LTC2481CDD#PBF [Linear]

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C;
LTC2481CDD#PBF
型号: LTC2481CDD#PBF
厂家: Linear    Linear
描述:

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C

光电二极管 转换器
文件: 总40页 (文件大小:778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2481  
16-Bit ∆Σ ADC with Easy Drive  
Input Current Cancellation  
2
and I C Interface  
FeaTures  
DescripTion  
®
n
Easy Drive Technology Enables Rail-to-Rail Inputs  
TheLTC 2481combinesa16-bitplussignNoLatency∆Σ  
with Zero Differential Input Current  
analog-to-digital converter with patented Easy Drive  
2
n
Directly Digitizes High Impedance Sensors with  
technologyandI Cdigitalinterface.Thepatentedsampling  
Full Accuracy  
Programmable Gain from 1 to 256  
scheme eliminates dynamic input current errors and the  
shortcomings of on-chip buffering through automatic  
cancellation of differential input current. This allows large  
externalsourceimpedancesandinputsignals,withrail-to-  
rail input range to be directly digitized while maintaining  
exceptional DC accuracy.  
n
n
GND to V Input/Reference Common Mode Range  
CC  
2
n
2-Wire I C Interface  
n
Programmable 50Hz, 60Hz or Simultaneous  
50Hz/60Hz Rejection Mode  
n
2ppm (0.25LSB) INL, No Missing Codes  
The LTC2481 includes on-chip programmable gain and  
an oscillator. The LTC2481 can be configured through an  
n
1ppm Offset and 15ppm Full-Scale Error  
n
Selectable 2x Speed Mode  
2
I C interface to provide a programmable gain from 1 to  
n
No Latency: Digital Filter Settles in a Single Cycle  
256 in 8 steps, to digitize an external signal or internal  
temperaturesensor, rejectlinefrequencies(50Hz, 60Hzor  
simultaneous 50Hz/60Hz) as well as a 2x speed-up mode.  
n
Single Supply 2.7V to 5.5V Operation  
Internal Oscillator  
n
n
Six Addresses Available and One Global Address for  
The LTC2481 allows a wide common mode input range  
Synchronization  
n
(0V to V ) independent of the reference voltage. The  
Available in a Tiny (3mm × 3mm) 10-Lead DFN Package  
CC  
reference can be as low as 100mV or can be tied directly  
applicaTions  
to V . The LTC2481 includes an on-chip trimmed oscil-  
CC  
n
lator eliminating the need for external crystals or oscil-  
lators. Absolute accuracy and low drift are automatically  
maintained through continuous, transparent, offset and  
full-scale calibration.  
Direct Sensor Digitizer  
n
Weight Scales  
n
Direct Temperature Measurement  
n
Strain Gauge Transducers  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
No Latency ∆∑ and Easy Drive are trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents Pending.  
Instrumentation  
n
Industrial Process Control  
n
DVMs and Meters  
Typical applicaTion  
+FS Error vs RSOURCE at IN+ and IN–  
80  
V
V
V
V
= 5V  
CC  
V
CC  
= 5V  
REF  
60  
40  
20  
+
= 3.75V  
= 1.25V  
IN  
IN  
1µF  
0.1µF  
f
= GND  
O
T
= 25°C  
A
SCL  
SDA  
+
10k  
2-WIRE  
I C INTERFACE  
I
= 0  
REF  
LTC2481  
GND  
V
C
= 1µF  
IN  
DIFF  
CC  
+
2
V
0
IN  
SENSE  
CA0/f  
CA1  
–20  
0
6 ADDRESSES  
V
IN  
–40  
–60  
–80  
REF  
10k  
2481 TA01a  
0.1µF  
1
10  
100  
10k  
100k  
1k  
(Ω)  
2481 TA01b  
R
SOURCE  
2481fd  
1
For more information www.linear.com/LTC2481  
LTC2481  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V ) to GND...................... 0.3V to 6V  
CC  
+
Analog Input Voltage to GND ....... –0.3V to (V + 0.3V)  
REF  
1
2
3
4
5
10 CA0/f  
0
CC  
V
9
8
7
6
CA1  
GND  
SDA  
SCL  
CC  
Reference Input Voltage to GND .. –0.3V to (V + 0.3V)  
CC  
11  
REF  
IN  
Digital Input Voltage to GND ....... 0.3V to (V + 0.3V)  
CC  
+
Digital Output Voltage to GND...... –0.3V to (V + 0.3V)  
CC  
IN  
Operating Temperature Range  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
LTC2481C.................................................... 0°C to 70°C  
LTC2481I .................................................40°C to 85°C  
LTC2481H .............................................. –40°C to 125°C  
Storage Temperature Range ................. –65°C to 125°C  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2481CDD#PBF  
LTC2481IDD#PBF  
LTC2481HDD#PBF  
TAPE AND REEL  
PART MARKING*  
LBPV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2481CDD#TRPBF  
LTC2481IDD#TRPBF  
LTC2481HDD#TRPBF  
0°C to 70°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LBPV  
–40°C to 85°C  
–40°C to 125°C  
LBPV  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics (norMal speeD) The l denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
PARAMETER  
CONDITIONS  
0.1 ≤ V ≤ V , –FS ≤ V ≤ +FS (Note 5)  
MIN  
TYP  
MAX  
UNITS  
l
l
Resolution (No Missing Codes)  
Integral Nonlinearity  
16  
Bits  
REF  
CC  
IN  
5V ≤ V ≤ 5.5V, V = 5V, V  
= 2.5V (Note 6)  
2
1
10  
ppm of V  
CC  
REF  
IN(CM)  
REF  
REF  
2.7V ≤ V ≤ 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
ppm of V  
CC  
REF  
IN(CM)  
+
l
l
Offset Error  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 13)  
0.5  
10  
2.5  
µV  
REF  
CC  
CC  
CC  
+
Offset Error Drift  
Positive Full-Scale Error  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V  
nV/°C  
REF  
CC  
+
+
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
25  
40  
ppm of V  
REF  
REF  
CC  
REF  
REF  
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V (H-Grade)  
ppm  
REF  
CC  
REF  
REF  
REF  
REF  
+
Positive Full-Scale Error Drift  
Negative Full-Scale Error  
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
0.1  
0.1  
ppm of V /°C  
REF  
REF  
CC  
REF  
+
+
l
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
25  
40  
ppm of V  
REF  
REF  
CC  
REF  
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V (H-Grade)  
ppm  
REF  
CC  
REF  
REF  
+
Negative Full-Scale Error Drift  
Total Unadjusted Error  
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
REF CC REF REF  
ppm of V /°C  
REF  
5V ≤ V ≤ 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
15  
15  
15  
ppm of V  
ppm of V  
ppm of V  
CC  
REF  
IN(CM)  
REF  
REF  
REF  
5V ≤ V ≤ 5.5V, V = 5V, V = 2.5V (Note 6)  
CC  
CC  
REF  
REF  
IN(CM)  
2.7V ≤ V ≤ 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
IN(CM)  
+
Output Noise  
5V ≤ V ≤ 5.5V, V = 5V, GND ≤ IN = IN ≤ V (Note 12)  
0.6  
µV  
RMS  
CC  
REF  
CC  
Internal PTAT Signal  
Programmable Gain  
T = 27°C  
390  
1
450  
256  
mV  
A
l
See Table 2a  
2481fd  
2
For more information www.linear.com/LTC2481  
LTC2481  
elecTrical characTerisTics (2x speeD)  
The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
PARAMETER CONDITIONS  
Resolution (No Missing Codes) 0.1 ≤ V ≤ V , –FS ≤ V ≤ +FS (Note 5)  
MIN  
TYP  
MAX  
UNITS  
l
l
16  
Bits  
REF  
CC  
IN  
Integral Nonlinearity  
5V ≤ V ≤ 5.5V, V = 5V, V  
= 2.5V (Note 6)  
2
1
10  
2
ppm of V  
REF  
CC  
REF  
IN(CM)  
2.7V ≤ V ≤ 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
CC  
REF  
IN(CM)  
+
l
l
l
Offset Error  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 13)  
0.5  
mV  
REF  
CC  
CC  
CC  
+
Offset Error Drift  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V  
100  
nV/°C  
REF  
CC  
+
Positive Full-Scale Error  
Positive Full-Scale Error Drift  
Negative Full-Scale Error  
Negative Full-Scale Error Drift  
Output Noise  
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
25  
25  
ppm of V  
REF  
REF  
CC  
REF  
REF  
REF  
REF  
REF  
+
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of V /°C  
REF  
REF  
CC  
REF  
+
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
ppm of V  
REF  
REF  
CC  
REF  
+
2.5V ≤ V ≤ V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of V /°C  
REF  
REF  
CC  
REF  
+
5V ≤ V ≤ 5.5V, V = 5V, GND ≤ IN = IN ≤ V  
0.84  
µV  
RMS  
CC  
REF  
CC  
l
Programmable Gain  
See Table 2b  
1
128  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
PARAMETER  
CONDITIONS  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 5)  
MIN  
140  
140  
TYP  
MAX  
UNITS  
dB  
+
l
l
Input Common Mode Rejection DC  
REF  
CC  
CC  
+
Input Common Mode Rejection  
50Hz 2%  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 5)  
dB  
REF  
CC  
CC  
+
l
Input Common Mode Rejection  
60Hz 2%  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 5)  
140  
dB  
REF  
CC  
CC  
+
+
l
l
Input Normal Mode Rejection  
50Hz 2%  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Notes 5, 7)  
110  
104  
120  
120  
dB  
dB  
REF  
CC  
CC  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (H-Grade)  
REF  
CC  
CC  
+
+
l
l
Input Normal Mode Rejection  
60Hz 2%  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Notes 5, 8)  
110  
104  
dB  
dB  
REF  
CC  
CC  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (H-Grade)  
REF  
CC  
CC  
+
l
Input Normal Mode Rejection  
50Hz/60Hz 2%  
2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Notes 5, 9)  
87  
dB  
REF  
CC  
CC  
+
l
Reference Common Mode Rejection DC 2.5V ≤ V ≤ V , GND ≤ IN = IN ≤ V (Note 5)  
120  
140  
120  
120  
120  
dB  
dB  
dB  
dB  
REF  
CC  
CC  
+
Power Supply Rejection DC  
V
V
V
= 2.5V, IN = IN = GND  
REF  
REF  
REF  
+
Power Supply Rejection, 50Hz 2%  
Power Supply Rejection, 60Hz 2%  
= 2.5V, IN = IN = GND (Notes 7, 9)  
+
= 2.5V, IN = IN = GND (Notes 8, 9)  
analog inpuT anD reFerence The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
IN  
Absolute/Common Mode IN Voltage  
GND – 0.3V  
GND – 0.3V  
V
V
+ 0.3V  
V
V
V
CC  
CC  
IN  
Absolute/Common Mode IN Voltage  
+ 0.3V  
+
l
l
l
l
FS  
Full Scale of the Differential Input (IN – IN )  
0.5V /GAIN  
REF  
16  
LSB  
Least Significant Bit of the Output Code  
FS/2  
+
V
V
Input Differential Voltage Range (IN – IN )  
–FS  
0.1  
+FS  
V
V
IN  
+
Reference Voltage Range (REF – REF )  
V
CC  
REF  
+
+
C (IN )  
IN Sampling Capacitance  
11  
pF  
S
2481fd  
3
For more information www.linear.com/LTC2481  
LTC2481  
analog inpuT anD reFerence The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
11  
11  
1
MAX  
UNITS  
pF  
C (IN )  
IN Sampling Capacitance  
S
C (V  
)
V
Sampling Capacitance  
pF  
S
REF  
DC_LEAK  
DC_LEAK  
REF  
+
+
+
l
l
l
I
I
I
(IN )  
IN DC Leakage Current  
Sleep Mode, IN = GND  
–10  
–10  
10  
10  
nA  
(IN )  
IN DC Leakage Current  
Sleep Mode, IN = GND  
1
nA  
+
(V  
)
REF , REF DC Leakage Current  
Sleep Mode, V = V  
CC  
–100  
1
100  
nA  
DC_LEAK REF  
REF  
i2c DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.7V  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
V
V
V
High Level Input Voltage  
V
V
IH  
CC  
Low Level Input Voltage  
0.3V  
CC  
IL  
Low Level Input Voltage for Address Pin  
High Level Input Voltage for Address Pins  
0.05V  
V
IL(CA1)  
CC  
0.95V  
V
IH(CA0/f0,CA1)  
CC  
R
R
R
Resistance from CA0/f , CA1 to V to Set  
Chip Address Bit to 1  
10  
10  
kΩ  
INH  
INL  
INF  
0
CC  
l
l
l
Resistance from CA1 to GND to Set Chip  
Address Bit to 0  
kΩ  
Resistance from CA0/f , CA1 to V or  
GND to Set Chip Address Bit to Float  
2
MΩ  
0
CC  
I
Digital Input Current  
–10  
10  
µA  
V
I
V
V
Hysteresis of Schmitt Trigger Inputs  
Low Level Output Voltage SDA  
(Note 5)  
I = 3mA  
0.05V  
HYS  
OL  
CC  
l
l
l
l
l
l
l
0.4  
250  
50  
1
V
t
t
I
Output Fall Time from V  
to V  
Bus Load C 10pF to 400pF (Note 14)  
20+0.1C  
ns  
ns  
µA  
pF  
pF  
pF  
OF  
IHMIN  
ILMAX  
B
B
Input Spike Suppression  
Input Leakage  
SP  
IN  
0.1V ≤ V ≤ V  
CC  
CC  
IN  
C
C
C
Capacitance for Each I/O Pin  
10  
I
Capacitance Load for Each Bus Line  
400  
10  
B
External Capacitive Load On-Chip Address  
CAX  
Pins (CA0/f ,CA1) for Valid Float  
0
l
l
V
V
High Level CA0/f External Oscillator  
2.7V ≤ V < 5.5V  
V – 0.5V  
CC  
V
V
IH(EXT,OSC)  
0
CC  
Low Level CA0/f External Oscillator  
2.7V ≤ V < 5.5V  
0.5  
IL(EXT,OSC)  
0
CC  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Supply Voltage  
Supply Current  
2.7  
5.5  
V
CC  
l
l
l
I
Conversion Mode (Note 11)  
Sleep Mode (Note 11)  
H-Grade  
160  
1
250  
2
20  
µA  
µA  
µA  
CC  
2481fd  
4
For more information www.linear.com/LTC2481  
LTC2481  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
1000  
100  
UNITS  
kHz  
µs  
l
l
l
f
t
t
t
External Oscillator Frequency Range  
External Oscillator High Period  
External Oscillator Low Period  
Conversion Time for 1x Speed Mode  
EOSC  
HEO  
0.125  
0.125  
100  
µs  
LEO  
l
l
l
l
l
l
l
50Hz Mode  
50Hz Mode (H-Grade)  
60Hz Mode  
60Hz Mode (H-Grade)  
Simultaneous 50Hz/60Hz Mode  
Simultaneous 50Hz/60Hz Mode (H-Grade)  
External Oscillator (Note 10)  
157.2  
157.2  
131.0  
131.0  
144.1  
144.1  
160.3  
160.3  
133.6  
133.6  
146.9  
146.9  
163.5  
165.1  
136.3  
137.6  
149.9  
151.0  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
CONV_1  
41036/f  
EOSC  
l
l
l
l
l
l
l
t
Conversion Time for 2x Speed Mode  
50Hz Mode  
78.7  
65.6  
72.2  
80.3  
66.9  
73.6  
81.9  
82.7  
68.2  
68.9  
75.1  
75.6  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
CONV_2  
50Hz Mode (H-Grade)  
60Hz Mode  
60Hz Mode (H-Grade)  
Simultaneous 50Hz/60Hz Mode  
Simultaneous 50Hz/60Hz Mode (H-Grade)  
External Oscillator (Note 10)  
20556/f  
EOSC  
i2c TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 15)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) START Condition  
LOW Period of the SCL Clock Pin  
HIGH Period of the SCL Clock Pin  
Set-Up Time for a Repeated START Condition  
Data Hold Time  
0.6  
HD(SDA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
0.6  
µs  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0
0.9  
µs  
Data Set-Up Time  
100  
20+0.1C  
20+0.1C  
0.6  
ns  
Rise Time for Both SDA and SCL Signals  
Fall Time for Both SDA and SCL Signals  
Set-Up Time for STOP Condition  
(Note 14)  
(Note 14)  
300  
300  
ns  
B
B
ns  
f
µs  
SU(STO)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: 50Hz mode (internal oscillator) or f  
oscillator).  
= 256kHz 2% (external  
= 307.2kHz 2% (external  
EOSC  
Note 8: 60Hz mode (internal oscillator) or f  
EOSC  
oscillator).  
Note 2: All voltage values are with respect to GND.  
Note 9: Simultaneous 50Hz/60Hz mode (internal oscillator) or f  
=
EOSC  
Note 3: V = 2.7V to 5.5V unless otherwise specified.  
280kHz 2% (external oscillator).  
Note 10: The external oscillator is connected to the CA0/f pin. The  
external oscillator frequency, f  
EOSC  
CC  
+
+
V
V
= REF – REF , V  
= (REF + REF )/2, FS = 0.5V /GAIN;  
= (IN + IN )/2.  
REF  
REFCM  
REF  
0
+
+
= IN – IN , V  
, is expressed in kHz.  
IN  
INCM  
Note 4: Use internal conversion clock or external conversion clock source  
with f = 307.2kHz unless otherwise specified.  
Note 11: The converter uses the internal oscillator.  
Note 12: The output noise includes the contribution of the internal  
EOSC  
Note 5: Guaranteed by design, not subject to test.  
calibration operations.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 13: Guaranteed by design and test correlation.  
Note 14: C = capacitance of one bus line in pF.  
B
Note 15: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
2481fd  
5
For more information www.linear.com/LTC2481  
LTC2481  
Typical perForMance characTerisTics  
Integral Nonlinearity  
(VCC = 5V, VREF = 5V)  
Integral Nonlinearity  
Integral Nonlinearity  
(VCC = 5V, VREF = 2.5V)  
(VCC = 2.7V, VREF = 2.5V)  
3
2
3
2
3
2
V
V
V
= 5V  
= 5V  
IN(CM)  
V
V
V
= 2.7V  
= 2.5V  
IN(CM)  
V
V
V
= 5V  
CC  
REF  
CC  
REF  
CC  
= 2.5V  
REF  
= 2.5V  
= 1.25V  
= 1.25V  
IN(CM)  
1
0
–45°C  
85°C  
1
0
1
0
25°C  
–45°C, 25°C, 90°C  
–45°C, 25°C, 90°C  
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G03  
2481 G01  
2481 G02  
Total Unadjusted Error  
(VCC = 5V, VREF = 5V)  
Total Unadjusted Error  
(VCC = 5V, VREF = 2.5V)  
Total Unadjusted Error  
(VCC = 2.7V, VREF = 2.5V)  
12  
8
12  
8
12  
8
V
V
V
= 2.7V  
= 2.5V  
IN(CM)  
V
V
V
= 5V  
V
V
V
= 5V  
= 5V  
IN(CM)  
CC  
REF  
CC  
CC  
REF  
= 2.5V  
REF  
85°C  
= 1.25V  
= 1.25V  
= 2.5V  
IN(CM)  
85°C  
85°C  
25°C  
25°C  
25°C  
4
0
4
0
4
0
–45°C  
–45°C  
–45°C  
–4  
–8  
–4  
–8  
–4  
–8  
–12  
–12  
–12  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G06  
2481 G05  
2481 G04  
Noise Histogram (6.8sps)  
Noise Histogram (7.5sps)  
Long-Term ADC Readings  
14  
12  
14  
12  
5
4
V
= 5V, V  
= 5V, V = 0V, V  
= 2.5V  
10,000 CONSECUTIVE  
READINGS  
10,000 CONSECUTIVE  
READINGS  
CC  
REF  
IN  
IN(CM)  
GAIN = 256, T = 25°C, RMS NOISE = 0.60µV  
A
RMS = 0.59µV  
AVERAGE = –0.19µV  
RMS = 0.60µV  
AVERAGE = –0.69µV  
V
V
V
= 5V  
V
V
V
= 2.7V  
CC  
REF  
IN  
CC  
REF  
= 0V  
IN  
3
= 5V  
= 2.5V  
= 0V  
10  
8
10  
8
2
GAIN = 256  
= 25°C  
GAIN = 256  
T = 25°C  
A
1
T
A
0
6
6
–1  
–2  
–3  
–4  
–5  
4
4
2
2
0
0
–1.8 –1.2 –0.6  
0
1.8  
–3 –2.4 –1.8 –1.2 –0.6  
0
0.6 1.2 1.8  
–3 –2.4  
0.6 1.2  
0
10  
30  
40  
50  
60  
20  
TIME (HOURS)  
OUTPUT READING (µV)  
OUTPUT READING (µV)  
2481 G07  
2481 G08  
2481 G09  
2481fd  
6
For more information www.linear.com/LTC2481  
LTC2481  
Typical perForMance characTerisTics  
RMS Noise  
vs Input Differential Voltage  
RMS Noise vs VIN(CM)  
RMS Noise vs Temperature (TA)  
1.0  
0.9  
0.8  
0.7  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.0  
0.9  
V
V
V
V
= 5V  
= 5V  
V
V
V
V
= 5V  
= 5V  
V
V
V
T
= 5V  
= 5V  
IN(CM)  
= 25°C  
CC  
REF  
IN  
CC  
REF  
IN  
CC  
REF  
= 0V  
= 0V  
= 2.5V  
= GND  
= GND  
IN(CM)  
IN(CM)  
A
GAIN = 256  
GAIN = 256  
0.8  
0.7  
T
A
= 25°C  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
3
5
6
–1  
0
1
2
4
–45  
0
30 45 60 75 90  
–30 –15  
15  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
TEMPERATURE (°C)  
V
(V)  
INPUT DIFFERENTIAL VOLTAGE (V)  
IN(CM)  
2481 G11  
2481 G12  
2481 G10  
RMS Noise vs VCC  
RMS Noise vs VREF  
Offset Error vs VIN(CM)  
1.0  
0.9  
1.0  
0.9  
0.8  
0.7  
0.3  
0.2  
0.1  
0
V
V
V
= 5V  
= 0V  
IN(CM)  
V
V
V
= 2.5V  
V
V
V
= 5V  
= 5V  
CC  
IN  
REF  
CC  
REF  
IN  
= 0V  
IN  
IN(CM)  
= GND  
= GND  
= 0V  
GAIN = 256  
= 25°C  
GAIN = 256  
= 25°C  
T = 25°C  
A
T
A
T
A
0.8  
0.7  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
–0.1  
–0.2  
–0.3  
0
1
2
3
(V)  
4
5
4.3  
(V)  
5.1 5.5  
–1  
2
3
4
5
6
2.7 3.1 3.5 3.9  
V
4.7  
0
1
V
V
(V)  
REF  
CC  
IN(CM)  
2481 G14  
2481 G13  
2481 G15  
Offset Error vs Temperature  
Offset Error vs VCC  
Offset Error vs VREF  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.3  
0.2  
+
REF = 2.5V  
V
= 5V  
V
V
V
V
= 5V  
REF  
CC  
CC  
REF = GND  
REF = GND  
= 5V  
V
V
A
= 0V  
= GND  
= 25°C  
V
V
T
= 0V  
= GND  
= 25°C  
= 0V  
IN  
IN(CM)  
IN  
IN(CM)  
IN  
IN(CM)  
= GND  
T
A
0.1  
0.1  
0
0
–0.1  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.2  
–0.3  
4.3  
(V)  
5.1  
5.5  
2.7 3.1  
3.5 3.9  
4.7  
0
1
2
3
4
5
–45 –30 –15  
0
15 30 45 60 75 90  
V
(V)  
V
TEMPERATURE (°C)  
REF  
CC  
2481 G17  
2481 G18  
2481 G16  
2481fd  
7
For more information www.linear.com/LTC2481  
LTC2481  
Typical perForMance characTerisTics  
On-Chip Oscillator Frequency  
vs Temperature  
On-Chip Oscillator Frequency  
vs VCC  
PSRR vs Frequency at VCC  
310  
308  
306  
304  
302  
300  
310  
308  
306  
304  
0
–20  
V
V
V
= 2.5V  
V
V
= 4.1V DC  
= 2.5V  
REF  
IN  
CC  
REF  
= 0V  
+
= GND  
IN = GND  
IN(CM)  
IN = GND  
–40  
T
= 25°C  
A
–60  
–80  
–100  
–120  
–140  
V
V
V
V
= 4.1V  
REF  
CC  
= 2.5V  
302  
300  
= 0V  
IN  
IN(CM)  
= GND  
–45 –30 –15  
0
15 30 45 60 75 90  
2.5  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
10k  
FREQUENCY AT V (Hz)  
1M  
1
10  
100  
1k  
100k  
TEMPERATURE (°C)  
V
CC  
CC  
2481 G21  
2481 G22  
2481 G23  
Conversion Current  
vs Temperature  
PSRR vs Frequency at VCC  
PSRR vs Frequency at VCC  
0
–20  
–40  
200  
180  
0
V
V
= 4.1V DC 0.7V  
= 2.5V  
V
V
= 4.1V DC 1.4V  
= 2.5V  
CC  
REF  
CC  
REF  
–20  
+
+
IN = GND  
IN = GND  
IN = GND  
T
IN = GND  
T
–40  
= 25°C  
V
= 5V  
CC  
= 25°C  
A
A
160  
–60  
–80  
–60  
–80  
V
= 2.7V  
CC  
140  
120  
100  
–100  
–120  
–140  
–100  
–120  
–140  
30650  
30700  
30800  
30600  
30750  
0
60  
100 120 140 160 180 200 220  
–45 –30 –15  
0
30  
60 75 90  
20 40  
80  
15  
45  
FREQUENCY AT V (Hz)  
FREQUENCY AT V (Hz)  
TEMPERATURE (°C)  
CC  
CC  
2481 G25  
2481 G24  
2481 G26  
Sleep Mode Current  
vs Temperature  
Conversion Current  
vs Output Data Rate  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
500  
V
= V  
CC  
REF  
+
IN = GND  
450  
400  
350  
300  
250  
200  
150  
100  
IN = GND  
CA0/f = EXT OSC  
0
T
= 25°C  
A
V
= 5V  
CC  
V
= 2.7V  
CC  
V
= 5V  
= 3V  
CC  
V
CC  
–45 –30 –15  
0
15 30 45 60 75 90  
0
10  
20  
30  
TEMPERATURE (°C)  
OUTPUT DATA RATE (READINGS/SEC)  
2481 G27  
2481 G28  
2481fd  
8
For more information www.linear.com/LTC2481  
LTC2481  
Typical perForMance characTerisTics  
Integral Nonlinearity (2x Speed  
Mode; VCC = 2.7V, VREF = 2.5V)  
Integral Nonlinearity (2x Speed  
Mode; VCC = 5V, VREF = 5V)  
Integral Nonlinearity (2x Speed  
Mode; VCC = 5V, VREF = 2.5V)  
3
2
3
2
3
2
V
V
V
= 2.7V  
CC  
V
V
V
= 5V  
= 5V  
IN(CM)  
V
V
V
= 5V  
CC  
REF  
CC  
= 2.5V  
REF  
= 2.5V  
REF  
= 1.25V  
IN(CM)  
= 2.5V  
= 1.25V  
IN(CM)  
1
0
1
0
1
0
90°C  
90°C  
25°C, 90°C  
–45°C, 25°C  
–1  
–2  
–3  
–1  
–2  
–3  
–45°C, 25°C  
–1  
–2  
–3  
–45°C  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G31  
2481 G29  
2481 G30  
Noise Histogram  
(2x Speed Mode)  
RMS Noise vs VREF  
(2x Speed Mode)  
Offset Error vs VIN(CM)  
(2x Speed Mode)  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
198  
196  
194  
192  
190  
188  
186  
184  
182  
180  
16  
14  
12  
10  
8
RMS = 0.86µV  
10,000 CONSECUTIVE  
READINGS  
V
V
V
T
= 5V  
CC  
AVERAGE = 0.184mV  
= 5V  
REF  
V
V
V
= 5V  
= 5V  
= 0V  
CC  
REF  
IN  
IN  
A
= 25°C  
= 0V  
GAIN = 256  
= 25°C  
T
A
6
4
V
V
V
= 5V  
= 0V  
IN(CM)  
= 25°C  
CC  
IN  
2
= GND  
T
A
0
0
1
2
3
4
5
181.4  
183.8  
188.6  
179  
186.2  
3
6
–1  
1
2
4
5
0
V
(V)  
V
(V)  
OUTPUT READING (µV)  
REF  
IN(CM)  
2481 G33  
2481 G32  
2481 G34  
Offset Error vs VCC  
(2x Speed Mode)  
Offset Error vs Temperature  
(2x Speed Mode)  
250  
200  
150  
100  
50  
240  
230  
220  
210  
200  
190  
180  
170  
160  
V
V
V
T
= 2.5V  
V
V
V
V
= 5V  
= 5V  
REF  
CC  
REF  
IN  
= 0V  
IN  
IN(CM)  
= GND  
= 25°C  
= 0V  
= GND  
A
IN(CM)  
0
15 30  
TEMPERATURE (°C)  
2.7  
3
3.5  
4
4.5  
5
5.5  
–45 –30 –15  
0
45 60 75 90  
V
(V)  
CC  
2481 G36  
2481 G35  
2481fd  
9
For more information www.linear.com/LTC2481  
LTC2481  
Typical perForMance characTerisTics  
Offset Error vs VREF  
(2x Speed Mode)  
PSRR vs Frequency at VCC  
(2x Speed Mode)  
0
–20  
240  
230  
220  
210  
V
= 4.1V DC  
V
V
V
= 5V  
= 0V  
IN(CM)  
= 25°C  
CC  
CC  
IN  
+
REF = 2.5V  
REF = GND  
= GND  
+
IN = GND  
T
A
–40  
IN = GND  
T
= 25°C  
A
–60  
200  
190  
–80  
–100  
–120  
–140  
180  
170  
160  
10k  
FREQUENCY AT V (Hz)  
1M  
1
10  
100  
1k  
100k  
1
2
4
0
5
3
(V)  
V
CC  
REF  
2481 G38  
2481 G37  
PSRR vs Frequency at VCC  
(2x Speed Mode)  
PSRR vs Frequency at VCC  
(2x Speed Mode)  
0
0
V
= 4.1V DC 0.7V  
CC  
+
REF = 2.5V  
–20  
–20  
REF = GND  
+
IN = GND  
–40  
–40 IN = GND  
T
= 25°C  
A
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
30650  
30700  
30800  
0
60  
100 120 140 160 180 200 220  
30600  
30750  
20 40  
80  
FREQUENCY AT V (Hz)  
FREQUENCY AT V (Hz)  
CC  
CC  
2481 G39  
2481 G40  
pin FuncTions  
+
+
REF (Pin 1), REF (Pin 3): Differential Reference Input.  
IN (Pin 4), IN (Pin 5): Differential Analog Input. The  
The voltage on these pins can have any value between  
voltage on these pins can have any value between GND  
GND and V as long as the reference positive input,  
– 0.3V and V + 0.3V. Within these limits the converter  
CC  
CC  
+
+
REF , is more positive than the reference negative input,  
REF , by at least 0.1V.  
bipolar input range (V = IN – IN ) extends from –0.5  
IN  
• V  
/GAIN to 0.5 • V /GAIN. Outside this input  
REF REF  
range the converter produces unique overrange and  
underrange output codes.  
V
(Pin 2): Positive Supply Voltage. Bypass to GND  
CC  
(Pin 8) with a 1µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor as close to the part as possible.  
2481fd  
10  
For more information www.linear.com/LTC2481  
LTC2481  
pin FuncTions  
2
SCL (Pin 6): Serial Clock Pin of the I C Interface. The  
LTC2481 can only act as a slave and the SCL pin only ac-  
cepts external serial clock. Data is shifted into the SDA pin  
on the rising edges of the SCL clock and output through  
the SDA pin on the falling edges of the SCL clock.  
GND (Pin 8): Ground. Connect this pin to a ground plane  
through a low impedance connection.  
CA1 (Pin 9): Chip Address Control Pin. The CA1 pin is  
configured as a three state (LOW, HIGH, or Floating) ad-  
2
dress control bit for the device I C address.  
2
SDA (Pin 7): Bidirectional Serial Data Line of the I C Inter-  
CA0/f (Pin 10): Chip Address Control Pin/External Clock  
0
face.Inthetransmittermode(Read),theconversionresult  
is output through the SDA pin, while in the receiver mode  
(Write), thedeviceconfigurationbitsareinputthroughthe  
SDA pin. At data input mode, the pin is high impedance;  
while at data output mode, it is an open-drain N-channel  
driver and therefore an external pull-up resistor or current  
Input Pin. When no transition is detected on the CA0/f  
0
pin, it is a two state (HIGH or Floating) address control  
2
bit for the device I C address. When the pin is driven by  
an external clock signal with a frequency f  
of at least  
EOSC  
10kHz, the converter uses this signal as its system clock  
and the fundamental digital filter rejection null is located  
source to V is needed.  
CC  
at a frequency f  
/5120 and sets the Chip Address CA0  
EOSC  
internally to a HIGH.  
FuncTional block DiagraM  
2
+
REF  
V
CC  
1
+
IN  
SCL  
6
+
4
REF  
+
IN  
IN  
SDA  
IN  
2
I C  
5
7
9
3RD ORDER  
∆Σ ADC  
SERIAL  
INTERFACE  
MUX  
CA1  
CA0/f  
0
(1-256)  
GAIN  
10  
REF  
TEMP  
SENSOR  
AUTOCALIBRATION  
AND CONTROL  
INTERNAL  
OSCILLATOR  
REF  
GND  
3
8
2481 FD  
2481fd  
11  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
CONVERTER OPERATION  
Thedevicewillnotacknowledgeanexternalrequestduring  
the conversion state. After a conversion is finished, the  
device is ready to accept a read/write request. Once the  
LTC2481isaddressedforareadoperation,thedevicebegins  
outputtingtheconversionresultundercontroloftheserial  
clock (SCL). There is no latency in the conversion result.  
The data output is 24 bits long and contains a 16-bit plus  
signconversionresultplusareadbackoftheconfiguration  
bits corresponds to the conversion just performed. This  
result is shifted out on the SDA pin under the control of the  
SCL. Data is updated on the falling edges of SCL allowing  
the user to reliably latch data on the rising edge of SCL.  
In write operation, the device accepts one configuration  
byte and the data is shifted in on the rising edges of the  
SCL. A new conversion is initiated by a STOP condition  
following a valid write operation or at the conclusion of a  
data read operation (read out all 24 bits).  
Converter Operation Cycle  
TheLTC2481isalowpower,∆Σ analog-to-digitalconverter  
2
with an I C interface. After power on reset, its operation  
is made up of three states. The converter operating cycle  
beginswiththeconversion,followedbythelowpowersleep  
state and ends with the data output/input (see Figure 1).  
POWER ON RESET  
DEFAULT CONFIGURATION:  
EXTERNAL INPUT GAIN = 1  
50/60Hz REJECTION  
1X SPEED, AUTOCAL  
CONVERSION  
SLEEP  
2
I C INTERFACE  
2
TheLTC2481communicatesthroughanI Cinterface.The  
2
NO  
I C interface is a 2-wire open-drain interface supporting  
ACKNOWLEDGE  
multiple devices and masters on a single bus. The  
connected devices can only pull the bus wires LOW and  
canneverdrivethebusHIGH. Thebuswiresareexternally  
connected to a positive supply voltage via a current-  
source or pull-up resistor. When the bus is free, both  
YES  
DATA OUTPUT/INPUT  
2
lines are HIGH. Data on the I C-bus can be transferred  
at rates of up to 100kbit/s in the Standard-mode and up  
STOP  
NO  
to 400kbit/s in the Fast-mode. The V power should not  
OR READ  
24-BITS  
CC  
2
be removed from the device when the I C bus is active to  
2
avoid loading the I C bus lines through the internal ESD  
YES  
2481 F01  
protection diodes.  
2
Figure 1. LTC2481 State Transition Diagram  
Each device on the I C bus is recognized by a unique  
address stored in that device and can operate as either  
a transmitter or receiver, depending on the function of  
the device. In addition to transmitters and receivers,  
devices can also be considered as masters or slaves when  
performing data transfers. A master is the device which  
initiates a data transfer on the bus and generates the clock  
signalstopermitthattransfer. Atthesametimeanydevice  
addressed is considered a slave.  
Initially, the LTC2481 performs a conversion. Once the  
conversion is complete, the device enters the sleep state.  
While in this sleep state, power consumption is reduced  
by two orders of magnitude. The part remains in the sleep  
state as long as it is not addressed for a read/write opera-  
tion. The conversion result is held indefinitely in a static  
shift register while the converter is in the sleep state.  
2481fd  
12  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
The LTC2481 can only be addressed as a slave. Once  
addressed, itcanreceiveconfigurationbitsortransmitthe  
last conversion result. Therefore the serial clock line SCL  
is an input only and the data line SDA is bidirectional. The  
device supports the Standard-mode and the Fast-mode  
for data transfer speeds up to 400kbit/s. Figure 2 shows  
the definition of timing for Fast/Standard-mode devices  
Acknowledge (ACK) by pulling SDA LOW or leaves SDA  
HIGH to indicate a Not Acknowledge (NACK) condition.  
Change of data state can only happen while SCL is LOW.  
Accessing the Special Features of the LTC2481  
The LTC2481 combines a high resolution, low noise ∆Σ  
analog-to-digital converter with an on-chip selectable  
temperature sensor, programmable gain, programmable  
digital filterand outputrate control. These specialfeatures  
areselectedthroughasingle8-bitserialinputwordduring  
the data input/output cycle (see Figure 3).  
2
on the I C-bus.  
The START and STOP Conditions  
A STARTconditionis generatedby transitioningSDA from  
HIGH to LOW while SCL is HIGH. The bus is considered to  
be busy after the START condition. When the data transfer  
is finished, a STOP condition is generated by transitioning  
SDA from LOW to HIGH while SCL is HIGH. The bus is free  
again a certain time after the STOP condition. START and  
STOP conditions are always generated by the master.  
The LTC2481 powers up in a default mode commonly  
used for most measurements. The device will remain in  
this mode until a valid write cycle is performed. In this  
defaultmode,themeasuredinputisexternal,theGAINis1,  
the digital filter simultaneously rejects 50Hz and 60Hz  
line frequency noise, and the speed mode is 1x (offset  
automatically, continuously calibrated).  
The I2C serial interface grants access to any or all special  
functionscontainedwithintheLTC2481.Inordertochange  
the mode of operation, a valid write address followed by 8  
bitsofdataareshiftedintothedevice(seeTable 1).Therst  
3 bits (GS2, GS1, GS0) control the GAIN of the converter  
from 1 to 256. The 4th bit is reserved and should be low.  
The 5th bit (IM) is used to select the internal temperature  
sensor as the conversion input, while the 6th and 7th bits  
(FA,FB)combinetodeterminethelinefrequencyrejection  
mode. The 8th bit (SPD) is used to double the output rate  
by disabling the offset auto calibration.  
When the bus is in use, it stays busy if a repeated START  
(Sr)isgeneratedinsteadofaSTOPcondition.Therepeated  
START (Sr) conditions are functionally identical to the  
START (S).  
Data Transferring  
2
After the START condition, the I C bus is busy and data  
transfer is set between a master and a slave. Data is  
2
transferredoverI Cingroupsofninebits(onebyte)followed  
by an acknowledge bit, therefore each group takes nine  
SCL cycles. The transmitter releases the SDA line during  
the acknowledge clock pulse and the receiver issues an  
SDA  
tSU;DAT  
tf  
tLOW  
tr  
tr  
tHD;STA  
tSP  
tr  
tBUF  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
S
Sr  
P
S
2481 F02  
Figure 2. Definition of Timing for F/S-Mode Devices on the I2C-Bus  
2481fd  
13  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
1
2
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
SDA  
7-BIT ADDRESS  
GS2 GS1 GS0  
IM  
FA  
FB  
SPD  
W
ACK BY  
LTC2481  
ACK BY  
LTC2481  
START BY  
MASTER  
SLEEP  
DATA INPUT  
2481 F03  
Figure 3. Timing Diagram for Writing to the LTC2481  
Table 1. Selecting Special Modes  
Rejection  
Mode  
Gain  
GS2 GS1 GS0 IM FA FB SPD Comments  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
External Input, Gain = 1, Autocalibration  
External Input, Gain = 4, Autocalibration  
External Input, Gain = 8, Autocalibration  
External Input, Gain = 16, Autocalibration  
External Input, Gain = 32, Autocalibration  
External Input, Gain = 64, Autocalibration  
External Input, Gain = 128, Autocalibration  
External Input, Gain = 256, Autocalibration  
External Input, Gain = 1, 2x Speed  
External Input, Gain = 2, 2x Speed  
External Input, Gain = 4, 2x Speed  
External Input, Gain = 8, 2x Speed  
External Input, Gain = 16, 2x Speed  
External Input, Gain = 32, 2x Speed  
External Input, Gain = 64, 2x Speed  
External Input, Gain = 128, 2x Speed  
External Input, Simultaneous 50Hz/60Hz Rejection  
External Input, 50Hz Rejection  
Any  
Rejection  
Mode  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Any  
Speed  
Any Gain  
External Input, 60Hz Rejection  
Reserved, Do Not Use  
Temperature Input, 50Hz/60Hz Rejection, Gain = 1, Autocalibration  
Temperature Input, 50Hz Rejection, Gain = 1, Autocalibration  
Temperature Input, 60Hz Rejection, Gain = 1, Autocalibration  
Reserved, Do Not Use  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2481 TBL1  
2481fd  
14  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
Table 2a. The LTC2481 Performance vs GAIN in Normal Speed Mode (VCC = 5V, VREF = 5V)  
GAIN  
1
2.5  
4
0.625  
9.54  
65536  
5
8
0.312  
4.77  
65536  
5
16  
0.156  
2.38  
65536  
5
32  
78m  
1.19  
65536  
5
64  
39m  
0.596  
65536  
5
128  
19.5m  
0.298  
32768  
5
256  
UNIT  
V
Input Span  
LSB  
9.76m  
0.149  
16384  
8
38.1  
65536  
5
µV  
Noise Free Resolution*  
Gain Error  
Offset Error  
Counts  
ppm of FS  
µV  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
Table 2b. The LTC2481 Performance vs GAIN in 2x Speed Mode (VCC = 5V, VREF = 5V)  
GAIN  
1
2.5  
2
1.25  
19.1  
65536  
5
4
8
16  
0.156  
2.38  
65536  
5
32  
78m  
1.19  
65536  
5
64  
39m  
0.596  
45875  
5
128  
19.5m  
0.298  
22937  
5
UNIT  
V
Input Span  
LSB  
0.625  
9.54  
65536  
5
0.312  
4.77  
65536  
5
38.1  
65536  
5
µV  
Noise Free Resolution*  
Gain Error  
Offset Error  
Counts  
ppm of FS  
µV  
200  
200  
200  
200  
200  
200  
200  
200  
*The resolution in counts is calculated as the FS divided by LSB or the RMS noise value, whichever is larger.  
GAIN (GS2, GS1, GS0)  
Rejection Mode (FA, FB)  
The LTC2481 includes a high accuracy on-chip oscilla  
tor with no required external components. Coupled with  
a 4th order digital lowpass filter, the LTC2481 rejects  
line frequency noise. In the default mode, the LTC2481  
simultaneously rejects 50Hz and 60Hz by at least 87dB.  
The LTC2481 can also be configured to selectively reject  
50Hz or 60Hz to better than 110dB.  
The input referred gain of the LTC2481 is adjustable from  
1 to 256. With a gain of 1, the differential input range is  
-
V
/2 and the common mode input range is rail-to-rail.  
REF  
As the GAIN is increased, the differential input range is re-  
ducedto V /2GAINbutthecommonmodeinputrange  
REF  
remains rail-to-rail. As the differential gain is increased,  
low level voltages are digitized with greater resolution. At  
a gain of 256, the LTC2481 digitizes an input signal range  
of 9.76mV with over 16,000 counts.  
Speed Mode (SPD)  
The LTC2481 continuously performs offset calibrations.  
Everyconversioncycle,twoconversionsareautomatically  
performed (default) and the results combined. This result  
isfreefromoffsetanddrift.Inapplicationswheretheoffset  
is not critical, the autocalibration feature can be disabled  
with the benefit of twice the output rate.  
Temperature Sensor (IM)  
The LTC2481 includes an on-chip temperature sensor.  
The temperature sensor is selected by setting IM = 1 in  
the serial input data stream. Conversions are performed  
directly on the temperature sensor by the converter. While  
operatinginthismode,thedevicebehavesasatemperature  
to bits converter. The digital reading is proportional to  
the absolute temperature of the device. This feature  
allows the converter to linearize temperature sensors or  
continuously remove temperature effects from external  
sensors. Several applications leveraging this feature are  
presented in more detail in the applications section. While  
operating in this mode, the gain is set to 1 and the speed  
is set to normal independent of the control bits (GS2,  
GS1, GS0 and SPD).  
Linearity, full-scale accuracy and full-scale drift are identi-  
cal for both 2x and 1x speed modes. In both the 1x and  
2x speed there is no latency. This enables input steps or  
multiplexer channel changes to settle in a single conver-  
sion cycle easing system overhead and increasing the  
effective conversion rate.  
2481fd  
15  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
LTC2481 Data Format  
LOW if V <0. The second bit is the most significant bit  
IN  
(MSB) of the result. The first two bits (SIG and MSB) can  
be used to indicate over range conditions. If both bits are  
HIGH, the differential input voltage is above +FS and the  
following 16 bits are set to LOW to indicate an overrange  
condition. If both bits are LOW, the input voltage is below  
–FS and the following 16 bits are set to HIGH to indicate  
an underrange condition. The function of these two bits  
is summarized in Table 3. The next 16 bits contain the  
conversion results in binary two’s complement format.  
The remaining six bits are a readback of the configuration  
register.  
After a START condition, the master sends a 7-bit address  
followed by a R/W bit. The bit R/W is 1 for a Read request  
and 0 for a Write request. If the 7-bit address agrees with  
an LTC2481’s address, that device is selected. When the  
device is in the conversion state, it does not accept the  
request and issues a Not-Acknowledge (NACK) by leaving  
SDA HIGH. If the conversion is complete, it issues an  
acknowledge (ACK) by pulling SDA LOW.  
TheLTC2481hastworegisters.Theoutputregistercontains  
the result of the last conversion and a user programmable  
configuration register that sets the converter operation  
mode.  
Table 3. LTC2481 Status Bits  
INPUT RANGE  
≥ 0.5 • V  
BIT 23 SIG  
BIT 22 MSB  
Theoutputregistercontainsthelastconversionresult.After  
each conversion is completed, the device automatically  
enters the sleep state where the supply current is reduced  
to 1µA. When the LTC2481 is addressed for a Read  
operation, it acknowledges (by pulling SDA LOW) and  
acts as a transmitter. The master and receiver can read up  
to three bytes from the LTC2481. After a complete Read  
operation (3 bytes), the output register is emptied, a new  
conversion is initiated, and a following Read request in the  
same input/output phase will be NACKed. The LTC2481  
outputdatastreamis24bitslong, shiftedoutonthefalling  
edges of SCL. The first bit is the conversion result sign bit  
V
IN  
1
1/0  
0
1
0
1
0
REF  
0V ≤ V < 0.5 • V  
IN  
REF  
–0.5 • V ≤ V < 0V  
REF  
IN  
V
IN  
< 0.5 • V  
0
REF  
+
As long as the voltage on the IN and IN pins is main-  
tainedwithinthe0.3Vto(V +0.3V)absolutemaximum  
CC  
operating range, a conversion result is generated for any  
differential input voltage V from –FS = –0.5 • V /GAIN  
IN  
REF  
to +FS = 0.5 • V /GAIN. For differential input voltages  
REF  
greater than +FS, the conversion result is clamped to the  
value corresponding to the +FS + 1LSB. For differential  
inputvoltagesbelowFS,theconversionresultisclamped  
to the value corresponding to –FS – 1LSB.  
(SIG), see Tables 3 and 4. This bit is HIGH if V ≥ 0. It is  
IN  
Table 4. LTC2481 Output Data Format  
DIFFERENTIAL INPUT VOLTAGE  
*
VIN  
BIT 23 SIG  
BIT 22 MSB  
BIT 21  
BIT 20  
BIT 19  
BIT 6  
V * ≥ FS**  
IN  
1
1
1
0
0
1
0
1
0
1
0
1
FS** – 1LSB  
0.5 • FS**  
1
1
0
0
1
0
0
1
0
1
0
1
0.5 • FS** – 1LSB  
0
1/0***  
0
0
1
0
1
0
1
0
1
0
1
–1LSB  
0.5 • FS**  
0
0
1
1
1
0
0
1
0
1
0
1
0.5 • FS** – 1LSB  
FS**  
0
1
0
0
1
0
1
0
1
0
1
V * < –FS**  
IN  
0
+
* The differential input voltage V = IN – IN .  
IN  
** The full-scale voltage FS = 0.5 • V /GAIN.  
REF  
*** The sign bit changes state during the 0 output code when the device is operating in the 2x speed mode.  
2481fd  
16  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
1
… 7  
8
9
1
2 …  
9
1
2
3
4
5
6
7
8
9
7-BIT  
ADDRESS  
R
SGN MSB D15  
LSB PG2 PG1 PG0  
X
IM  
SPD  
ACK BY  
LTC2481  
ACK BY  
MASTER  
NAK BY  
MASTER  
START BY  
MASTER  
SLEEP  
DATA OUTPUT  
2481 F04  
Figure 4. Timing Diagram for Reading from the LTC2481  
Initiating a New Conversion  
OPERATION SEꢀUENCE  
When the LTC2481 finishes a conversion, it automatically  
enters the sleep state. Once in the sleep state, the device  
is ready for Read/Write operations. After the device ac-  
knowledges a Read or Write request, the device exits the  
sleepstateandentersthedatainput/outputstate. Thedata  
input/outputstateconcludesandtheLTC2481startsanew  
conversion once a STOP condition is issued by the master  
or all 24 bits of data are read out of the device.  
The LTC2481 acts as a transmitter or receiver. The device  
may be programmed to perform several functions. These  
include measuring an external differential input signal or  
anintegratedtemperaturesensor,settingaprogrammable  
gain (from 1 to 256), selecting line frequency rejection  
(50Hz, 60Hz, or simultaneous 50Hz and 60Hz), and a 2x  
speed up mode.  
Continuous Read  
Duringthedatareadcycle,astopcommandmaybeissued  
by the master controller in order to start a new conversion  
and abort the data transfer. This stop command must be  
issued during the 9th clock cycle of a byte read when the  
bus is free (the ACK/NACK cycle).  
In applications where the configuration does not need to  
change for each conversion cycle, the conversion result  
can be continuously read. The configuration remains  
unchanged from the last value written into the device.  
If the device has not been written to since power up, the  
configuration is set to the default value (Input External,  
GAIN=1, simultaneous 50Hz/60Hz rejection, and 1x  
speedmode). TheoperationsequenceisshowninFigure  
6. When the conversion is finished, the device may be  
addressed for a read operation. At the end of a read  
operation, a new conversion begins. At the conclusion  
of the conversion cycle, the next result may be read  
using the method described above. If the conversion  
cycle is not concluded and a valid address selects the  
device, the LTC2481 generates a NACK signal indicating  
the conversion cycle is in progress.  
LTC2481 Address  
The LTC2481 has two address pins, enabling one in 6  
possible addresses, as shown in Table 5.  
Table 5. LTC2481 Address Assignment  
CA1  
LOW  
CA0/f *  
Address  
001 01 00  
001 01 01  
001 01 11  
010 01 00  
010 01 10  
010 01 11  
0
HIGH  
Floating  
HIGH  
LOW  
Floating  
Floating  
HIGH  
Floating  
HIGH  
HIGH  
Floating  
* CA0/f is treated as HIGH when driven by a valid external clock.  
0
InadditiontotheconfigurableaddresseslistedinTable5,the  
LTC2481 also contains a global address (1110111) which  
may be used for synchronizing multiple LTC2481s.  
2481fd  
17  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
S
R/W  
ACK  
DATA  
Sr  
DATA TRANSFERRING  
P
7-BIT ADDRESS  
CONVERSION  
SLEEP  
DATA INPUT/OUTPUT  
CONVERSION  
2481 F05  
Figure 5. The LTC2481 Conversion Sequence  
S
7-BIT ADDRESS  
R
ACK  
READ  
P
S
7-BIT ADDRESS  
R
ACK  
READ  
P
CONVERSION  
CONVERSION  
SLEEP  
DATA OUTPUT  
SLEEP  
DATA OUTPUT  
CONVERSION  
2481 F06  
Figure 6. Consecutive Reading at the Same Configuration  
S
7-BIT ADDRESS  
W ACK  
WRITE  
Sr  
7-BIT ADDRESS  
ADDRESS  
R
ACK  
READ  
P
CONVERSION  
SLEEP  
DATA INPUT  
DATA OUTPUT  
CONVERSION  
2481 F08  
Figure 7. Write, Read, Start Conversion  
Continuous Read/Write  
Synchronizing Multiple LTC2481s with the Global  
Address Call  
Once the conversion cycle is concluded, the LTC2481 can  
be written to then read from, using the repeated Start (Sr)  
command.  
In applications where several LTC2481s are used on the  
2
same I C bus, all LTC2481s can be synchronized with the  
global address call. To achieve this, first all the LTC2481s  
must have completed the conversion cycle. The master  
issues a Start, followed by the LTC2481 global address  
1110111andaWriterequest. AllLTC2481swillbeselected  
and acknowledge the request. The master then sends  
the write byte (Optional) and ends the Write operation  
with a STOP. This will update the configuration registers  
(if a write byte was sent) and initiate a new conversion  
simultaneously on all the LTC2481s, as shown in Figure 9.  
In order to synchronize the start of conversion without  
affecting the configuration registers, the Write operation  
canbeabortedwithaSTOP. Thisinitiatesanewconversion  
on all the LTC2481s without changing the configuration  
registers.  
Figure 7 shows a cycle which begins with a data Write, a  
repeated start, followed by a read, and concluded with a  
stopcommand.Thefollowingconversionbeginsafterall24  
bits are read out of the device or after the STOP command  
and uses the newly programmed configuration data.  
Discarding a Conversion Result and Initiating a New  
Conversion with Optional Configuration Updating  
At the conclusion of a conversion cycle, a Write cycle  
can be initiated. Once the Write cycle is acknowledged,  
a stop (P) command initiates a new conversion. If a new  
configuration is required, this data can be written into the  
device and a stop command initiates a new conversion,  
see Figure 8.  
2481fd  
18  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
S
7-BIT ADDRESS  
W ACK  
WRITE (OPTIONAL)  
DATA INPUT  
P
CONVERSION  
SLEEP  
CONVERSION  
2481 F08  
Figure 8. Start a New Conversion without Reading Old Conversion Result  
SCL  
SDA  
LTC2481  
LTC2481  
LTC2481  
S
GLOBAL ADDRESS  
W ACK WRITE (OPTIONAL)  
DATA INPUT  
P
ALL LTC2481s IN SLEEP  
CONVERSION OF ALL LTC2481s  
2481 F09  
Figure 9. Synchronize the LTC2481s with the Global Address Call  
Easy Drive Input Current Cancellation  
directly related to the accuracy of the converter system  
clock.TheLTC2481incorporatesahighlyaccurateon-chip  
oscillator. This eliminates the need for external frequency  
setting components such as crystals or oscillators.  
The LTC2481 combines a high precision delta-sigma ADC  
with an automatic differential input current cancellation  
front end. A proprietary front-end passive sampling  
network transparently removes the differential input  
current. This enables external RC networks and high  
impedance sensors to directly interface to the LTC2481  
without external amplifiers. The remaining common  
mode input current is eliminated by either balancing the  
differential input impedances or setting the common  
mode input equal to the common mode reference (see  
AutomaticInputCurrentCancellationsection).Thisunique  
architecture does not require on-chip buffers enabling  
input signals to swing all the way to ground and up to  
Frequency Rejection Selection (CA0/f )  
0
TheLTC2481internaloscillatorprovidesbetterthan110dB  
normal mode rejection at the line frequency and all its  
harmonics (up to the 255th) for 50Hz 2% or 60Hz 2%,  
or better than 87dB normal mode rejection from 48Hz to  
62.4Hz. The rejection mode is selected by writing to the  
on-chipconfigurationregister(thedefaultmodeatpower-  
up is simultaneous 50Hz/60Hz rejection).  
When a fundamental rejection frequency different from  
50Hz or 60Hz is required or when the converter must be  
synchronized with an outside source, the LTC2481 can  
operate with an external conversion clock. The converter  
automatically detects the presence of an external clock  
V . Furthermore, the cancellation does not interfere with  
CC  
the transparent offset and full-scale auto-calibration and  
the absolute accuracy (full-scale + offset + linearity) is  
maintained even with external RC networks.  
signal at the CA0/f pin and turns off the internal oscilla-  
tor. The chip address for CA0 is internally set HIGH. The  
0
Conversion Clock  
A major advantage the delta-sigma converter offers over  
conventional type converters is an on-chip digital filter  
(commonly implemented as a SINC or Comb filter). For  
high resolution, low frequency applications, this filter is  
typicallydesignedtorejectlinefrequenciesof50Hzor60Hz  
plus their harmonics. The filter rejection performance is  
frequency f  
of the external signal must be at least  
EOSC  
10kHz to be detected. The external clock signal duty cycle  
is not significant as long as the minimum and maximum  
specifications for the high and low periods t  
are observed.  
and t  
HEO  
LEO  
2481fd  
19  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
While operating with an external conversion clock of a  
–80  
–85  
frequency f  
, the LTC2481 provides better than 110dB  
EOSC  
–90  
normal mode rejection in a frequency range of f  
/5120  
EOSC  
–95  
4% and its harmonics. The normal mode rejection as a  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
function of the input frequency deviation from f  
is shown in Figure 10.  
/5120  
EOSC  
WheneveranexternalclockisnotpresentattheCA0/f pin,  
0
the converter automatically activates its internal oscillator  
and enters the Internal Conversion Clock mode. CA0/f  
0
may be tied HIGH or left floating in order to set the chip  
address. The LTC2481 operation will not be disturbed if  
the change of conversion clock source occurs during the  
sleep state or during the data output state while the con-  
verter uses an external serial clock. If the change occurs  
during the conversion state, the result of the conversion in  
progress may be outside specifications but the following  
conversions will not be affected.  
–12  
–8  
–4  
0
4
8
12  
DIFFERENTIAL INPUT SIGNAL FREQUENCY  
DEVIATION FROM NOTCH FREQUENCY f  
/5120(%)  
2481 F10  
EOSC  
Figure 10. LTC2481 Normal Mode Rejection When  
Using an External Oscillator  
above. The advantage of continuous calibration is extreme  
stability of offset and full-scale readings with respect to  
time, supply voltage change and temperature drift.  
Table 6 summarizes the duration of the conversion state  
of each state and the achievable output data rate as a  
Power-Up Sequence  
function of f  
.
EOSC  
The LTC2481 automatically enters an internal reset  
Ease of Use  
state when the power supply voltage V drops below  
CC  
The LTC2481 data output has no latency, filter settling  
delay or redundant data associated with the conversion  
cycle. There is a one-to-one correspondence between the  
conversion and the output data. Therefore, multiplexing  
multiple analog voltages is easy.  
approximately 2V. This feature guarantees the integrity of  
the conversion result.  
When the V voltage rises above this critical threshold,  
CC  
the converter creates an internal power-on-reset (POR)  
signal with a duration of approximately 4ms. The POR  
signalclearsallinternalregisters.FollowingthePORsignal,  
the LTC2481 starts a normal conversion cycle and follows  
the succession of states described in Figure 1. The first  
The LTC2481 performs offset and full-scale calibrations  
every conversion cycle. This calibration is transparent to  
theuserandhasnoeffectonthecyclicoperationdescribed  
Table 6. LTC2481 State Duration  
STATE  
OPERATING MODE  
DURATION  
CONVERSION  
Internal Oscillator  
60Hz Rejection  
133ms, Output Data Rate ≤ 7.5 Readings/s for 1x Speed Mode 67ms,  
Output Data Rate ≤ 15 Readings/s for 2x Speed Mode  
50Hz Rejection  
160ms, Output Data Rate ≤ 6.2 Readings/s for 1x Speed Mode 80ms,  
Output Data Rate ≤ 12.5 Readings/s for 2x Speed Mode  
50Hz/60Hz Rejection  
147ms, Output Data Rate ≤ 6.8 Readings/s for 1x Speed Mode 73.6ms,  
Output Data Rate ≤ 13.6 Readings/s for 2x Speed Mode  
External Oscillator  
CA0/f = External Oscillator 41036/f  
s, Output Data Rate ≤ f  
s, Output Data Rate ≤ f  
/41036 Readings/s for 1x Speed Mode  
EOSC  
/20556 Readings/s for 2x Speed Mode  
EOSC  
0
EOSC  
EOSC  
with Frequency f  
Hz  
20556/f  
EOSC  
(f  
/5120 Rejection)  
EOSC  
2481fd  
20  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
conversion result following POR is accurate within the  
specifications of the device if the power supply voltage is  
restored within the operating range (2.7V to 5.5V) before  
the end of the POR time interval.  
If the same V  
source is used during calibration and  
REF  
temperature measurement, the actual value of the V  
REF  
is not needed to measure the temperature as shown in  
the calculation below:  
RSDA VREF  
On-Chip Temperature Sensor  
TC =  
273  
SLOPE  
The LTC2481 contains an on-chip PTAT (proportional to  
absolutetemperature)signalthatcanbeusedasatempera-  
ture sensor. The internal PTAT has a typical value of 420mV  
at 27°C and is proportional to the absolute temperature  
value with a temperature coefficient of 420/(27 + 273) =  
1.40mV/°C (SLOPE), as shown in Figure 11. The internal  
PTAT signal is used in a single-ended mode referenced to  
device ground internally. The GAIN is automatically set to  
one (independent of the values of GS0, GS1, GS2) in order  
to preserve the PTAT property at the ADC output code  
and avoid an out of range error. The 1x speed mode with  
automatic offset calibration is automatically selected for  
the internal PTAT signal measurement as well.  
RSDA  
R0SDA  
=
T0+273 273  
( )  
600  
V
= 5V  
CC  
IM = 1  
SLOPE = 1.40mV/°C  
500  
400  
300  
200  
When using the internal temperature sensor, if the output  
–60  
–30  
0
30  
60  
90  
120  
TEMPERATURE (°C)  
code is normalized to R  
= V  
/V , the temperature  
SDA  
PTAT REF  
2481 F11  
is calculated using the following formula:  
Figure 11. Internal PTAT Signal vs Temperature  
RSDA VREF  
TK =  
and  
TC =  
in Kelvin  
Reference Voltage Range  
SLOPE  
The LTC2481 external reference voltage range is 0.1V  
to V . The converter output noise is determined by  
CC  
RSDA VREF  
273 in °C  
the thermal noise of the front-end circuits, and as such,  
SLOPE  
its value in nanovolts is nearly constant with reference  
where SLOPE is nominally 1.4mV/°C.  
voltage. Since the transition noise (600nV) is much less  
17  
Since the PTAT signal can have an initial value variation  
which results in errors in SLOPE, to achieve absolute  
temperature measurements, a one-time calibration is  
needed to adjust the SLOPE value. The converter output of  
than the quantization noise (V /2 ), a decrease in the  
REF  
reference voltage will increase the converter resolution. A  
reduced reference voltage will also improve the converter  
performance when operated with an external conversion  
thePTATsignal,R0 ,ismeasuredataknowntemperature  
SDA  
clock (external f signal) at substantially higher output  
O
T0 (in °C) and the SLOPE is calculated as:  
data rates (see the Output Data Rate section). V must  
REF  
R0SDA VREF  
be ≥1.1V to use the internal temperature sensor.  
SLOPE=  
T0+273  
Thereferenceinputisdifferential.Thedifferentialreference  
+
This calibrated SLOPE can be used to calculate the tem-  
perature.  
input range (V = REF – REF ) is 100mV to V and the  
REF  
CC  
CC  
common mode reference input range is 0V to V .  
2481fd  
21  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
Input Voltage Range  
Driving the Input and Reference  
The analog input is truly differential with an absolute/  
The input and reference pins of the LTC2481 converter  
are directly connected to a network of sampling capaci-  
tors. Depending upon the relation between the differential  
input voltage and the differential reference voltage, these  
capacitors are switching between these four pins transfer-  
ring small amounts of charge in the process. A simplified  
equivalent circuit is shown in Figure 12.  
+
common mode range for the IN and IN input pins  
extending from GND – 0.3V to V + 0.3V. Outside these  
CC  
limits, the ESD protection devices begin to turn on and the  
errors due to input leakage current increase rapidly. Within  
these limits, the LTC2481 converts the bipolar differential  
+
inputsignal,V =IN IN ,fromFSto+FSwhereFS=0.5  
IN  
• V /GAIN. Beyondthisrange, theconverterindicatesthe  
REF  
For a simple approximation, the source impedance R  
S
overrangeortheunderrangeconditionusingdistinctoutput  
codes.Sincethedifferentialinputcurrentcancellationdoes  
not rely on an on-chip buffer, current cancellation as well  
as DC performance is maintained rail-to-rail.  
+
+
driving an analog input pin (IN , IN , REF or REF ) can be  
considered to form, together with R and C (see Fig-  
SW  
EQ  
ure 12), a first order passive network with a time constant  
τ = (R + R ) • C . The converter is able to sample the  
S
SW  
EQ  
I
nput signals applied to IN+ and INpins may extend by  
inputsignalwithbetterthan1ppmaccuracyifthesampling  
periodisatleast14timesgreaterthantheinputcircuittime  
constant τ. The sampling process on the four input analog  
pins is quasi-independent so each time constant should be  
considered by itself and, under worst-case circumstances,  
the errors may add.  
300mV below ground and above VCC. In order to limit any  
fault current, resistors of up to 5k may be added in series  
withtheIN+andINpinswithoutaffectingtheperformance  
of the devices. The effect of the series resistance on the  
converter accuracy can be evaluated from the curves  
presentedintheInputCurrent/ReferenceCurrentsections.  
In addition, series resistors will introduce a temperature  
dependent offset error due to the input leakage current.  
A 1nA input leakage current will develop a 1ppm offset  
error on a 5k resistor if VREF = 5V. This error has a very  
strong temperature dependency.  
Whenusingtheinternaloscillator,theLTC2481’sfront-end  
switched-capacitor network is clocked at 123kHz corre-  
sponding to an 8.1µs sampling period. Thus, for settling  
errors of less than 1ppm, the driving source impedance  
shouldbechosensuchthatτ 8.1µs/14=580ns.Whenan  
externaloscillatoroffrequencyf  
isused,thesampling  
EOSC  
V
CC  
+
period is 2.5/f  
and, for a settling error of less than  
I
EOSC  
REF  
R
(TYP)  
SW  
I
LEAK  
1ppm, τ ≤ 0.178/f  
.
10k  
EOSC  
+
V
REF  
I
LEAK  
V
IN(CM) VREF(CM)  
0.5REQ  
I IN+  
= I IN–  
=
(
)
(
)
V
CC  
AVG  
AVG  
+
I
IN  
2
R
(TYP)  
10k  
2
1.5VREF + VREF(CM) – V  
SW  
V
(
IN(CM)  
)
1.5VREF VINCM + VREFCM  
0.5REQ  
0.5VREF DT  
V
IN  
I
I
LEAK  
LEAK  
IN  
I REF+  
=
(
)
+
AVG  
VREF REQ  
REQ  
0.5REQ  
VREF REQ  
V
IN  
C
EQ  
12pF  
where:  
(TYP)  
REF+ + REF–  
V
REF+ REF–  
, VREF =  
CC  
VREFCM  
=
I
2
IN  
R
R
(TYP)  
SW  
I
I
LEAK  
LEAK  
10k  
V
IN  
= IN+ IN−  
V
IN  
+
IN +IN−  
V
INCM  
=
2
V
CC  
REQ = 2.71MΩ INTERNAL OSCILLATOR 60Hz MODE  
REQ = 2.98MΩ INTERNAL OSCILLATOR 50Hz AND 60Hz MODE  
REQ = 0.8331012 / fEOSC EXTERNAL OSCILLATOR  
I
REF  
(TYP)  
SW  
10k  
I
I
LEAK  
LEAK  
2481 F12  
(
)
V
REF  
DT IS THE DENSITY OF A DIGITAL TRANSITION AT THE MODULATOR OUTPUT  
WHERE REF IS INTERNALLY TIED TO GND  
SWITCHING FREQUENCY  
f
f
= 123kHz INTERNAL OSCILLATOR  
SW  
SW  
= 0.4 • f  
EXTERNAL OSCILLATOR  
EOSC  
Figure 12. LTC2481 Equivalent Analog Input Circuit  
2481fd  
22  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
Automatic Differential Input Current Cancellation  
R
R
SOURCE  
+
IN  
In applications where the sensor output impedance is  
low (up to 10kΩ with no external bypass capacitor or up  
to 500Ω with 0.001µF bypass), complete settling of the  
input occurs. In this case, no errors are introduced and  
direct digitization of the sensor is possible.  
C
PAR  
V
V
+ 0.5V  
– 0.5V  
C
C
INCM  
INCM  
IN  
IN  
EXT  
EXT  
20pF  
LTC2481  
SOURCE  
IN  
2481 F13  
C
PAR  
20pF  
For many applications, the sensor output impedance  
combined with external bypass capacitors produces RC  
time constants much greater than the 580ns required for  
1ppmaccuracy.Forexample,a10kΩbridgedrivinga0.1µF  
bypass capacitor has a time constant several orders of  
magnitudegreaterthantherequiredmaximum.Historically,  
settlingissuesweresolvedusingbuffers.Thesebuffersled  
toincreasednoise,reducedDCperformance(Offset/Drift),  
limited input/output swing (cannot digitize signals near  
Figure 13. An RC Network at IN+ and IN–  
80  
V
V
V
V
T
= 5V  
CC  
= 5V  
REF  
60  
40  
20  
+
= 3.75V  
= 1.25V  
IN  
IN  
= 25°C  
A
C
= 0pF  
EXT  
C
= 100pF  
EXT  
ground or V ), added system cost and increased power.  
0
CC  
C
= 1nF, 0.1µF, 1µF  
EXT  
The LTC2481 uses a proprietary switching algorithm that  
forces the average differential input current to zero inde-  
pendent of external settling errors. This allows accurate  
direct digitization of high impedance sensors without the  
need of buffers (see Figures 13 to 15). Additional errors  
resulting from mismatched leakage currents must also  
be taken into account.  
–20  
–40  
–60  
–80  
10  
100  
R
10k  
1
100k  
1k  
(Ω)  
SOURCE  
2481 F14  
Figure 14. +FS Error vs RSOURCE at IN+ and IN–  
The switching algorithm forces the average input current  
+
on the positive input (I ) to be equal to the average input  
IN  
current on the negative input (I ). Over the complete  
80  
IN  
V
V
V
V
= 5V  
CC  
conversion cycle, the average differential input current  
= 5V  
REF  
60  
40  
20  
+
= 1.25V  
= 3.75V  
+
IN  
(I – I ) is zero. While the differential input current  
IN  
IN  
IN  
+
T
= 25°C  
A
is zero, the common mode input current (I + I )/2 is  
proportional to the difference between the common mode  
input voltage (V  
voltage (V  
C = 1nF, 0.1µF, 1µF  
EXT  
IN  
IN  
0
) and the common mode reference  
INCM  
).  
C
= 100pF  
EXT  
–20  
REFCM  
C
= 0pF  
EXT  
–40  
–60  
–80  
In applications where the input common mode voltage  
is equal to the reference common mode voltage, as in  
the case of a balance bridge type application, both the  
differential and common mode input current are zero.  
The accuracy of the converter is unaffected by settling  
10  
100  
10k  
1
100k  
1k  
(Ω)  
R
SOURCE  
2481 F15  
+
Figure 15. –FS Error vs RSOURCE at IN+ and IN–  
errors. Mismatches in source impedances between IN  
and IN also do not affect the accuracy.  
In applications where the input common mode voltage is  
constant but different from the reference common mode  
voltage, the differential input current remains zero while  
2481fd  
23  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
the common mode input current is proportional to the  
a specification can also be easily achieved by an external  
clock. When relatively stable resistors (50ppm/°C) are  
difference between V  
and V  
. For a reference  
INCM  
REFCM  
+
common mode of 2.5V and an input common mode of  
1.5V, the common mode input current is approximately  
0.74µA(insimultaneous50Hz/60Hzrejectionmode). This  
commonmodeinputcurrenthasnoeffectontheaccuracy  
used for the external source impedance seen by IN and  
IN , the expected drift of the dynamic current and offset  
will be insignificant (about 1% of their respective values  
over the entire temperature and voltage range). Even for  
the most stringent applications, a one-time calibration  
operation may be sufficient.  
+
if the external source impedances tied to IN and IN are  
matched. Mismatches in these source impedances lead  
to a fixed offset error but do not affect the linearity or full-  
scale reading. A 1% mismatch in 1kΩ source resistances  
leads to a 15ppm shift (74µV) in offset voltage.  
In addition to the input sampling charge, the input ESD  
protection diodes have a temperature dependent leakage  
current. This current, nominally 1nA ( 10nA max), results  
in a small offset shift. A 1k source resistance will create a  
1µV typical and 10µV maximum offset voltage.  
In applications where the common mode input voltage  
varies as a function of input signal level (single-ended  
input, RTDs, half bridges, current sensors, etc.), the com-  
mon mode input current varies proportionally with input  
voltage. For the case of balanced input impedances, the  
common mode input current effects are rejected by the  
large CMRR of the LTC2481 leading to little degradation in  
accuracy. Mismatches in source impedances lead to gain  
errorsproportionaltothedifferencebetweenthecommon  
mode input voltage and the common mode reference  
voltage. 1% mismatches in 1kΩ source resistances lead  
to worst-case gain errors on the order of 15ppm or 1LSB  
(for 1V differences in reference and input common mode  
voltage). Table 7 summarizes the effects of mismatched  
source impedance and differences in reference/input  
common mode voltages.  
Reference Current  
In a similar fashion, the LTC2481 samples the differential  
+
reference pins REF and REF transferring small amount  
of charge to and from the external driving circuits thus  
producing a dynamic reference current. This current does  
not change the converter offset, but it may degrade the  
gain and INL performance. The effect of this current can  
be analyzed in two distinct situations.  
For relatively small values of the external reference capaci-  
tors (C  
< 1nF), the voltage on the sampling capacitor  
REF  
settles almost completely and relatively large values for  
the source impedance result in only small errors. Such  
values for C  
will deteriorate the converter offset and  
REF  
Table 7. Suggested Input Configuration for LTC2481  
gain performance without significant benefits of reference  
filtering and the user is advised to avoid them.  
BALANCED INPUT  
RESISTANCES  
UNBALANCED INPUT  
RESISTANCES  
+
+
Larger values of reference capacitors (C > 1nF) may be  
Constant  
– V  
C
> 1nF at Both IN  
C
> 1nF at Both IN  
REF  
EXT  
EXT  
V
and IN . Can Take Large and IN . Can Take Large  
Source Resistance with Source Resistance.  
requiredasreferenceltersincertainconfigurations. Such  
capacitors will average the reference sampling charge and  
the external source resistance will see a quasi constant  
reference differential impedance.  
IN(CM)  
REF(CM)  
REF(CM)  
Negligible Error  
Unbalanced Resistance  
Results in an Offset Which  
Can be Calibrated  
+
+
Varying  
C
> 1nF at Both IN  
Minimize IN and  
EXT  
In the following discussion, it is assumed the input and  
reference common mode are the same. Using internal  
oscillator for 60Hz mode, the typical differential reference  
V
– V  
and IN . Can Take Large IN Capacitors and Avoid  
Source Resistance with Large Source Impedance  
IN(CM)  
Negligible Error  
(<5k Recommended)  
resistanceis1MΩwhichgeneratesafull-scale(V /2)gain  
REF  
Themagnitudeofthedynamicinputcurrentdependsupon  
thesizeoftheverystableinternalsamplingcapacitorsand  
upon the accuracy of the converter sampling clock. The  
accuracy of the internal clock over the entire temperature  
andpowersupplyrangeistypicallybetterthan0.5%.Such  
errorof0.51ppmforeachohmofsourceresistancedriving  
+
the REF and REF pins. For 50Hz/60Hz mode, the related  
difference resistance is 1.1MΩ and the resulting full-scale  
erroris0.46ppm for eachohmofsourceresistancedriving  
2481fd  
24  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
the REF and REF pins. For 50Hz mode, the related differ-  
ence resistance is 1.2MΩ and the resulting full-scale error  
is 0.42ppm for each ohm of source resistance driving the  
+
pin current as expressed in Figure 12. When using internal  
oscillatorand60Hzmode,every100Ωofreferencesource  
resistance translates into about 0.67ppm additional INL  
error.Whenusinginternaloscillatorand50Hz/60Hzmode,  
every 100Ω of reference source resistance translates into  
about 0.61ppm additional INL error. When using internal  
oscillatorand50Hzmode,every100Ωofreferencesource  
resistance translates into about 0.56ppm additional INL  
+
REF and REF pins. When CA0/f is driven by an external  
0
oscillatorwithafrequencyf  
(externalconversionclock  
EOSC  
operation), the typical differential reference resistance is  
12  
0.30 • 10 /f  
Ω and each ohm of source resistance  
EOSC  
+
–6  
driving the REF or REF pins will result in 1.67 • 10  
f
ppm gain error. The typical +FS and –FS errors for  
is driven by an external oscillator  
error. When CA0/f  
EOSC  
0
various combinations of source resistance seen by the  
with a frequency f  
, every 100Ω of source resistance  
EOSC  
+
+
–6  
REF or REF pins and external capacitance connected to  
that pin are shown in Figures 16-19.  
driving REF or REF translates into about 2.18 • 10  
f
ppmadditionalINLerror. Figure 20showsthetypical  
EOSC  
+
INL error due to the source resistance driving the REF  
In addition to this gain error, the converter INL per-  
formance is degraded by the reference source imped-  
or REF pins when large C  
values are used. The user  
REF  
is advised to minimize the source impedance driving the  
ance. The INL is caused by the input dependent terms  
+
REF and REF pins.  
2
–V /(V • R ) – (0.5 • V • D )/R in the reference  
IN  
REF  
EQ  
REF  
T
EQ  
500  
90  
V
V
V
V
= 5V  
= 5V  
= 3.75V  
= 1.25V  
= 25°C  
V
V
V
V
= 5V  
CC  
CC  
C
= 1µF, 10µF  
REF  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 5V  
REF  
REF  
+
+
= 3.75V  
= 1.25V  
IN  
IN  
400  
300  
200  
100  
0
IN  
IN  
T
T
= 25°C  
A
A
C
= 0.1µF  
REF  
C
= 0.01µF  
REF  
C
= 0.001µF  
REF  
C
= 100pF  
REF  
C
= 0pF  
REF  
C
= 0.01µF  
REF  
–10  
0
200  
400  
R
600  
(Ω)  
800  
1000  
0
10  
100  
R
1k  
(Ω)  
10k  
100k  
SOURCE  
SOURCE  
2481 F18  
2481 F16  
Figure 16. +FS Error vs RSOURCE at REF+ or REF(Small CREF  
)
Figure 18. +FS Error vs RSOURCE at REF+ or REF(Large CREF  
)
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
C
REF  
C
= 0.01µF  
REF  
–100  
C
= 0.001µF  
C
= 0.01µF  
REF  
= 100pF  
REF  
REF  
C
= 0pF  
–200  
–300  
–400  
–500  
C
= 1µF, 10µF  
REF  
C
= 0.1µF  
REF  
V
V
V
V
T
= 5V  
= 5V  
= 1.25V  
= 3.75V  
= 25°C  
V
V
V
V
T
= 5V  
CC  
CC  
= 5V  
REF  
REF  
+
+
= 1.25V  
= 3.75V  
IN  
IN  
IN  
A
IN  
= 25°C  
A
0
10  
100  
R
1k  
10k  
100k  
0
200  
400  
R
600  
(Ω)  
800  
1000  
(Ω)  
SOURCE  
SOURCE  
2481 F19  
2481 F17  
Figure 17. –FS Error vs RSOURCE at REF+ or REF(Small CREF  
)
Figure 19. –FS Error vs RSOURCE at REF+ or REF(Large CREF  
)
2481fd  
25  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
In applications where the reference and input common  
mode voltages are different, extra errors are introduced.  
For every 1V of the reference and input common mode  
andpowersupplyrangeistypicallybetterthan0.5%.Such  
a specification can also be easily achieved by an external  
clock. When relatively stable resistors (50ppm/°C) are  
+
voltage difference (V  
– V  
) and a 5V reference,  
INCM  
used for the external source impedance seen by V  
REFCM  
REF  
each Ohm of reference source resistance introduces an  
extra (V – V )/(V • R ) full-scale gain error,  
and V  
, the expected drift of the dynamic current gain  
REF  
error will be insignificant (about 1% of its value over the  
entire temperature and voltage range). Even for the most  
stringent applications a one-time calibration operation  
may be sufficient.  
REFCM  
INCM  
REF  
EQ  
whichis0.074ppmwhenusinginternaloscillatorand60Hz  
mode.Whenusinginternaloscillatorand50Hz/60Hzmode,  
the extra full-scale gain error is 0.067ppm. When using  
internal oscillator and 50Hz mode, the extra gain error is  
In addition to the reference sampling charge, the refer-  
ence pins ESD protection diodes have a temperature de-  
pendent leakage current. This leakage current, nominally  
1nA ( 100nA max), results in a small gain error. A 100Ω  
source resistance will create a 0.05µV typical and 5µV  
maximum full-scale error.  
0.061ppm. If an external clock is used, the corresponding  
–6  
extra gain error is 0.24 • 10 • f  
ppm.  
EOSC  
The magnitude of the dynamic reference current depends  
uponthesizeoftheverystableinternalsamplingcapacitors  
andupontheaccuracyoftheconvertersamplingclock.The  
accuracy of the internal clock over the entire temperature  
10  
3500  
V
V
= V  
REF  
V
V
V
= 5V  
= 5V  
IN(CM)  
CC  
REF(CM)  
= 5V  
CC  
REF  
= V  
8
6
3000  
2500  
R = 1k  
CA0/f = EXT CLOCK  
= 2.5V  
0
IN(CM)  
T
= 25°C  
A
T
T
= 25°C  
= 85°C  
A
A
C
= 10µF  
REF  
4
2
2000  
1500  
1000  
500  
R = 500Ω  
R = 100Ω  
0
–2  
–4  
–6  
–8  
–10  
0
0
30  
–0.5  
–0.3  
–0.1  
/V  
0.1  
(V)  
0.3  
0.5  
10  
20  
OUTPUT DATA RATE (READINGS/SEC)  
V
IN REF  
2481 F20  
2481 F22  
Figure 22. +FS Error vs Output Data Rate and Temperature  
Figure 20. INL vs DIFFERENTIAL Input Voltage and  
Reference Source Resistance for CREF > 1µF  
50  
0
V
V
V
= V  
REF  
IN(CM)  
REF(CM)  
= 5V  
= V  
CC  
IN  
–500  
40  
= 0V  
CA0/f = EXT CLOCK  
0
–1000  
T
T
= 25°C  
= 85°C  
A
A
30  
20  
–1500  
–2000  
10  
0
T
T
= V  
REF  
= 25°C  
= 85°C  
A
A
–2500  
–3000  
–3500  
V
V
IN(CM)  
CC  
REF(CM)  
= 5V  
= V  
CA0/f = EXT CLOCK  
0
–10  
0
10  
20  
30  
0
30  
10  
20  
OUTPUT DATA RATE (READINGS/SEC)  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F21  
2481 F23  
Figure 23. –FS Error vs Output Data Rate and Temperature  
Figure 21. Offset Error vs Output Data Rate and Temperature  
2481fd  
26  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
Output Data Rate  
Typicalmeasuredperformancecurvesforoutputdatarates  
up to 25 readings per second are shown in Figures 21 to  
28. Inordertoobtainthehighestpossiblelevelofaccuracy  
from this converter at output data rates above 20 readings  
per second, the user is advised to maximize the power  
supply voltage used and to limit the maximum ambient  
operating temperature. In certain circumstances, a reduc-  
tion of the differential reference voltage may be beneficial.  
Whenusingitsinternaloscillator,theLTC2481producesup  
to 7.5 samples per second (sps) with a notch frequency of  
60Hz,6.25spswithanotchfrequencyof50Hzand6.82sps  
with the 50Hz/60Hz rejection mode. The actual output  
data rate will depend upon the length of the sleep and  
data output phases which are controlled by the user and  
which can be made insignificantly short. When operated  
with an external conversion clock (CA0/f connected to  
0
Input Bandwidth  
an external oscillator), the LTC2481 output data rate can  
4
The combined effect of the internal SINC digital filter and  
be increased as desired. The duration of the conversion  
oftheanaloganddigitalautocalibrationcircuitsdetermines  
the LTC2481 input bandwidth. When the internal oscillator  
isusedwiththenotchsetat60Hz, the3dBinputbandwidth  
is 3.63Hz. When the internal oscillator is used with the  
notch set at 50Hz, the 3dB input bandwidth is 3.02Hz. If  
phase is 41036/f . If f  
EOSC  
= 307.2kHz, the converter  
EOSC  
behaves as if the internal oscillator is used and the notch  
is set at 60Hz.  
An increase in f  
over the nominal 307.2kHz will  
EOSC  
translate into a proportional increase in the maximum  
output data rate. The increase in output rate is neverthe-  
less accompanied by two potential effects, which must  
be carefully considered.  
an external conversion clock generator of frequency f  
EOSC  
is connected to the CA0/f pin, the 3dB input bandwidth  
0
–6  
is 11.8 • 10 • f  
.
EOSC  
Due to the complex filtering and calibration algorithms  
utilized, the converter input bandwidth is not modeled  
very accurately by a first order filter with the pole located  
at the 3dB frequency. When the internal oscillator is used,  
the shape of the LTC2481 input bandwidth is shown in  
First, a change in f  
will result in a proportional change  
EOSC  
in the internal notch position and in a reduction of the  
converter differential mode rejection at the power line fre-  
quency.Inmanyapplications,thesubsequentperformance  
degradation can be substantially reduced by relying upon  
theLTC2481’sexceptionalcommonmoderejectionandby  
carefully eliminating common mode to differential mode  
conversion sources in the input circuit. The user should  
avoid single-ended input filters and should maintain a  
very high degree of matching and symmetry in the circuits  
Figure 29. When an external oscillator of frequency f  
EOSC  
is used, the shape of the LTC2481 input bandwidth can  
be derived from Figure 29, 60Hz mode curve in which  
the horizontal axis is scaled by f  
/307200.  
EOSC  
The conversion noise (600nV  
typical for V  
= 5V)  
RMS  
REF  
+
can be modeled by a white noise source connected to a  
noisefreeconverter.Thenoisespectraldensityis47nV√Hz  
for an infinite bandwidth source and 64nV√Hz for a single  
0.5MHz pole source. From these numbers, it is clear that  
particular attention must be given to the design of external  
amplification circuits. Such circuits face the simultaneous  
requirements of very low bandwidth (just a few Hz) in  
order to reduce the output referred noise and relatively  
high bandwidth (at least 500kHz) necessary to drive the  
input switched-capacitor network. A possible solution is  
a high gain, low bandwidth amplifier stage followed by a  
high bandwidth unity-gain buffer.  
driving the IN and IN pins.  
Second, the increase in clock frequency will increase  
proportionally the amount of sampling charge transferred  
through the input and the reference pins. If large external  
input and/or reference capacitors (C , C ) are used, the  
IN REF  
previoussectionprovidesformulaeforevaluatingtheeffect  
ofthesourceresistanceupontheconverterperformancefor  
any value of f  
. If small external input and/or reference  
IN REF  
EOSC  
capacitors (C , C ) are used, the effect of the external  
source resistance upon the LTC2481 typical performance  
can be inferred from Figures 14, 15, 16 and 17 in which  
the horizontal axis is scaled by 307200/f  
.
EOSC  
2481fd  
27  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
22  
20  
18  
16  
24  
20  
15  
10  
5
V
V
= V  
REF(CM)  
IN(CM)  
IN  
= 0V  
22  
CA0/f = EXT CLOCK  
= 25°C  
0
T
A
20  
V
V
= 5V, V  
REF  
= 2.5V  
CC  
CC  
REF  
= V  
= 5V  
18  
16  
14  
12  
T
T
= 25°C  
= 85°C  
A
A
T
T
= 25°C  
= 85°C  
A
A
14  
12  
10  
0
–5  
V
V
V
= V  
REF  
= 0V  
IN(CM)  
CC  
IN  
REF(CM)  
= 5V  
V
V
= V  
REF  
= V  
IN(CM)  
= V  
CC  
REF(CM)  
= 5V  
CA0/f = EXT CLOCK  
0
CA0/f = EXT CLOCK  
0
RES = LOG 2 (V /NOISE  
REF  
RES = LOG 2 (V /INL  
REF  
)
)
MAX  
RMS  
10  
–10  
0
30  
10  
20  
0
30  
0
30  
10  
20  
10  
20  
OUTPUT DATA RATE (READINGS/SEC)  
OUTPUT DATA RATE (READINGS/SEC)  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F25  
2481 F26  
2481 F24  
Figure 24. Resolution  
(NoiseRMS ≤ 1LSB) vs Output  
Data Rate and Temperature  
Figure 25. Resolution  
(INLMAX ≤ 1LSB) vs Output  
Data Rate and Temperature  
Figure 26. Offset Error vs Output  
Data Rate and Reference Voltage  
24  
22  
22  
20  
18  
16  
20  
18  
V
V
= V  
V
V
= V  
IN(CM) REF(CM)  
IN(CM)  
IN  
REF(CM)  
16  
14  
12  
= 0V  
= 0V  
IN  
14  
12  
10  
CA0/f = EXT CLOCK  
= 25°C  
CA0/f = EXT CLOCK  
0
0
T
T = 25°C  
A
RES = LOG 2 (V /INL  
A
RES = LOG 2 (V /NOISE  
)
)
MAX  
REF  
RMS  
= 2.5V  
REF  
REF  
V
V
= 5V, V  
V
V
= 5V, V  
REF  
= 2.5V  
CC  
CC  
CC  
CC  
REF  
= V  
= 5V  
= V  
= 5V  
REF  
10  
0
30  
0
30  
10  
20  
10  
20  
OUTPUT DATA RATE (READINGS/SEC)  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F27  
2481 F28  
Figure 27. Resolution (NoiseRMS ≤ 1LSB)  
vs Output Data Rate and Reference Voltage  
Figure 28. Resolution (INLMAX ≤ 1LSB)  
vs Output Data Rate and Reference Voltage  
100  
0
–1  
50Hz AND  
60Hz MODE  
–2  
60Hz MODE  
50Hz MODE  
10  
1
50Hz MODE  
60Hz MODE  
–3  
–4  
–5  
–6  
0.1  
0.1  
0
1
2
3
4
5
1
10 100 1k  
10k 100k 1M  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
INPUT NOISE SOURCE SINGLE POLE  
EQUIVALENT BANDWIDTH (Hz)  
2481 F29  
2481 F30  
Figure 29. Input Signal Using  
the Internal Oscillator  
Figure 30. Input Referred Noise Equivalent Bandwidth  
of an Input Connected White Noise Source  
2481fd  
28  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
When external amplifiers are driving the LTC2481, the  
ADC input referred system noise calculation can be  
simplified by Figure 30. The noise of an amplifier driving  
the LTC2481 input pin can be modeled as a band limited  
white noise source. Its bandwidth can be approximated  
by the bandwidth of a single pole lowpass filter with a  
Normal Mode Rejection and Antialiasing  
One of the advantages delta-sigma ADCs offer over  
conventional ADCs is on-chip digital filtering. Combined  
with a large oversampling ratio, the LTC2481 significantly  
simplifies antialiasing filter requirements. Additionally,  
the input current cancellation feature of the LTC2481  
allows external lowpass filtering without degrading the  
DC performance of the device.  
corner frequency f . The amplifier noise spectral density  
i
is n . From Figure 30, using f as the x-axis selector, we  
i
i
canndonthey-axisthenoiseequivalentbandwidthfreq  
i
4
TheSINC digitallterprovidesgreaterthan120dBnormal  
of the input driving amplifier. This bandwidth includes  
the band limiting effects of the ADC internal calibration  
and filtering. The noise of the driving amplifier referred  
to the converter input and including all these effects can  
mode rejection at all frequencies except DC and integer  
multiples of the modulator sampling frequency (f ). The  
S
LTC2481’s autocalibration circuits further simplify the  
antialiasing requirements by additional normal mode  
signal filtering both in the analog and digital domain.  
be calculated as N = n • √freq . The total system noise  
i
i
(referred to the LTC2481 input) can now be obtained by  
summing as square root of sum of squares the three  
ADC input referred noise sources: the LTC2481 internal  
Independent of the operating mode, f = 256 • f = 2048  
S
N
• f  
where f is the notch frequency and f  
OUTMAX  
N OUTMAX  
is the maximum output data rate. In the internal oscilla-  
+
noise, the noise of the IN driving amplifier and the noise  
tor mode with a 50Hz notch setting, f = 12800Hz, with  
S
of the IN driving amplifier.  
50Hz/60Hz rejection, f = 13960Hz and with a 60Hz notch  
S
If the CA0/f pin is driven by an external oscillator of  
0
setting f = 15360Hz. In the external oscillator mode, f =  
S S  
frequency f  
, Figure 30 can still be used for noise  
EOSC  
f
/20. The performance of the normal mode rejection  
EOSC  
calculation if the x-axis is scaled by f  
For large values of the ratio f  
/307200.  
EOSC  
is shown in Figures 31 and 32.  
/307200, the Figure 30  
EOSC  
plot accuracy begins to decrease, but at the same time  
the LTC2481 noise floor rises and the noise contribution  
of the driving amplifiers lose significance.  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
f
2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f  
S S S S S S S S S S S S  
0
f
2f 3f 4f 5f 6f 7f 8f 9f 10f  
S S S S S S S S S S  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
2481 F32  
2481 F31  
Figure 31. Input Normal Mode Rejection,  
Internal Oscillator and 50Hz Notch Mode  
Figure 32. Input Normal Mode Rejection at DC  
2481fd  
29  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
In 1x speed mode, the regions of low rejection occurring  
Traditional high order delta-sigma modulators, while  
providing very good linearity and resolution, suffer  
from potential instabilities at large input signal levels.  
The proprietary architecture used for the LTC2481 third  
order modulator resolves this problem and guarantees a  
predictable stable behavior at input signal levels of up to  
150% of full-scale. In many industrial applications, it is  
not uncommon to have to measure microvolt level signals  
superimposedonvoltlevelperturbationsandtheLTC2481  
is eminently suited for such tasks. When the perturbation  
is differential, the specification of interest is the normal  
mode rejection for large input signal levels. With a refer-  
at integer multiples of f have a very narrow bandwidth.  
S
Magnified details of the normal mode rejection curves  
are shown in Figure 33 (rejection near DC) and Figure 34  
(rejection at f = 256f ) where f represents the notch  
S
N
N
frequency. These curves have been derived for the exter-  
nal oscillator mode but they can be used in all operating  
modes by appropriately selecting the f value.  
N
The user can expect to achieve this level of performance  
using the internal oscillator as it is demonstrated by  
Figures 35, 36 and 37. Typical measured values of the  
normal mode rejection of the LTC2481 operating with an  
internal oscillator and a 60Hz notch setting are shown in  
Figure 35 superimposed over the theoretical calculated  
curve. Similarly, the measured normal mode rejection of  
the LTC2481 for the 50Hz rejection mode and 50Hz/60Hz  
rejection mode are shown in Figures 36 and 37.  
ence voltage V = 5V, the LTC2481 has a full-scale dif-  
REF  
ferential input range of 5V peak-to-peak. Figures 38 and  
39 show measurement results for the LTC2481 normal  
mode rejection ratio with a 7.5V peak-to-peak (150% of  
full scale) input signal superimposed over the more tradi-  
tional normal mode rejection ratio results obtained with a  
5V peak-to-peak (full-scale) input signal. In Figure 38, the  
LTC2481 uses the internal oscillator with the notch set at  
60Hz and in Figure 39 it uses the internal oscillator with  
the notch set at 50Hz. It is clear that the LTC2481 rejection  
performance is maintained with no compromises in this  
extreme situation. When operating with large input signal  
levels, the user must observe that such signals do not  
violate the device absolute maximum ratings.  
As a result of these remarkable normal mode specifica-  
tions, minimal (if any) antialias filtering is required in front  
of the LTC2481. If passive RC components are placed in  
front of the LTC2481, the input dynamic current should  
be considered (see Input Current section). In this case,  
the differential input current cancellation feature of the  
LTC2481 allows external RC networks without significant  
degradation in DC performance.  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
f
= f  
EOSC/5120  
N
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–120  
0
f
N
2f  
N
3f  
N
4f  
5f  
6f  
7f  
8f  
N
250f 252f 254f 256f 258f 260f 262f  
N
N
N
N
N
N
N
N
N
N
N
INPUT SIGNAL FREQUENCY (Hz)  
INPUT SIGNAL FREQUENCY (Hz)  
2481 F33  
2481 F34  
Figure 33. Input Normal Mode Rejection at DC  
Figure 34. Input Normal Mode Rejection at fs = 256fN  
2481fd  
30  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
0
0
–20  
–20  
–40  
5V  
V  
5V  
V  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240  
INPUT FREQUENCY (Hz)  
0
12.5 25 37.5 50 62.5 75 87.5 100 112.5 125 137.5 150 162.5 175 187.5 200  
INPUT FREQUENCY (Hz)  
2481 F35  
2481 F36  
Figure 35. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full-Scale (60Hz Notch)  
Figure 36. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full-Scale (50Hz Notch)  
0
0
V
V
V
T
= 5V  
= 5V  
CC  
V
V
= 5V  
= 7.5V  
IN(P-P)  
REF  
IN(P-P)  
–20  
–40  
–20  
–40  
= 2.5V  
INCM  
(150% OF FULL SCALE)  
= 25°C  
A
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240  
INPUT FREQUENCY (Hz)  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
INPUT FREQUENCY (Hz)  
2481 F38  
2481 F37  
Figure 37. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full-Scale (50Hz/60Hz Mode)  
Figure 38. Measured Input Normal Mode Rejection  
vs Input Frequency with Input Perturbation of 150%  
Full-Scale (60Hz Notch)  
0
–20  
V
= 5V  
CC  
V
= 5V  
–40  
–60  
–80  
–100  
–120  
0
12.5 25 37.5 50 62.5 75 87.5 100 112.5 125 137.5 150 162.5 175 187.5 200  
INPUT FREQUENCY (Hz)  
2481 F39  
Figure 39. Measured Input Normal Mode Rejection  
vs Input Frequency with Input Perturbation of 150%  
Full-Scale (50Hz Notch)  
2481fd  
31  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
248 250 252 254 256 258 260 262 264  
INPUT SIGNAL FREQUENCY (f )  
f
2f  
3f  
4f 5f  
N
6f  
7f  
8f  
N
N
N
N
N
N
N
INPUT SIGNAL FREQUENCY (f )  
N
N
2481 F40  
2481 F41  
Figure 40. Input Normal Mode Rejection 2x Speed Mode  
Figure 41. Input Normal Mode Rejection 2x Speed Mode  
–70  
0
MEASURED DATA  
CALCULATED DATA  
V
V
V
V
= 5V  
CC  
= 5V  
REF  
–80  
–20  
–40  
= 2.5V  
INCM  
NO AVERAGE  
= 5V  
IN(P-P)  
–90  
T
A
= 25°C  
WITH  
RUNNING  
AVERAGE  
–100  
–110  
–120  
–130  
–140  
–60  
–80  
–100  
–120  
56  
58  
60  
62  
48 50  
52  
54  
0
25 50 75 100 125 150 175 200 225  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
2481 F43  
2481 F42  
Figure 42. Input Normal Mode Rejection vs Input  
Frequency, 2x Speed Mode and 50Hz/60Hz Mode  
Figure 43. Input Normal Mode Rejection 2x Speed Mode  
5V  
C8  
1µF  
C7  
0.1µF  
ISOTHERMAL  
LT1236  
2
6
5
1.7k  
1
2
1.7k  
IN OUT  
TRIM  
GND  
4
R2  
2k  
+
6
7
9
10  
REF  
V
CC  
R7  
8k  
SCL  
SDA  
CA1  
4
5
+
+
IN  
G1  
NC1M4V0  
LTC2481  
R8  
1k  
CA0/f  
0
IN  
REF GND  
3
8
2481 F44  
TYPE K  
THERMOCOUPLE  
JACK  
(OMEGA MPJ-K-F)  
26.3C  
Figure 44. Calibration Setup  
2481fd  
32  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
Using the 2x speed mode of the LTC2481, the device  
bypasses the digital offset calibration operation to double  
the output data rate. The superior normal mode rejection  
is maintained as shown in Figures 31 and 32. However,  
Complete Thermocouple Measurement System with  
Cold Junction Compensation  
The LTC2481 is ideal for direct digitization of thermo-  
couples and other low voltage output sensors. The input  
has a typical offset error of 500nV (2.5µV max) offset  
the magnified details near DC and f = 256f are different,  
S
N
see Figures 40 and 41. In 2x speed mode, the bandwidth is  
11.4Hz for the 50Hz rejection mode, 13.6Hz for the 60Hz  
rejection mode and 12.4Hz for the 50Hz/60Hz rejection  
mode. Typical measured values of the normal mode rejec-  
tion of the LTC2481 operating with the internal oscillator  
and 2x speed mode is shown in Figure 42.  
drift of 10nV/°C and a noise level of 600nV . The input  
RMS  
span may be optimized for various sensors by setting the  
gain of the PGA. Using an external 5V reference with a  
PGA gain of 64 gives a 78mV input range—perfect for  
thermocouples.  
Figure 45 (page 39 of this data sheet) is a complete type  
K thermocouple meter. The only signal conditioning is a  
simple surge protection network. In any thermocouple  
meter, the cold junction temperature sensor must be at  
the same temperature as the junction between the ther-  
mocouple materials and the copper printed circuit board  
traces. The tiny LTC2481 can be tucked neatly underneath  
an Omega MPJ-K-F thermocouple socket ensuring close  
thermal coupling.  
When the LTC2481 is configured in 2x speed mode, by  
1
performing a running average, a SINC notch is combined  
4
with the SINC digital filter, yielding the normal mode  
rejection identical as that for the 1x speed mode. The  
averaging operation still keeps the output rate with the  
following algorithm:  
Result 1 = average (sample 0, sample 1)  
Result 2 = average (sample 1, sample 2)  
……  
The LTC2481’s 1.4mV/°C PTAT circuit measures the cold  
junction temperature. Once the thermocouple voltage  
and cold junction temperature are known, there are  
many ways of calculating the thermocouple temperature  
including a straight-line approximation, lookup tables or a  
polynomial curve fit. Calibration is performed by applying  
an accurate 500mV to the ADC input derived from an  
LT®1236 reference and measuring the local temperature  
with an accurate thermometer as shown in Figure 44. In  
calibration mode, the up and down buttons are used to  
adjust the local temperature reading until it matches an  
accurate thermometer. Both the voltage and temperature  
calibration are easily automated.  
Result n = average (sample n – 1, sample n)  
The main advantage of the running average is that it  
achieves simultaneous 50Hz/60Hz rejection at twice the  
effectiveoutputrate,asshowninFigure43.Therawoutput  
data provides a better than 70dB rejection over 48Hz to  
62.4Hz,whichcoversboth50Hz 2%and60Hz 2%.With  
running average on, the rejection is better than 87dB for  
both 50Hz 2% and 60Hz 2%.  
The complete microcontroller code for this application is  
available on the LTC2481 product webpage at:  
http://www.linear.com  
It can be used as a template for may different instruments  
and it illustrates how to generate calibration coefficients  
for the onboard temperature sensor. Extensive comments  
detail the operation of the program. The read_LTC2481()  
function controls the operation of the LTC2481 and is  
listed below for reference.  
2481fd  
33  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
/*  
LTC248X.h  
Processor setup and  
Lots of useful defines for configuring the LTC2481 and LTC2485.  
*/  
#include <16F73.h>  
// Device  
// 6MHz clock  
#use delay(clock=6000000)  
//#fuses NOWDT,HS, PUT, NOPROTECT, NOBROWNOUT  
// Configuration fuses  
#rom 0x2007={0x3F3A} // Equivalent and more reliable fuse config.  
#use I2C(master, sda=PIN_C5, scl=PIN_C3, SLOW)// Set up i2c port  
#include “PCM73A.h”  
#include “lcd.c”  
// Various defines  
// LCD driver functions  
// Useful defines for the LTC2481 and LTC2485 - OR them together to make the  
// 8 bit config word.  
#define READ  
#define WRITE  
0x01  
0x00  
// bitwise OR with address for read or write  
#define LTC248XADDR 0b01001000  
// The one and only LTC248X in this circuit,  
// with both address lines floating.  
// Select gain - 1 to 256 (also depends on speed setting)  
#define GAIN1 0b00000000  
#define GAIN2 0b00100000  
#define GAIN3 0b01000000  
#define GAIN4 0b01100000  
#define GAIN5 0b10000000  
#define GAIN6 0b10100000  
#define GAIN7 0b11000000  
#define GAIN8 0b11100000  
// G = 1  
// G = 4  
// G = 8  
(SPD = 0), G = 1  
(SPD = 0), G = 2  
(SPD = 0), G = 4  
(SPD = 1)  
(SPD = 1)  
(SPD = 1)  
(SPD = 1)  
// G = 16 (SPD = 0), G = 8  
// G = 32 (SPD = 0), G = 16 (SPD = 1)  
// G = 64 (SPD = 0), G = 32 (SPD = 1)  
// G = 128 (SPD = 0), G = 64 (SPD = 1)  
// G = 256 (SPD = 0), G = 128 (SPD = 1)  
// Select ADC source - differential input or PTAT circuit  
#define VIN  
#define PTAT  
0b00000000  
0b00001000  
// Select rejection frequency - 50, 55, or 60Hz  
#define R50  
#define R55  
#define R60  
0b00000010  
0b00000000  
0b00000100  
// Speed settings is bit 7 in the 2nd byte  
#define SLOW  
#define FAST  
0b00000000 // slow output rate with autozero  
0b00000001 // fast output rate with no autozero  
2481fd  
34  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
/*  
LTC2481.c  
Basic voltmeter test program for LTC2481  
Reads LTC2481 input at gain = 1, 1X speed mode, converts to volts,  
and prints voltage to a 2 line by 16 character LCD display.  
Mark Thoren  
Linear Technology Corporation  
June 23, 2005  
Written for CCS PCM compiler, Version 3.182  
*/  
#include “LTC248X.h”  
/*** read_LTC2481() ************************************************************  
This is the function that actually does all the work of talking to the LTC2481.  
Arguments: addr - device address  
config - configuration bits for next conversion  
Returns:  
zero if conversion is in progress,  
32 bit signed integer with lower 8 bits clear, 24 bit LTC2481  
output word in the upper 24 bits. Data is left-justified for  
compatibility with the 24 bit LTC2485.  
the i2c_xxxx() functions do the following:  
void i2c_start(void): generate an i2c start or repeat start condition  
void i2c_stop(void): generate an i2c stop condition  
char i2c_read(boolean): return 8 bit i2c data while generating an ack or nack  
boolean i2c_write(): send 8 bit i2c data and return ack or nack from slave device  
These functions are very compiler specific, and can use either a hardware i2c  
port or software emulation of an i2c port. This example uses software emulation.  
A good starting point when porting to other processors is to write your own  
i2c functions. Note that each processor has its own way of configuring  
the i2c port, and different compilers may or may not have built-in functions  
for the i2c port.  
When in doubt, you can always write a “bit bang” function for troubleshooting purposes.  
The “fourbytes” structure allows byte access to the 32 bit return value:  
struct fourbytes // Define structure of four consecutive bytes  
{
// To allow byte access to a 32 bit int or float.  
//  
// The make32() function in this compiler will  
// also work, but a union of 4 bytes and a 32 bit int  
// is probably more portable.  
int8 te0;  
int8 te1;  
int8 te2;  
int8 te3;  
};  
Also note that the lower 4 bits are the configuration word from the previous conversion.  
2481fd  
35  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
*******************************************************************************/  
signed int32 read_LTC2481(char addr, char config)  
{
struct fourbytes // Define structure of four consecutive bytes  
{
// To allow byte access to a 32 bit int or float.  
//  
// The make32() function in this compiler will  
// also work, but a union of 4 bytes and a 32 bit int  
// is probably more portable.  
int8 te0;  
int8 te1;  
int8 te2;  
int8 te3;  
};  
union  
// adc_code.bits32  
// adc_code.by.te0  
// adc_code.by.te1  
// adc_code.by.te2  
// adc_code.by.te3  
all 32 bits  
byte 0  
{
signed int32 bits32;  
struct fourbytes by;  
} adc_code;  
byte 1  
byte 2  
byte 3  
// Start communication with LTC2481:  
i2c_start();  
if(i2c_write(addr | WRITE))// If no acknowledge, return zero  
{
i2c_stop();  
return 0;  
}
i2c_write(config);  
i2c_start();  
i2c_write(addr | READ);  
adc_code.by.te3 = i2c_read();  
adc_code.by.te2 = i2c_read();  
adc_code.by.te1 = i2c_read();  
adc_code.by.te0 = 0;  
i2c_stop();  
return adc_code.bits32;  
} // End of read_LTC2481()  
/*** initialize() **************************************************************  
Basic hardware initialization of controller and LCD, send Hello message to LCD  
*******************************************************************************/  
void initialize(void)  
{
// General initialization stuff.  
setup_adc_ports(NO_ANALOGS);  
setup_adc(ADC_OFF);  
setup_counters(RTCC_INTERNAL,RTCC_DIV_1);  
setup_timer_1(T1_DISABLED);  
setup_timer_2(T2_DISABLED,0,1);  
// This is the important part - configuring the SPI port  
setup_spi(SPI_MASTER|SPI_L_TO_H|SPI_CLK_DIV_16|SPI_SS_DISABLED); // fast SPI clock  
CKP = 0; // Set up clock edges - clock idles low, data changes on  
CKE = 1; // falling edges, valid on rising edges.  
2481fd  
36  
For more information www.linear.com/LTC2481  
LTC2481  
applicaTions inForMaTion  
lcd_init();  
// Initialize LCD  
delay_ms(6);  
printf(lcd_putc, “Hello!”);  
delay_ms(500);  
} // End of initialize()  
// Obligatory hello message  
// for half a second  
*** main() ********************************************************************  
Main program initializes microcontroller registers, then reads the LTC2481  
repeatedly  
*******************************************************************************/  
void main()  
{
signed int32 x;  
float voltage;  
int16 timeout;  
initialize();  
// Integer result from LTC2481  
// Variable for floating point math  
// Hardware initialization  
while(1)  
{
delay_ms(1);  
// Pace the main loop to something more than 1 ms  
// This is a basic error detection scheme. The LTC248X will never take more than  
// 163.5ms, 149.9ms, or 136.5ms to complete a conversion in the 50Hz, 55Hz, and 60Hz  
// rejection modes, respectively.  
// If read_LTC248X() does not return non-zero within this time period, something  
// is wrong, such as an incorrect i2c address or bus conflict.  
if((x = read_LTC2481(LTC248XADDR, GAIN1 | VIN | R55)) != 0)  
{
// No timeout, everything is okay  
timeout = 0;  
// reset timer  
x &= 0xFFFFFFC0;  
x ^= 0x80000000;  
voltage = (float) x;  
// clear config bits so they don’t affect math  
// Invert MSB, result is 2’s complement  
// convert to float  
voltage = voltage * 5.0 / 2147483648.0;// Multiply by Vref, divide by 2^31  
lcd_putc(‘\f’);  
lcd_gotoxy(1,1);  
printf(lcd_putc, “V %01.4f”, voltage); // Display voltage  
}
// Clear screen  
// Goto home position  
else  
{
++timeout;  
}
if(timeout > 200)  
{
timeout = 200;  
lcd_gotoxy(1,1);  
// Prevent rollover  
printf(lcd_putc, “ERROR - TIMEOUT”);  
delay_ms(500);  
}
} // End of main loop  
} // End of main()  
2481fd  
37  
For more information www.linear.com/LTC2481  
LTC2481  
package DescripTion  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev B)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN REV B 0309  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2481fd  
38  
For more information www.linear.com/LTC2481  
LTC2481  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/09 Update Tables 3 and 4  
16  
B
04/10 Added H-grade to Absolute Maximum Ratings, Order Information, Electrical Characteristics (Normal Speed),  
Converter Characteristics, Power Requirements, Timing Characteristics, and Typical Performance Characteristics  
2-10  
C
D
06/10 Revised Typical Application drawing  
1
2
Added text to I C Interface section  
12  
09/14 Clarify Temperature Sensor Performance  
1, 2  
Clarify Performance vs f Frequency, reducing external oscillator max frequency to 1MHz  
5, 8, 26, 28  
O
2481fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
39  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2481  
Typical applicaTion  
5V  
PIC16F73  
RC7  
C8  
C7  
0.1µF  
20  
18  
17  
16  
15  
14  
13  
12  
11  
28  
27  
26  
25  
24  
23  
22  
21  
7
5V  
V
1µF  
DD  
C6  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
0.1µF  
ISOTHERMAL  
1.7k  
1.7k  
Y1  
3
2
R2  
2k  
9
6MHz  
6
REF  
V
CC  
SCL  
SDA  
OSC1  
OSC2  
4
5
+
IN  
7
10  
LTC2481  
D1  
BAT54  
R1  
10k  
IN  
10  
TYPE K  
THERMOCOUPLE  
JACK  
CAO/f  
O
CA1 GND REF  
1
5V  
MCLR  
9
8
3
(OMEGA MPJ-K-F)  
5V  
D7  
V
CC  
D6  
D5  
D4  
EN  
RW  
RS  
2 × 16 CHARACTER  
LCD DISPLAY  
(OPTREX DMC162488  
OR SIMILAR)  
6
5
4
3
5V  
1
3
R6  
5k  
9
CONTRAST  
V
V
SS  
SS  
19  
GND D0 D1 D2 D3  
2
2
5V  
2481 F45  
R3  
R4  
R5  
CALIBRATE  
10k 10k 10k  
2
1
DOWN  
UP  
Figure 45. Complete Type K Thermocouple Meter  
relaTeD parTs  
PART NUMBER  
LT1236A-5  
LT1460  
DESCRIPTION  
COMMENTS  
Precision Bandgap Reference, 5V  
0.05% Max Initial Accuracy, 5ppm/°C Drift  
Micropower Series Reference  
0.075% Max Initial Accuracy, 10ppm/°C Max Drift  
0.05% Max Initial Accuracy, 10ppm/°C Max Drift  
LT1790  
Micropower SOT-23 Low Dropout Reference Family  
24-Bit, No Latency ∆Σ ADC in SO-8  
LTC2400  
0.3ppm Noise, 4ppm INL, 10ppm Total Unadjusted Error, 200µA  
LTC2410  
0.8µV  
Noise, 2ppm INL  
24-Bit, No Latency ∆Σ ADC with Differential Inputs  
24-Bit, No Latency ∆Σ ADCs with Differential Inputs in MSOP  
RMS  
LTC2411/LTC2411-1  
1.45µV  
(LTC2411-1)  
Noise, 4ppm INL, Simultaneous 50Hz/60Hz Rejection  
RMS  
LTC2413  
Simultaneous 50Hz/60Hz Rejection, 800nV  
Noise  
RMS  
24-Bit, No Latency ∆Σ ADC with Differential Inputs  
24-Bit, No Latency ∆Σ ADCs with 15Hz Output Rate  
8-/16-Channel 24-Bit, No Latency ∆Σ ADCs  
High Speed, Low Noise 24-Bit ∆Σ ADC  
LTC2415/LTC2415-1  
LTC2414/LTC2418  
LTC2440  
Pin Compatible with the LTC2410  
0.2ppm Noise, 2ppm INL, 3ppm Total Unadjusted Errors 200µA  
3.5kHz Output Rate, 200nV Noise, 24.6 ENOBs  
Pin Compatible with LTC2482/LTC2484  
LTC2480  
16-Bit ∆Σ ADC with Easy Drive Inputs, 600nV Noise,  
Programmable Gain, and Temperature Sensor  
LTC2482  
LTC2483  
LTC2484  
LTC2485  
Pin Compatible with LTC2480/LTC2484  
Pin Compatible with LTC2481/LTC2483  
Pin Compatible with LTC2480/LTC2482  
Pin Compatible with LTC2481/LTC2483  
16-Bit ∆Σ ADC with Easy Drive Inputs  
2
16-Bit ∆Σ ADC with Easy Drive Inputs, I C Interface  
24-Bit ∆Σ ADC with Easy Drive Inputs  
2
24-Bit ∆Σ ADC with Easy Drive Inputs, I C Interface and  
Temperature Sensor  
2481fd  
LT 0914 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2481  
LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC2481CDD#TR

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2481CDD#TRPBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2481CDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481CDD-TRPBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481HDD#PBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2481HDD#TRPBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2481HDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481HDD-TRPBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481IDD

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481IDD#PBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2481IDD#TRPBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2481IDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear