LTC2600CGN [Linear]

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP; 八通道16位/ 14位/ 12位轨至轨数模转换器采用16引脚SSOP
LTC2600CGN
型号: LTC2600CGN
厂家: Linear    Linear
描述:

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
八通道16位/ 14位/ 12位轨至轨数模转换器采用16引脚SSOP

转换器 数模转换器
文件: 总16页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2600/LTC2610/LTC2620  
Octal 16-/14-/12-Bit  
Rail-to-Rail DACs in 16-Lead SSOP  
U
DESCRIPTIO  
FEATURES  
The LTC®2600/LTC2610/LTC2620 are octal 16-, 14- and  
12-bit, 2.5V-to-5.5V rail-to-rail voltage-output DACs in  
16-lead narrow SSOP packages. They have built-in high  
performance output buffers and are guaranteed mono-  
tonic.  
Smallest Pin-Compatible Octal DACs:  
LTC2600: 16 Bits  
LTC2610: 14 Bits  
LTC2620: 12 Bits  
Guaranteed 16-Bit Monotonic Over Temperature  
Wide 2.5V to 5.5V Supply Range  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive, crosstalk and load regulation in single-  
supply, voltage-output multiples.  
The parts use a simple SPI/MICROWIRETM compatible  
3-wireserialinterfacewhichcanbeoperatedatclockrates  
up to 50MHz. Daisy-chain capability and a hardware CLR  
function are included.  
Low Power Operation: 250µA per DAC at 3V  
Individual Channel Power-Down to 1µA, Max  
Ultralow Crosstalk between DACs (<10µV)  
High Rail-to-Rail Output Drive (±15mA, Min)  
Double-Buffered Digital Inputs  
Pin-Compatible 10-/8-Bit Versions  
(LTC1660/LTC1665)  
Tiny 16-Lead Narrow SSOP Package  
U
The LTC2600/LTC2610/LTC2620 incorporate a power-on  
reset circuit. During power-up, the voltage outputs rise  
lessthan10mVabovezeroscale;andafterpower-up, they  
stay at zero scale until a valid write and update take place.  
APPLICATIO S  
Mobile Communications  
Process Control and Industrial Automation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
Instrumentation  
Automatic Test Equipment  
W
BLOCK DIAGRA  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
OUT A  
OUT H  
Differential Nonlinearity (LTC2600)  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
V
3
4
14  
13  
OUT B  
OUT G  
OUT F  
1.0  
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
0.4  
OUT C  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DAC D  
DAC E  
V
V
5
12  
OUT D  
REF  
OUT E  
CLR  
SDO  
6
7
8
11  
10  
9
POWER-ON  
RESET  
0
16384  
32768  
CODE  
49152  
65535  
CONTROL  
LOGIC  
DECODE  
CS/LD  
SCK  
2600 G21  
32-BIT SHIFT REGISTER  
SDI  
2600 BD  
2600fa  
1
LTC2600/LTC2610/LTC2620  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC .............................................6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LTC2600C/LTC2610C/LTC2620C .......... 0°C to 70°C  
LTC2600I/LTC2610I/LTC2620I.......... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
LTC2600CGN  
1
2
3
4
5
6
7
8
V
V
V
V
V
16  
15  
14  
13  
12  
11  
10  
9
GND  
CC  
LTC2600IGN  
LTC2610CGN  
LTC2610IGN  
LTC2620CGN  
LTC2620IGN  
V
V
V
V
OUT H  
OUT G  
OUT F  
OUT E  
OUT A  
OUT B  
OUT C  
OUT D  
REF  
CLR  
SDO  
SDI  
CS/LD  
SCK  
GN PART MARKING  
2600  
2600I  
2610  
2610I  
2620  
2620I  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 150°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC2620  
LTC2610  
LTC2600  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
V
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= 4.096V (Note 2)  
= 4.096V (Note 2)  
= 4.096V (Note 2)  
CC  
CC  
CC  
REF  
I
I
REF  
REF  
REF  
DNL  
INL  
Differential Nonlinearity  
±0.5  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
±0.75 ±4  
±3 ±16  
±12 ±64  
= V = 5V, Midscale  
CC  
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.025 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.3  
2
2
LSB/mA  
LSB/mA  
OUT  
OUT  
V
= V = 2.5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.8  
0.8  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
V
V
= 5V, V  
= 5V, V  
= 4.096V Code = 0  
= 4.096V (Note 7)  
1
9
1
9
1
9
mV  
mV  
CC  
CC  
REF  
REF  
V
±1  
±3  
±9  
±1  
±3  
±9  
±1  
±3  
±9  
OS  
V
Temperature  
µV/°C  
OS  
Coefficient  
GE  
Gain Error  
V
= 5V, V  
= 4.096V  
±0.2 ±0.7  
±6.5  
±0.2 ±0.7  
±6.5  
±0.2 ±0.7  
±6.5  
%FSR  
CC  
REF  
Gain Temperature  
Coefficient  
ppm/°C  
2600fa  
2
LTC2600/LTC2610/LTC2620  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC2600/LTC2610/LTC2620  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= ±10%  
–80  
dB  
CC  
R
OUT  
DC Output Impedance  
V
V
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.025  
0.030  
0.15  
0.15  
REF  
REF  
CC  
= V = 2.5V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
DC Crosstalk (Note 4)  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±10  
±3.5  
±7.3  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.6V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
34  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.5V, V = 2.6V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
18  
24  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
11  
16  
90  
20  
Capacitance  
I
Reference Current, Power Down Mode All DACs Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.5  
5.5  
V
CC  
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
2.6  
2.0  
0.35  
0.10  
4
3.2  
1
mA  
mA  
µA  
CC  
CC  
CC  
All DACs Powered Down (Note 3) V = 5V  
CC  
CC  
All DACs Powered Down (Note 3) V = 3V  
1
µA  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
= 4.5V to 5.5V  
= 2.5V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
Load Current = –100µA  
Load Current = +100µA  
V
– 0.4  
CC  
V
V
OH  
OL  
0.4  
±1  
8
I
V
= GND to V  
CC  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance  
(Note 6)  
IN  
2600fa  
3
LTC2600/LTC2610/LTC2620  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC2620  
LTC2610  
LTC2600  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 8)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 9)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Note 6)  
LTC2600/LTC2610/LTC2620  
SYMBOL PARAMETER  
= 2.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
t
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDI Valid to SCK Hold  
2
3
4
5
6
7
8
SCK High Time  
9
SCK Low Time  
9
CS/LD Pulse Width  
10  
7
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SDO Propagation Delay from SCK Falling Edge  
7
C
= 10pF  
= 4.5V to 5.5V  
= 2.5V to 5.5V  
LOAD  
V
V
20  
45  
ns  
ns  
CC  
CC  
t
t
CLR Pulse Width  
20  
7
ns  
ns  
9
CS/LD High to SCK Positive Edge  
SCK Frequency  
10  
50% Duty Cycle  
50  
MHz  
Note 5: R = 2kto GND or V  
.
CC  
Note 1: Absolute maximum ratings are those values beyond which the life  
L
of a device may be impaired.  
Note 6: Guaranteed by design and not production tested.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 7: Inferred from measurement at code 256 (LTC2600), code 64  
(LTC2610) or code 16 (LTC2620), and at fullscale.  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 8: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
256 and linearity is defined from code 256 to code 65,535.  
and 3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
Note 3: Digital inputs at 0V or V  
.
CC  
Note 9: V = 5V, V = 4.096V. DAC is stepped ±1LSB between half  
CC  
REF  
Note 4: DC crosstalk is measured with V = 5V and V = 4.096V, with  
CC  
REF  
scale and half scale – 1. Load is 2k in parallel with 200pF to GND.  
the measured DAC at midscale, unless otherwise noted.  
2600fa  
4
LTC2600/LTC2610/LTC2620  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2600  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
V
V
= 5V  
REF  
= 4.096V  
= 4.096V  
CC  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2600 G21  
2600 G20  
2600 G22  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2600 G23  
2600 G24  
2600 G25  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
100µV/DIV  
OUT  
100µV/DIV  
12.3µs  
9.7µs  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
2600 G26  
2600 G27  
2µs/DIV  
5µs/DIV  
V
= 5V, V  
= 4.096V  
SETTLING TO ±1LSB  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
V
= 5V, V  
= 4.096V  
CC  
REF  
R
CODE 512 TO 65535 STEP  
R = 2k, C = 200pF  
L
L
L
AVERAGE OF 2048 EVENTS  
L
AVERAGE OF 2048 EVENTS  
2600fa  
5
LTC2600/LTC2610/LTC2620  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2610  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
100µV/DIV  
0.2  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2600 G30  
2µs/DIV  
V
= 5V, V  
= 4.096V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2600 G28  
2600 G29  
LTC2620  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2600 G33  
2µs/DIV  
V
= 5V, V  
= 4.096V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2600 G31  
2600 G32  
LTC2600/LTC2610/LTC2620  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
0.08  
V
REF  
REF  
= V = 5V  
CC  
0.06  
0.04  
0.6  
V
= V = 3V  
CC  
0.4  
1
0.02  
0.2  
0
0
0
V
REF  
= V = 5V  
CC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
REF  
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2600 G01  
2600 G02  
2600 G03  
2600fa  
6
LTC2600/LTC2610/LTC2620  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2600/LTC2610/LTC2620  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2600 G04  
2600 G05  
2600 G06  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Response  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5µs/DIV  
2600 G09  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
CC  
(V)  
CC  
2600 G08  
2600 G07  
Headroom at Rails  
vs Output Current  
Power-On Reset Glitch  
Midscale Glitch Impulse  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
10mV/DIV  
3V SOURCING  
1V/DIV  
12nV-s TYP  
4mV PEAK  
CS/LD  
5V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2600 G10  
2600 G11  
250µs/DIV  
2.5µs/DIV  
3V SINKING  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2600 G12  
2600fa  
7
LTC2600/LTC2610/LTC2620  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2600/LTC2610/LTC2620  
Hardware CLR  
Supply Current vs Logic Voltage  
Exiting Power-Down to Midscale  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
V
= 5V  
V
V
= 5V  
= 2V  
CC  
CC  
REF  
SWEEP SCK, SDI  
AND CS/LD  
0V TO V  
CC  
V
OUT  
V
OUT  
0.5V/DIV  
1V/DIV  
DACs A TO G IN  
POWER-DOWN MODE  
CS/LD  
5V/DIV  
CLR  
5V/DIV  
2600 G15  
2.5µs/DIV  
2600 G14  
1µs/DIV  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
2600 G13  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10µV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
(AC) = 0.2V  
P-P  
0
1
2
3
4
5
6
7
8
9
10  
CODE = FULL SCALE  
SECONDS  
2600 G17  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2600 G16  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
Short-Circuit Output Current vs  
VOUT (Sinking)  
0mA  
0mA  
V
V
= 5.5V  
= 5.6V  
V
V
= 5.5V  
= 5.6V  
CC  
REF  
CC  
REF  
CODE = 0  
SWEPT 0V TO V  
CODE = FULL SCALE  
V
V
SWEPT V TO 0V  
OUT  
CC  
OUT  
CC  
1V/DIV  
2600 G18  
1V/DIV  
2600 G19  
2600fa  
8
LTC2600/LTC2610/LTC2620  
U
U
U
PIN FUNCTIONS  
LTC2600,LTC2610andLTC2620acceptinputwordlengths  
of either 24 or 32 bits.  
GND (Pin 1): Analog Ground.  
VOUT A to VOUT H (Pins 2-5 and 12-15): DAC Analog  
Voltage Outputs. The output range is 0 – VREF  
.
SDO (Pin 10): Serial Interface Data Output. The serial  
outputoftheshiftregisterappearsattheSDOpin.Thedata  
transferred to the device via the SDI pin is delayed 32 SCK  
rising edges before being output at the next falling edge.  
This pin is used for daisy-chain operation.  
REF (Pin 6): Reference Voltage Input. 0V VREF VCC.  
CS/LD (Pin 7): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow,SCKisenabledforshiftingdataonSDI  
into the register. When CS/LD is taken high, SCK is dis-  
abled and the specified command (see Table 1) is ex-  
ecuted.  
CLR (Pin 11): Asynchronous Clear Input. A logic low at  
this level-triggered input clears all registers and causes  
the DAC voltage outputs to drop to 0V. CMOS and TTL  
compatible.  
SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL  
compatible.  
V
CC (Pin 16): Supply Voltage Input. 2.5V VCC 5.5V.  
SDI (Pin 9): Serial Interface Data Input. Data is applied to  
SDIfortransfertothedeviceat therisingedgeofSCK. The  
2600fa  
9
LTC2600/LTC2610/LTC2620  
W
BLOCK DIAGRA  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
OUT A  
OUT H  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
V
3
4
14  
13  
OUT B  
OUT C  
OUT G  
OUT F  
DAC D  
DAC E  
V
V
5
12  
OUT D  
REF  
OUT E  
CLR  
SDO  
SDI  
6
7
8
11  
10  
9
POWER-ON  
RESET  
CONTROL  
LOGIC  
DECODE  
CS/LD  
SCK  
32-BIT SHIFT REGISTER  
2600 BD02  
W U  
W
TI I G DIAGRA  
t
1
t
6
t
t
3
t
4
2
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
SDO  
t
8
2600 F01  
Figure 1  
2600fa  
10  
LTC2600/LTC2610/LTC2620  
U
OPERATIO  
Power-On Reset  
Serial Interface  
TheLTC2600/LTC2610/LTC2620cleartheoutputstozero  
scalewhenpowerisfirstapplied,makingsysteminitializa-  
tion consistent and repeatable.  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, powering-on the SDI  
andSCKbuffersandenablingtheinputshiftregister. Data  
(SDI input) is transferred at the next 24 rising SCK edges.  
The 4-bit command, C3-C0, is loaded first; then the 4-bit  
DAC address, A3-A0; and finally the 16-bit data word. The  
data word comprises the 16-, 14- or 12-bit input code,  
ordered MSB-to-LSB, followed by 0, 2 or 4 don’t-care bits  
(LTC2600, LTC2610andLTC2620respectively). Datacan  
only be transferred to the device when the CS/LD signal is  
low.The rising edge of CS/LD ends the data transfer and  
causes the device to carry out the action specified in the  
24-bit input word. The complete sequence is shown in  
Figure 2a.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2600/  
2610/2620containcircuitrytoreducethepower-onglitch:  
the analog outputs typically rise less than 10mV above  
zero scale during power on if the power supply is ramped  
to 5V in 1ms or more. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See Power-On Reset Glitch in the Typical Performance  
Characteristics section.  
Power Supply Sequencing  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register into  
the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the block diagram.  
The voltage at REF (Pin 6) should be kept within the range  
0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 16) is in transition.  
Transfer Function  
The digital-to-analog transfer function is  
k
2N  
VOUT(IDEAL)  
=
VREF  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and VREF is the voltage at REF  
(Pin 6).  
While the minimum input word is 24 bits, it may optionally  
be extended to 32 bits. To use the 32-bit word width,  
8 don’t-care bits are transferred to the device first, fol-  
lowed by the 24-bit word as just described. Figure 2b  
Table 1.  
ADDRESS (n)*  
COMMAND*  
C3 C2 C1 C0  
A3 A2 A1 A0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
*Command and address codes not shown are reserved and should not be used.  
2600fa  
11  
LTC2600/LTC2610/LTC2620  
U
OPERATIO  
INPUT WORD (LTC2600)  
COMMAND  
ADDRESS  
DATA (16 BITS)  
D6  
D5 D4 D3 D2 D1  
A3 A2  
A0  
A0  
A0  
D12  
D0  
C3  
C1  
C2  
A1  
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C0  
C0  
C0  
LSB  
2600 TBL01  
INPUT WORD (LTC2610)  
COMMAND  
ADDRESS  
DATA (14 BITS + 2 DON’T-CARE BITS)  
A3 A2  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D7  
C2  
MSB  
LSB  
2600 TBL02  
INPUT WORD (LTC2620)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DON’T-CARE BITS)  
A3 A2  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
X
C3  
C1  
A1  
D11 D10 D9 D8  
MSB  
D7  
C2  
LSB  
2600 TBL03  
showsthe32-bitsequence.The32-bitwordisrequiredfor  
daisy-chain operation, and is also available to accommo-  
date microprocessors which have a minimum word width  
of 16 bits (2 bytes).  
sequence for all devices simultaneously. A single device  
can be controlled by using the no-operation command  
(1111) for the other devices in the chain.  
Power-Down Mode  
Daisy-Chain Operation  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than eight outputs are needed. When in power-down, the  
buffer amplifiers and reference inputs are disabled, and  
drawessentiallyzerocurrent.TheDACoutputsareputinto  
a high-impedance state, and the output pins are passively  
pulled to ground through individual 90k resistors. When  
all eight DACs are powered down, the master bias genera-  
tion circuit is also disabled. Input- and DAC-register  
contents are not disturbed during power-down.  
The serial output of the shift register appears at the SDO  
pin. Data transferred to the device from the SDI input is  
delayed 32 SCK rising edges before being output at the  
next SCK falling edge.  
TheSDOoutputcanbeusedtofacilitatecontrolofmultiple  
serial devices from a single 3-wire serial port (i.e., SCK,  
SDI and CS/LD). Such a “daisy chain” series is configured  
by connecting SDO of each upstream device to SDI of the  
next device in the chain. The shift registers of the devices  
are thus connected in series, effectively forming a single  
inputshiftregisterwhichextendsthroughtheentirechain.  
Because of this, the devices can be addressed and con-  
trolled individually by simply concatenating their input  
words; the first instruction addresses the last device in the  
chain and so forth. The SCK and CS/LD signals are  
common to all devices in the series.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100bin combina-  
tionwiththeappropriateDACaddress, (n). The16-bitdata  
word is ignored. The supply and reference currents are  
reduced by approximately 1/8 for each DAC powered  
down; the effective resistance at REF (pin 6) rises accord-  
ingly, becomingahigh-impedanceinput(typically>1G)  
when all eight DACs are powered down.  
In use, CS/LD is first taken low. Then the concatenated  
input data is transferred to the chain, using SDI of the first  
device as the data input. When the data transfer is com-  
plete, CS/LD is taken high, completing the instruction  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
2600fa  
12  
LTC2600/LTC2610/LTC2620  
U
OPERATIO  
The selected DAC is powered up as its voltage output is  
reference and output voltages are referred and as a return  
path for power currents in the device. Because of this,  
careful thought should be given to the grounding scheme  
and board layout in order to ensure rated performance.  
updated.  
There is an initial delay as the DAC powers up before it  
begins its usual settling behavior. If less than eight DACs  
areinapowered-downstatepriortotheupdatecommand,  
the power-up delay is 5µs. If, on the other hand, all eight  
DACs are powered down, then the master bias generation  
circuit is also disabled and must be restarted. In this case,  
the power-up delay is greater: 12µs for VCC = 5V, 30µs for  
VCC = 3V.  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
Voltage Outputs  
Eachofthe8rail-to-railamplifierscontainedintheseparts  
has guaranteed load regulation when sourcing or sinking  
up to 15mA at 5V (7.5mA at 3V).  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is ex-  
pressed in LSB/mA.  
The GND pin of the part should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here will  
add directly to the effective DC output impedance of the  
device (typically 0.025), and will degrade DC crosstalk.  
Note that the LTC2600/LTC2610/LTC2620 are no more  
susceptible to these effects than other parts of their type;  
on the contrary, they allow layout-based performance  
improvements to shine rather than limiting attainable  
performance with excessive internal resistance.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.025when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by the  
25typical channel resistance of the output devices; e.g.,  
when sinking 1mA, the minimum output voltage = 25•  
1mA = 25mV. See the graph Headroom at Rails vs Output  
Current in the Typical Performance Characteristics sec-  
tion.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown in  
Figure 3b. Similarly, limiting can occur near full scale  
when the REF pin is tied to VCC. If VREF = VCC and the DAC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 3c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
The amplifiers are stable driving capacitive loads of up to  
1000pF.  
Board Layout  
The excellent load regulation and DC crosstalk perfor-  
mance of these devices is achieved in part by keeping  
“signal” and “power” grounds separated internally and by  
reducing shared internal resistance to just 0.005.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
The GND pin functions both as the node to which the  
occur.  
2600fa  
13  
LTC2600/LTC2610/LTC2620  
U
OPERATIO  
2600fa  
14  
LTC2600/LTC2610/LTC2620  
U
OPERATIO  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
2600 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect  
of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2600fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2600/LTC2610/LTC2620  
U
TYPICAL APPLICATIO  
Schematic for LTC2600 Demonstration Circuit DC579. The Outputs Are Measured by an Onboard LTC2428  
V
V
V
CC  
CC  
REF  
1
1
TP1  
TP2  
C1  
R1, R3, R4  
0.1µF  
are 4.99k, 1%  
R1  
R3  
R4  
4
5
6
7
R2  
7.5k  
V
SDA  
SS  
C2  
0.1µF  
3
2
6
A2 SCL  
11  
16  
REF  
CLR  
V
A1 WP  
CC  
C3  
0.1µF  
1
8
1
1
1
1
1
1
1
1
1
1
2
TP3  
TP14  
GND  
A0  
V
CC  
V
V
V
A
B
C
D
E
OUT  
OUT  
OUT  
OUT  
DAC A  
3
U1  
24LC025  
4
TP4  
DAC B  
TP15  
GND  
SCK  
8
7
5
SCK  
V
CS  
12  
13  
14  
15  
TP5  
DAC C  
LS/LD  
V
OUT  
14  
12  
10  
8
6
4
13  
11  
9
7
5
V
F
OUT  
+ +  
+ +  
+ +  
+ +  
+ +  
+ +  
+ +  
9
TP6  
DAC D  
SDI  
V
OUT  
V
OUT  
G
H
10  
SDO  
MOSI  
MISO  
TP7  
DAC E  
GND  
1
V
REF  
V
V
CC  
CC  
U2  
LTC2600CGN  
3
1
1
TP8  
DAC F  
TP16  
2
5V  
V
IN  
C4  
C5  
0.1µF  
J1  
TP9  
DAC G  
0.1µF  
HD2X7  
R5  
7.5k  
JP1  
TP10  
DAC H  
R8  
22Ω  
ON/OFF  
3
2
C10  
100pF  
DISABLE  
ADC  
7
4
3
2
8
V
IN  
1
U4  
V
V
MUXOUT ADCIN FS  
CC CC  
SET  
LT1236ACS8-5  
2
6
V
REF  
V
IN  
V
OUT  
9
CH0  
1
1
5V  
TP11  
REF  
23  
R6  
7.5k  
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
GND  
4
CSADC  
V
2
3
4.096V  
20  
25  
19  
21  
24  
CS  
C7  
CSMUX  
SCK  
C6  
0.1µF  
JP2  
V
4.7µF  
6.3V  
REF  
4-/8-CHANNEL  
MUX  
20-BIT  
ADC  
+
SCK  
CLK  
U5  
D
IN  
LT1461ACS8-4  
SD0  
2
3
6
V
CC  
LTC2424/LTC2428  
V
V
OUT  
IN  
1
26  
SHDN  
GND  
FO  
1
1
5V  
TP12  
CC  
REF  
5
ZS  
SET  
GND GND GND GND GND GND GND  
16 18 22 27 28  
R7  
7.5k  
V
2
3
C9  
0.1µF  
C8 REGULATOR  
4
1
6
U3  
LTC2428CG  
1µF  
16V  
JP3  
CC  
TP13  
GND  
V
5V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DAC in 16-Pin Narrow SSOP  
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
CC  
OUT  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2µs for 10V Step  
2600fa  
LT/TP 1103 1K REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2600CGN#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2600CGNPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CGNTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CUFD#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2600CUFDPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CUFDTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGN

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGN#TR

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2600IGNPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGNTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IUFD#PBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2600IUFD#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear