAR = ꢀ this pin is  
Bit ± of the parallel port data output bus.  
D14 ꢁPin ±7x: Data Bit 1±. When SERꢁPAR = ꢀ this pin is  
Bit 1± of the parallel port data output bus.  
D5 ꢁPin 14x: Data Bit 5. When SERꢁPAR = ꢀ this pin is  
Bit 5 of the parallel port data output bus.  
239216f  
LTC2392-16  
pin Functions  
D15 ꢁPin ±8x: Data Bit 15. When SERꢁPAR = ꢀ this pin is  
Bit 15 of the parallel port data output bus. The data format  
is determined by the logic level of OBꢁ2C.  
VC( ꢁPin 36x: Common Mode Analog Output. Typically  
the output voltage is 2.ꢀ±8V. Bypass to GND with a 1ꢀµF  
capacitor.  
SULY ꢁPin ±9x: Busy Output. A low-to-high transition oc-  
curs when a conversion is started. It stays high until the  
conversion is complete. The falling edge of BUSY can be  
used as the data-ready clock signal.  
REFOUT ꢁPin 37x: Internal Reference Output. Nominal  
output voltage is ±.ꢀ96V. Connect this pin to REFIN if us-  
ing the internal reference. If an external reference is used  
connect REFOUT to ground.  
RD ꢁPin 30x: Read Data Input. When CS and RD are both  
REFꢀI ꢁPin 38x: Reference Input. An external reference  
can be applied to REFIN if a more accurate reference is  
required. If an external reference is used tie REFOUT to  
ground.  
low, the parallel and serial output bus is enabled.  
CS ꢁPin 31x: Chip Select. When CS and RD are both low,  
the parallel and serial output bus is enabled. CS is also  
used to gate the external shift clock.  
REFLEILE ꢁPin 39x: Reference Input Sense. Leave  
REFSENSE open when using the internal reference. If  
an external reference is used connect REFSENSE to the  
ground pin of the external reference.  
RELET ꢁPin 3±x: Reset Input. When high the LTC2392-16  
isreset, andifthisoccursduringaconversion, theconver-  
sion is halted and the data bus is put into Hi-Z mode.  
+
+
ꢀI , ꢀI ꢁPin 4±, Pin 43x: Differential Analog Inputs.  
PD ꢁPin 33x: Power-Down Input. When high, the  
LTC2392-16ispowereddownandsubsequentconversion  
requests are ignored. Before entering power shutdown,  
the digital output data should be read.  
IN – (IN ) can range up to ±V  
.
REF  
CNVST ꢁPin 34x: Conversion Start Input. A falling edge  
on CNVST puts the internal sample-and-hold into the hold  
mode and starts a conversion. CNVST is independent of  
CS.  
239216f  
LTC2392-16  
Functional block Diagram  
AVP DVP OVP  
LTC2392-16  
16-BIT OR  
TWO BYTE  
SDIN  
SDOUT  
SCLK  
+
IN  
PARALLEL/  
SERIAL  
INTERFACE  
16-BIT SAMPLING ADC  
16-BIT  
IN  
CS  
1x BUFFER  
RD  
REFIN  
SER/PAR  
BYTESWAP  
OB/2C  
REFOUT  
VCM  
4.096V  
BUSY  
CONTROL LOGIC  
CNVST PD  
REFERENCE  
REFSENSE  
RESET  
GND OGND  
239216BD  
timing Diagrams  
Conversion Timing Using the Parallel ꢀnterface  
CS, RD = 0  
CNVST  
ACQUIRE  
BUSY  
CONVERT  
D[15:0]  
PREVIOUS CONVERSION  
CURRENT CONVERSION  
239216 TD01  
Conversion Timing Using the Lerial ꢀnterface  
CS, RD = 0  
CNVST  
ACQUIRE  
BUSY  
CONVERT  
SCLK  
D14 D12 D10 D8 D6 D4 D2 D0  
D15 D13 D11 D9 D7 D5 D3 D1  
SDOUT  
239216 TD02  
239216f  
ꢀ0  
LTC2392-16  
applications inFormation  
OVERVꢀEW  
011...111  
011...110  
BIPOLAR  
ZERO  
The LTC2392-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2392-16 supports a  
large ±±.ꢀ96V fully differential input range, making it ideal  
for high performance applications which require a wide  
dynamicrange.TheLTC2392-16achieves±2LSBINLmax,  
no missing codes at 16 bits and 9±dB SNR (typ).  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
TheLTC2392-16includesaprecisioninternalreferencewith  
aguaranteed.5%initialaccuracyanda±2ꢀppmꢁ/C(max)  
temperature coefficient. Fast 5ꢀꢀksps throughput with no  
cycle latency in both parallel and serial interface modes  
makes the LTC2392-16 ideally suited for a wide variety  
of high speed applications. An internal oscillator sets the  
conversion time, easing external timing considerations.  
TheLTC2392-16dissipatesonly11ꢀmWat5ꢀꢀksps,while  
both nap and sleep power-down modes are provided to  
further reduce power during inactive periods.  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
239216 F02  
Figure ±. 2TC±39±-16 Twos Complement Transfer Function  
AIA2OG ꢀIPUT  
The analog inputs of the LTC2392-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
showninFigure3.ThediodesattheinputprovideESDpro-  
tection. The analog inputs should not exceed the supply or  
gobelowground.Intheacquisitionphase,eachinputsees  
approximately±ꢀpF(C )fromthesamplingCDACinseries  
with 5ꢀΩ (R ) from the on-resistance of the sampling  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw only one small current spike  
COIVERTER OPERATꢀOI  
The LTC2392-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor DꢁA  
IN  
+
IN  
converter (CDAC) is connected to the IN and IN pins  
to sample the differential analog input voltage. A falling  
edge on the CNVST pin initiates a conversion. During the  
conversionphase,the16-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
while charging the C capacitors during acquisition.  
During conversion, the analog inputs draw only a small  
IN  
leakage current.  
reference voltage (e.g., V ꢁ2, V ꢁ± … V ꢁ65536)  
REF  
REF  
REF  
usingthedifferentialcomparator.Attheendofconversion,  
the CDAC output approximates the sampled analog input.  
The ADC control logic then prepares the 16-bit digital  
output code for parallel or serial transfer.  
AVP  
C
IN  
R
R
IN  
IN  
+
IN  
IN  
BIAS  
AVP  
VOLTAGE  
C
IN  
TRAILFER FUICTꢀOI  
239216 F03  
The LTC2392-16 digitizes the full-scale voltage of 2 • V  
REF  
REF  
16  
into2 levels,resultinginanLSBsizeof125µVwhenV  
=±.ꢀ96V. Theidealtransferfunctionfortwo’scomplement  
is shown in Figure 2. The OBꢁ2C pin selects either offset  
binary or two’s complement format.  
Figure 3. The Equivalent Circuit for the  
Differential Analog ꢀnput of the 2TC±39±-16  
239216f  
ꢀꢀ  
LTC2392-16  
applications inFormation  
ꢀIPUT DRꢀVE CꢀRCUꢀTL  
distortion from self heating and from damage that may  
occurduringsoldering.Metallmsurfacemountresistors  
are much less susceptible to both problems.  
Alowimpedancesourcecandirectlydrivethehighimped-  
ance inputs of the LTC2392-16 without gain error. A high  
impedance source should be buffered to minimize settling  
time during acquisition and to optimize the distortion  
performance of the ADC.  
Lingle-to-Differential Conversion  
For single-ended input signals, a single-ended-to-dif-  
ferential conversion circuit must be used to produce a  
differential signal at the ADC inputs. The LT®635ꢀ ADC  
driver is recommended for performing a single-ended-  
to-differential conversion, as shown in Figure ±a. Its low  
noiseandgoodDClinearityallowstheLTC2392-16tomeet  
fulldatasheetspecifications. Analternativesolutionusing  
two op amps is shown in Figure ±b. Using two LT18ꢀ6 op  
amps,thecircuitachieves9±dBsignal-to-noiseratio(SNR).  
For a 2ꢀkHz input signal, the input of the LTC2392-16 has  
been bandwidth limited to about 25kHz.  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2392-16. The am-  
plifier provides low output impedance to allow for fast  
settling of the analog signal during the acquisition phase.  
It also provides isolation between the signal source and  
the ADC inputs which draw a small current spike during  
acquisition.  
ꢀnput Filtering  
The noise and distortion of the buffer amplifier and other  
circuitry must be considered since they add to the ADC  
noiseanddistortion.Noisyinputcircuitryshouldbeltered  
prior to the analog inputs to minimize noise. A simple  
1-pole RC filter is sufficient for many applications.  
ADC REFEREICE  
A low noise, low temperature drift reference is critical to  
achieving the full datasheet performance of the ADC. The  
LTC2392-16 provides an excellent internal reference with  
a ±2ꢀppmꢁ/C (max) temperature coefficient. For better  
accuracy, an external reference can be used.  
Large filter RC time constants slow down the settling at  
the analog inputs. It is important that the overall RC time  
constants be short enough to allow the analog inputs to  
completely settle to 16-bit resolution within the acquisi-  
The high speed, low noise internal reference buffer is used  
for both internal and external reference applications. It  
cannot be bypassed.  
tion time (t ).  
ACQ  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RC filter since these components can add distortion. NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
ANALOG  
INPUT  
+
0V TO 4.096V  
LT1806  
249Ω  
+
IN  
301Ω  
0.013µF  
249Ω  
LTC2392-16  
+
IN  
301Ω  
249Ω  
IN  
ANALOG INPUT  
0V TO 4.096V  
2200pF  
LT6350  
LTC2392-16  
239216 F04b  
249Ω  
+
IN  
LT1806  
239216 F04a  
COMMON  
MODE  
VOLTAGE  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
Figure 4a. Recommended Lingle-Ended-to-Differential  
Conversion Circuit Using the 2T6350 ADC Driver  
Figure 4b. Alternative Lingle-Ended-to-Differential  
Conversion Circuit Using Two 2T1806 Op Amps  
239216f  
ꢀꢁ  
LTC2392-16  
applications inFormation  
ꢀnternal Reference  
DYIA(ꢀC PERFOR(AICE  
To use the internal reference, simply tie the REFOUT and  
REFIN pins together. This connects the ±.ꢀ96V output of  
the internal reference to the input of the internal reference  
buffer. The output impedance of the internal reference is  
approximately 2.6kΩ and the input impedance of the in-  
ternal reference buffer is about 85kΩ. It is recommended  
that this node be bypassed to ground with a 1µF or larger  
capacitortoltertheoutputnoiseoftheinternalreference.  
The REFSENSE pin should be left floating when using the  
internal reference.  
Fast fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2392-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
Lignal-to-Ioise and Distortion Ratio ꢁLꢀIADx  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the AꢁD output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 5 shows that the LTC2392-16 achieves  
a typical SINAD of 93.5dB at a 5ꢀꢀkHz sampling rate with  
a 2ꢀkHz input.  
Eꢂternal Reference  
An external reference can be used with the LTC2392-16  
when even higher performance is required. The  
LT179ꢀ-±.ꢀ96 offers ꢀ.ꢀ5% (max) initial accuracy and  
1ꢀppmꢁ/C (max) temperature coefficient. When using an  
external reference, connect the reference output to the  
REFIN pin and connect the REFOUT pin to ground. The  
REFSENSE pin should be connected to the ground of the  
external reference.  
0
–20  
SNR = 94dB  
THD –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
150  
200  
250  
50  
FREQUENCY (kHz)  
239216 G08  
Figure 5. 16k Point FFT of the 2TC±39±-16, fL = 500ksps, fꢀI = ±0kHz  
239216f  
ꢀꢂ  
LTC2392-16  
applications inFormation  
Lignal-to-Ioise Ratio ꢁLIRx  
Power Lupply Lequencing  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 5 shows  
that the LTC2392-16 achieves a typical SNR of 9±dB at a  
5ꢀꢀkHz sampling rate with a 2ꢀkHz input.  
The LTC2392-16 does not have any specific power sup-  
ply sequencing requirements. Care should be taken to  
observe the maximum voltage relationships described in  
the Absolute Maximum Ratings section. The LTC2392-16  
has a power-on-reset (POR) circuit. With the POR, the  
result of the first conversion is valid after power has  
been applied to the ADC. The LTC2392-16 will reset itself  
if the power supply voltage drops below 2.5V. Once the  
supply voltage is brought back to its nominal value, the  
POR will reinitialize the ADC and it will be ready to start  
a new conversion.  
Total Harmonic Distortion ꢁTHDx  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
ꢁ2).  
SMPL  
Iap (ode  
The LTC2392-16 can be put into the nap mode after a  
conversion has been completed to reduce the power  
consumption between conversions. In this mode some  
of the circuitry on the device is turned off. Nap mode is  
enabledbykeepingCNVSTlowbetweenconversions.When  
the next conversion is requested, bring CNVST high and  
hold for at least 25ꢀns, then start the next conversion by  
bringing CNVST low. See Figure 6.  
V22 + V32 + V42...VN2  
THD= 20log  
V1  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
through Nth harmonics.  
POWER COILꢀDERATꢀOIL  
Power Lhutdown (ode  
The LTC2392-16 provides three sets of power supply  
pins: the analog 5V power supply (AVP), the digital 5V  
power supply (DVP) and the digital inputꢁoutput interface  
power supply (OVP). The flexible OVP supply allows the  
LTC2392-16tocommunicatewithanydigitallogicoperating  
between 1.8V and 5V, including 2.5V and 3.3V systems.  
When PD is tied high, the LTC2392-16 enters power shut-  
downandsubsequentrequestsforconversionareignored.  
Before entering power shutdown, the digital output data  
needstoberead.However,ifarequestforpowershutdown  
(PD = high) occurs during a conversion, the conversion  
t
5
CNVST  
BUSY  
NAP  
t
t
ACQ  
CONV  
NAP MODE  
239216 F06  
Figure 6. Iap (ode Timing for the 2TC±39±-16  
239216f  
ꢀꢃ  
LTC2392-16  
applications inFormation  
will finish and then the device will power down. The data  
from that conversion can be read after PD = low is applied.  
In this mode power consumption drops to a typical value  
of 175µW from 11ꢀmW. This mode can be used if the  
LTC2392-16 is inactive for a long period of time and the  
user wants to minimize the power dissipation.  
Tꢀ(ꢀIG AID COITRO2  
The LTC2392-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. CS and RD  
control the digital interface on the LTC2392-16. When  
either CS or RD is high, the digital outputs are high  
impedance.  
Recovery from Power Lhutdown (ode  
CNVST Timing  
Once the PD pin is returned to a low level, ending the  
power shutdown request, the internal circuitry will begin  
to power up. If the internal reference is used, the 2.6kΩ  
output impedance with the 1µF bypass capacitor on the  
REFINꢁREFOUT pins will be the main time constant for  
the power-on recovery time. If an external reference is  
used, typically allow 5ms for recovery before initiating a  
new conversion.  
The LTC2392-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. Once a  
conversion has been initiated, it cannot be restarted until  
the conversion is complete. For optimum performance  
CNVSTshouldbeacleanlowjittersignal. Converterstatus  
is indicated by the BUSY output which remains high while  
the conversion is in progress. To ensure no errors occur  
in the digitized results return the rising edge either within  
±ꢀns from the start of the conversion or wait until after  
the conversion has been completed. The CNVST timing  
needed to take advantage of the reduced power mode of  
operation is described in the Nap Mode section.  
Power Dissipation vs Lampling Frequency  
The power dissipation of the LTC2392-16 will decrease  
as the sampling frequency is reduced when nap mode  
is activated. See Figure 7. In nap mode, a portion of the  
circuitryontheLTC2392-16isturnedoffafteraconversion  
has been completed. Increasing the time allowed between  
conversions lowers the average power.  
ꢀnternal Conversion Clock  
The LTC2392-16 has an internal clock that is trimmed  
to achieve a maximum conversion time of 13ꢀꢀns. No  
external adjustments are required and with a maximum  
acquisition time of 685ns, a throughput performance of  
5ꢀꢀksps is guaranteed.  
30  
25  
20  
DꢀGꢀTA2 ꢀITERFACE  
15  
10  
The LTC2392-16 allows both parallel and serial digital  
interfaces. TheexibleOVPsupplyallowstheLTC2392-16  
to communicate with any digital logic operating between  
1.8V and 5V, including 2.5V and 3.3V systems.  
5
0
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
239216 G15  
Figure 7. Power Dissipation of the 2TC±39±-16  
Decreases with Decreasing Lampling Frequency  
239216f  
ꢀꢄ  
LTC2392-16  
applications inFormation  
Parallel (odes  
The SDIN input pin is used to daisy-chain multiple con-  
verters. This is useful for applications where hardware  
constraints may limit the number of lines needed to  
interface to a large number of converters. For example,  
if two devices are cascaded, the MSB of the first device  
will appear at the output after 17 SCLK cycles. The first  
MSB is clocked in on the falling edge of the first SCLK.  
See Figure 12.  
The parallel output data interface is active when the  
SERꢁPAR pin is tied low and when both CS and RD are low.  
The output data can be read as a 16-bit word as shown  
in Figures 8, 9 and 1ꢀ or it can be read as two 8-bit bytes  
by using the BYTESWAP pin. As shown in Figure 11, with  
the BYTESWAP pin low, the first eight MSBs are output on  
the D15 to D8 pins and the eight LSBs are output on the  
D7 to DO pins. When BYTESWAP is taken high, the eight  
LSBs now are output on the D15 to D8 pins and the eight  
MSBs are output on the D7 to Dꢀ pins.  
Data Format  
When OBꢁ2C is high, the digital output is offset binary.  
When low, the MSB is inverted resulting in two’s comple-  
ment output. This pin is active in both the parallel and  
serial modes of operation.  
Lerial (odes  
The serial output data interface is active when the  
SERꢁPAR pin is tied high and when both CS and RD are  
low. The serial output data will be clocked out on the  
SDOUT pin when an external clock is applied to the SCLK  
pin. Clocking out the data after the conversion will yield  
the best performance. With a shift clock frequency of at  
least25MHz, a5ꢀꢀkspsthroughputisachieved. Theserial  
output data changes state on the rising edge of SCLK and  
can be captured on the falling edge of SCLK. D15 remains  
valid till the first rising edge of shift clock after the first  
falling edge of shift clock. The non-active digital outputs  
are high impedance when operating in the serial mode.  
Reset  
When the RESET pin is high, the LTC2392-16 is reset, and  
ifthisoccursduringaconversion, theconversionishalted  
and the data bus is put into Hi-Z mode. In reset, requests  
fornewconversionsareignored.OnceRESETreturnslow,  
the LTC2392-16 is ready to start a new conversion after  
the acquisition time has been met. See Figure 13.  
CS = RD = 0  
t
4
CNVST  
BUSY  
t
CONV  
t
t
16  
6
PREVIOUS CONVERSION  
NEW  
DATA BUS D[15:0]  
239216 F08  
Figure 8. Read the Parallel Data Continuously.  
The Data Sus is Always Driven and Can’t Se Lhared  
239216f  
ꢀꢅ  
LTC2392-16  
applications inFormation  
CS  
RD  
BUSY  
Hi-Z  
Hi-Z  
CURRENT  
CONVERSION  
DATA BUS D[15:0]  
239216 F09  
t
t
18  
17  
Figure 9. Read the Parallel Data After the Conversion  
CS = 0  
t
4
CNVST, RD  
BUSY  
t
CONV  
t
6
Hi-Z  
Hi-Z  
PREVIOUS  
CONVERSION  
DATA BUS D[15:0]  
239216 F09  
t
17  
t
18  
Figure 10. Read the Parallel Data During the Conversion  
8-BIT INTERFACE  
CS, RD  
BYTESWAP  
D[15:8]  
Hi-Z  
Hi-Z  
HIGH BYTE  
LOW BYTE  
239216 F11  
t
17  
t
17  
t
18  
Figure 11. 8-Sit Parallel ꢀnterface Using the SYTELWAP Pin  
239216f  
ꢀꢆ  
LTC2392-16  
applications inFormation  
SCLK STARTS LOW  
RD = 0  
t
15  
CS  
BUSY  
t
8
t
10  
t
9
SCLK  
1
2
3
4
15  
16  
17  
18  
t
13  
Hi-Z  
SDOUT  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
X15  
X14  
t
t
12  
14  
t
11  
SDIN  
(ADC 2)  
X15  
X14  
X13  
X1  
X0  
RD = 0  
SCLK STARTS HIGH  
CS  
BUSY  
t
8
t
10  
t
9
SCLK  
1
2
3
4
15  
16  
17  
18  
t
13  
Hi-Z  
SDOUT  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
X15  
X14  
t
t
12  
14  
t
11  
SDIN  
(ADC 2)  
X15  
X14  
X13  
X1  
X0  
CNVST IN  
CS IN  
RD IN  
SCLK IN  
LTC2392-16  
LTC2392-16  
CNVST  
CNVST  
CS  
CS  
RD  
SCLK  
SDIN SDOUT  
RD  
SCLK  
SDIN SDOUT  
DATA OUT  
239216 F12  
ADC 1  
ADC 2  
Figure 1±. Lerial ꢀnterface with Eꢂternal Clock. Read After  
the Conversion. Daisy-Chain (ultiple Converters  
239216f  
ꢀꢇ  
LTC2392-16  
applications inFormation  
t
7
RESET  
t
ACQ  
CVNST  
Hi-Z  
DATA BUS D[15:0]  
239216 F13  
Figure 13. RELET Pin Timing  
239216f  
ꢀꢈ  
LTC2392-16  
applications inFormation  
SOARD 2AYOUT  
Recommended 2ayout  
To obtain the best performance from the LTC2392-16, a  
printed circuit board (PCB) is recommended. Layout for  
the printed circuit board should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC15ꢀꢀA, the  
evaluation kit for the LTC2392-16  
Partial Lchematic of Demoboard  
C36  
1µF  
CNVST  
34  
39  
38  
37  
CNVST  
REFSENSE  
REFIN  
REFOUT  
R2  
249Ω  
1%  
29  
28  
27  
26  
25  
24  
23  
22  
21  
16  
15  
14  
13  
12  
11  
10  
9
BUSY  
D15  
D14  
D13  
D12  
BUSY  
D15  
43  
D14  
+
IN  
D13  
D12  
C54  
OPT  
D11/SCLK  
D11/SCLK  
D10/SDOUT  
D9/SDIN  
D8  
D10/SDOUT  
D9/SDIN  
D8  
C2  
D7  
D7  
LTC2392-16  
2200pF  
1206 NPO  
D6  
D6  
D5  
D5  
D4  
D4  
R3  
249Ω  
1%  
D3  
D3  
D2  
D1  
D2  
D1  
44  
IN  
D0  
D0  
8
C55  
OPT  
BYTESWAP  
GND  
7
VCM OB/2C GND SER/PAR RESET PD CS RD  
36  
6
5
4
32 33  
31 30  
C53  
10µF  
C31  
0.1µF  
C30  
10µF  
C29  
0.1µF  
C28  
10µF  
R24  
1.0Ω  
3.3V  
5V  
C40  
4.7µF  
47  
46 45 40  
2
19  
3
18  
AVP/AVL AVP AVP AVP AVP  
DVP DVP/DVL OVP  
LTC2392-16  
GND GND GND GND GND GND OGND  
48 44 41 35 20 17  
239216 TA01  
1
239216f  
ꢁ0  
LTC2392-16  
applications inFormation  
Partial Top Lilkscreen  
Partial 2ayer 1 Component Lide  
Partial 2ayer ± Ground Plane  
239216f  
ꢁꢀ  
LTC2392-16  
package Description  
UK Package  
48-2ead Plastic QFI ꢁ7mm × 7mmx  
(Reference LTC DWG # ꢀ5-ꢀ8-17ꢀ±)  
0.70 p0.05  
5.15 p 0.05  
5.50 REF  
6.10 p0.05 7.50 p0.05  
(4 SIDES)  
5.15 p 0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p 0.05  
R = 0.115  
TYP  
7.00 p 0.10  
(4 SIDES)  
R = 0.10  
TYP  
47 48  
0.40 p 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
5.15 p 0.10  
5.50 REF  
(4-SIDES)  
5.15 p 0.10  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
239216f  
ꢁꢁ  
LTC2392-16  
package Description  
2X Package  
48-2ead Plastic 2QFP ꢁ7mm × 7mmx  
(Reference LTC DWG # ꢀ5-ꢀ8-176ꢀ Rev Ø)  
7.15 – 7.25  
5.50 REF  
9.00 BSC  
7.00 BSC  
48  
48  
1
2
SEE NOTE: 4  
1
2
0.50 BSC  
9.00 BSC  
7.00 BSC  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
A
A
PACKAGE OUTLINE  
C0.30 – 0.50  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
1.60  
11° – 13°  
1.35 – 1.45 MAX  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
0.05 – 0.15  
LX48 LQFP 0907 REVØ  
0.45 – 0.75  
SECTION A – A  
NOTE:  
1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE  
2. DIMENSIONS ARE IN MILLIMETERS  
4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
5. DRAWING IS NOT TO SCALE  
3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
239216f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢂ  
LTC2392-16  
typical application  
ADC Driver: Lingle-Ended ꢀnput to Differential Output  
5V  
249Ω  
0.1µF  
V
IN  
+
5V  
+
+
0V to 4V –  
IN1  
+
SHDN  
V
OUT2  
A
IN  
2200pF  
LTC2392-16  
+
+
LT6350  
A
IN  
+
V
OUT1  
249Ω  
IN2  
IN1  
239216 TA03  
0.1µF  
–5V  
0.1µF  
499Ω  
2V  
relateD parts  
PART IU(SER  
DELCRꢀPTꢀOI  
CO((EITL  
LTC1±11  
1±-Bit 2.5Msps Parallel ADC  
5V Supply, 1-Channel, 8ꢀdB SNR, ±1.8V Input Range,  
SSOP-36 Package  
LTC16ꢀ9  
16-Bit 2ꢀꢀksps Serial ADC  
5V Supply, 1-Channel, 87dB SNR, Resistor-Selectable Inputs:  
±1ꢀV, ±5V, ±3.3V, V to ±V, V to 5V, V to 1ꢀV  
LTC186±  
LTC186±L  
LTC1865  
LTC1865L  
LTC1867  
16-Bit 25ꢀksps Serial ADC  
16-Bit 15ꢀksps Serial ADC  
16-Bit 25ꢀksps Serial ADC  
16-Bit 15ꢀksps Serial ADC  
5V Supply, 1-Channel, ±.3mW, MSOP-8 Package  
3V Supply, 1-Channel, 1.3mW, MSOP-8 Package  
5V Supply, 2-Channel, ±.3mW, MSOP-8 Package  
3V Supply, 2-Channel, 1.3mW, MSOP-8 Package  
16-Bit, 2ꢀꢀksps 8-Channel ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible with  
LTC1863, LTC1867L  
LTC2355-1±ꢁLTC2356-1±  
LTC2391-16  
1±-Bit, 3.5Msps Serial ADCs  
3.3V Supply, 1-Channel, 18mW, MSOP-1ꢀ Package  
16-Bit, 25ꢀksps ParallelꢁSerial ADC  
16-Bit, 1Msps ParallelꢁSerial ADC  
5V Supply, Differential Input, 9±dB SNR, ±±.ꢀ96V Input Range,  
Pin Compatible with the LTC2393-16, LTC2392-16  
LTC2393-16  
5V Supply, Differential Input, 9±dB SNR, ±±.ꢀ96V Input Range,  
Pin Compatible with the LTC2392-16, LTC2391-16  
DACs  
LTC26±1  
LTC263ꢀ  
References  
LT1236  
16-Bit Single Serial V  
DACs  
DACs  
±1LSB INL, ±1LSB DNL, MSOP-8 Package, ꢀV to 5V Output  
SC7ꢀ 6-Pin Package, Internal Reference, ±1LSB INL (12 Bits)  
OUT  
12-ꢁ1ꢀ-ꢁ8-Bit Single V  
OUT  
Precision Reference in SO-8 Package  
ꢀ.25ppm Noise, Low Drift Precision Reference  
5V, 1ꢀV; ꢀ.ꢀ5% Initial Accuracy (Max); 5ppm Tempco (Max)  
ꢀ.ꢀ25% Initial Accuracy (Max), 2ppm Tempco (Max),  
LTC6655  
P-P  
ꢀ.25ppm Noise (ꢀ.1Hz to 1ꢀHz) in MSOP-8 Package  
P-P  
Amplifiers  
LT1±69  
125mV (Max) Input Offset Voltage, Low Distortion: –96.5dB at  
Dual 9ꢀMHz, 22Vꢁµs Dual Op Amps in ±mm × ±mm  
DFN-12 Package  
1ꢀꢀkHz, 1ꢀV , Settling Time: 9ꢀꢀns  
P-P  
LT18ꢀ6ꢁLT18ꢀ7  
325MHz, SingleꢁDual Precision Op Amps in TSOT23-6,  
MSOP-8 Packages  
Rail-to-Rail Input and Output, Low Distortion, –8ꢀdBc at 5MHz,  
Low Voltage Noise: 3.5nVꢁ√Hz  
LTC62ꢀꢀꢁLTC62ꢀꢀ-5ꢁ  
LTC62ꢀꢀ-1ꢀ  
165MHzꢁ8ꢀꢀMHzꢁ1.6GHz Op Amps with  
Unity GainꢁAV = 5ꢁAV = 1ꢀ  
Low Noise Voltage: ꢀ.95nVꢁ√Hz (1ꢀꢀkHz), Low Distortion:  
–8ꢀdB at 1MHz, TSOT23-6 Package  
LT635ꢀ  
Low Noise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail Input and Outputs, 2±ꢀns ꢀ.ꢀ1% Settling Time  
239216f  
LT 0210 • PRINTED IN USA  
Linear Technology Corporation  
163ꢀ McCarthy Blvd., Milpitas, CA 95ꢀ35-7±17  
ꢁꢃ  
LINEAR TECHNOLOGY CORPORATION 2010  
(±ꢀ8) ±32-19ꢀꢀ FAX: (±ꢀ8) ±3±-ꢀ5ꢀ7 www.linear.com  

相关型号:

LTC2392CUK-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392CUK-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2392CUK-16#TRPBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2392CUK-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392CUK-16TRPBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392HLX-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392HLX-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: LQFP; Pins: 48; Temperature Range: -40°C to 125°C
Linear

LTC2392HLX-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392ILX-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392ILX-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C
Linear

LTC2392ILX-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392IUK-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear