LTC2617CDE#TRPBF [Linear]

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C;
LTC2617CDE#TRPBF
型号: LTC2617CDE#TRPBF
厂家: Linear    Linear
描述:

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C

光电二极管 转换器
文件: 总20页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2607/LTC2617/LTC2627  
16-/14-/12-Bit Dual Rail-to-Rail  
2
DACs with I C Interface  
Features  
Description  
The LTC®2607/LTC2617/LTC2627 are dual 16-, 14- and  
12-bit, 2.7V to 5.5V rail-to-rail voltage output DACs in a  
12-leadDFNpackage.Theyhavebuilt-inhighperformance  
output buffers and are guaranteed monotonic.  
n
Smallest Pin-Compatible Dual DACs:  
LTC2607: 16 Bits  
LTC2617: 14 Bits  
LTC2627: 12 Bits  
n
Guaranteed Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply,  
voltage-output DACs.  
n
27 Selectable Addresses  
2
n
400kHz I C Interface  
n
Wide 2.7V to 5.5V Supply Range  
n
Low Power Operation: 260µA per DAC at 3V  
2
n
Thepartsusea2-wire, I Ccompatibleserialinterface. The  
Power Down to 1µA, Max  
n
LTC2607/LTC2617/LTC2627 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). An asynchronous DAC update pin (LDAC) is  
also included.  
High Rail-to-Rail Output Drive ( 15mA, Min)  
n
Ultralow Crosstalk (30µV)  
n
Double-Buffered Data Latches  
n
Asynchronous DAC Update Pin  
n
LTC2607/LTC2617/LTC2627: Power-On Reset to  
The LTC2607/LTC2617/LTC2627 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than 10mV above zero scale;and afterpower-up, they stay  
at zero scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2607-1/LTC2617-1/  
LTC2627-1 to mid-scale. The voltage outputs stay at mid-  
scale until a valid write and update takes place.  
Zero Scale  
n
LTC2607-1/LTC2617-1/LTC2627-1: Power-On Reset  
to Mid-Scale  
Tiny (3mm × 4mm) 12-Lead DFN Package  
n
applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 5396245 and 6891433. Patent Pending.  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Instrumentation  
Automatic Test Equipment  
n
Block Diagram  
9
11  
10  
8
REFLO  
GND  
REF  
V
CC  
Differential Nonlinearity  
(LTC2607)  
12  
V
12-/14-/16-BIT DAC  
12-/14-/16-BIT DAC  
7
1.0  
0.8  
V
OUTB  
V
= 5V  
= 4.096V  
CC  
OUTA  
V
REF  
0.6  
DAC REGISTER  
DAC REGISTER  
0.4  
0.2  
0
INPUT REGISTER  
INPUT REGISTER  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32-BIT SHIFT REGISTER  
0
16384  
32768  
CODE  
49152  
65535  
2-WIRE INTERFACE  
SDA  
2607 BD01b  
CA0  
CA1  
LDAC  
SCL  
CA2  
1
2
3
4
5
6
2607 BD01a  
26071727fa  
LTC2607/LTC2617/LTC2627  
aBsolute maximum ratings  
pin conFiguration  
(Note 1)  
TOP VIEW  
Any Pin to GND............................................ –0.3V to 6V  
Any Pin to V ............................................. –6V to 0.3V  
CA0  
CA1  
1
2
3
4
5
6
12  
V
OUTA  
CC  
11 REFLO  
10 GND  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range .................. –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
Operating Temperature Range:  
LDAC  
SCL  
13  
9
8
7
REF  
SDA  
CA2  
V
V
CC  
OUTB  
LTC2607C/LTC2617C/LTC2627C  
DE12 PACKAGE  
12-LEAD (4mm s 3mm) PLASTIC DFN  
LTC2607C-1/LTC2617C-1/LTC2627C-1 .... 0°C to 70°C  
LTC2607I/LTC2617I/LTC2627I  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
LTC2607I-1/LTC2617I-1/LTC2627I-1....–40°C to 85°C  
orDer inFormation  
LEAD FREE FINISH  
LTC2607CDE#PBF  
LTC2607IDE#PBF  
LTC2607CDE-1#PBF  
LTC2607IDE-1#PBF  
LTC2617CDE#PBF  
LTC2617IDE#PBF  
LTC2617CDE-1#PBF  
LTC2617IDE-1#PBF  
LTC2627CDE#PBF  
LTC2627IDE#PBF  
LTC2627CDE-1#PBF  
LTC2627IDE-1#PBF  
TAPE AND REEL  
PART MARKING*  
2607  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2607CDE#TRPBF  
LTC2607IDE#TRPBF  
LTC2607CDE-1#TRPBF  
LTC2607IDE-1#TRPBF  
LTC2617CDE#TRPBF  
LTC2617IDE#TRPBF  
LTC2617CDE-1#TRPBF  
LTC2617IDE-1#TRPBF  
LTC2627CDE#TRPBF  
LTC2627IDE#TRPBF  
LTC2627CDE-1#TRPBF  
LTC2627IDE-1#TRPBF  
0°C to 70°C  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
2607  
–40°C to 85°C  
0°C to 70°C  
26071  
26071  
2617  
–40°C to 85°C  
0°C to 70°C  
2617  
–40°C to 85°C  
0°C to 70°C  
26171  
26171  
2627  
–40°C to 85°C  
0°C to 70°C  
2627  
–40°C to 85°C  
0°C to 70°C  
26271  
26271  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
26071727fa  
LTC2607/LTC2617/LTC2627  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), REFLO = 0V,  
VOUT unloaded, unless otherwise noted.  
LTC2627/LTC2627-1 LTC2617/LTC2617-1 LTC2607/LTC2607-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
0.5  
4
1
1
Integral Nonlinearity  
Load Regulation  
1.5  
5
16  
19  
64  
V
= V = 5V, Mid-Scale  
CC  
OUT  
OUT  
REF  
I
I
l
l
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.03 0.125  
0.1  
0.1  
0.5  
0.5  
0.35  
0.42  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Mid-Scale  
OUT  
OUT  
REF  
I
I
CC  
l
l
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.8  
4
4
LSB/mA  
LSB/mA  
l
l
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 6)  
1
9
1
1
7
9
9
1
1
7
9
9
mV  
mV  
V
OS  
1
9
V
OS  
Temperature  
7
µV/°C  
Coefficient  
l
GE  
Gain Error  
0.15  
4
0.7  
0.15  
4
0.7  
0.15  
4
0.7  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), REFLO = 0V, VOUT unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
10%  
–80  
dB  
CC  
R
DC Output Impedance  
V
= V = 5V, Mid-Scale;  
REF CC  
OUT  
l
l
–15mA ≤ I  
≤ 15mA  
0.032  
0.035  
0.15  
0.15  
Ω
Ω
OUT  
V
= V = 2.7V, Mid-Scale;  
CC  
REF  
–7.5mA ≤ I  
≤ 7.5mA  
OUT  
DC Crosstalk (Note 4)  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (Per Channel)  
4
3
30  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
SC  
CC  
REF  
l
l
Code: Zero Scale; Forcing Output to V  
15  
15  
36  
37  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
CC  
= 2.7V, V = 2.7V  
REF  
l
l
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
22  
30  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
l
l
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
44  
64  
30  
80  
Capacitance  
l
I
Reference Current, Power Down Mode  
DAC Powered Down  
0.001  
1
µA  
REF  
26071727fa  
LTC2607/LTC2617/LTC2627  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), REFLO = 0V,  
VOUT unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
0.66  
0.52  
0.4  
1.3  
1
1
1
mA  
mA  
µA  
CC  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
0.10  
µA  
Digital I/O (Note 11)  
l
l
V
V
V
Low Level Input Voltage (SDA and SCL)  
High Level Input Voltage (SDA and SCL)  
Low Level Input Voltage (LDAC)  
0.3V  
V
V
IL  
CC  
0.7V  
IH  
CC  
l
l
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL(LDAC)  
CC  
CC  
l
l
V
V
V
High Level Input Voltage (LDAC)  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH(LDAC)  
IL(CAn)  
IH(CAn)  
CC  
CC  
l
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
See Test Circuit 1  
0.15V  
V
CC  
l
l
High Level Input Voltage on CAn (n = 0, 1, 2)  
Resistance from CAn (n = 0, 1, 2)  
See Test Circuit 1  
See Test Circuit 2  
0.85V  
V
CC  
R
R
R
10  
10  
kΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
l
l
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
kΩ  
Resistance from CAn (n = 0, 1, 2)  
2
0
MΩ  
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
B
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 9)  
l
l
l
l
l
t
I
Pulse Width of Spikes Suppressed by Input Filter  
Input Leakage  
0
50  
1
ns  
µA  
pF  
pF  
pF  
SP  
IN  
0.1V ≤ V ≤ 0.9V  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
Note 12  
10  
400  
10  
IN  
Capacitive Load for Each Bus Line  
B
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
CAX  
26071727fa  
LTC2607/LTC2617/LTC2627  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), REFLO = 0V,  
VOUT unloaded, unless otherwise noted.  
LTC2627/LTC2627-1 LTC2617/LTC2617-1 LTC2607/LTC2607-1  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 7)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 8)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.8  
1000  
12  
0.8  
1000  
12  
0.8  
1000  
12  
V/µs  
pF  
At Mid-Scale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 10, 11)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
= 2.7V to 5.5V  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 9)  
(Note 9)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
f
B
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte to  
LDAC High or Low Transition  
400  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: R = 2kΩ to GND or V .  
L CC  
Note 6: Inferred from measurement at code k (Note 2) and at full scale.  
L
Note 7: V = 5V, V  
= 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
and 3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 8: V = 5V, V = 4.096V. DAC is stepped 1LSB between half  
CC  
REF  
N
2N – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
scale and half scale – 1. Load is 2k in parallel with 200pF to GND.  
rounded to the nearest whole code. For V  
= 4.096V and N = 16, k =  
REF  
L
Note 9: C = capacitance of one bus line in pF.  
B
256 and linearity is defined from code 256 to code 65,535.  
Note 10: All values refer to V  
and V  
levels.  
IL(MAX)  
IH(MIN)  
Note 3: SDA, SCL and LDAC at 0V or V , CA0, CA1 and CA2 Floating.  
CC  
Note 11: These specifications apply to LTC2607/LTC2607-1,  
LTC2617/LTC2617-1, LTC2627/LTC2627-1.  
Note 12: Guaranteed by design and not production tested.  
Note 4: DC crosstalk is measured with V = 5V and V  
= 4.096V, with  
REF  
CC  
the measured DAC at mid-scale, unless otherwise noted.  
26071727fa  
LTC2607/LTC2617/LTC2627  
typical perFormance characteristics  
LTC2607  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
32  
24  
1.0  
0.8  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
= 5V  
CC  
= 4.096V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
V
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2607 G01  
2607 G02  
2607 G03  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
REF  
(V)  
V
(V)  
REF  
2607 G04  
2607 G05  
2607 G06  
Settling to 1LSB  
Settling of Full-Scale Step  
V
OUT  
V
OUT  
100µV/DIV  
±00µV/DIV  
±2.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
SCL  
2V/DIV  
9TH CLOCK OF  
3RD DATA ꢀYTE  
2607 G07  
2607 G08  
2µs/DIV  
5µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
SETTLING TO ±±LSꢀ  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
V
= 5V, V  
= 4.096V  
CC  
REF  
R
L
L
CODE 5±2 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
AVERAGE OF 2048 EVENTS  
26071727fa  
LTC2607/LTC2617/LTC2627  
typical perFormance characteristics  
LTC2617  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100µV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2607 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2607 G09  
2607 G10  
LTC2627  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2607 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
2607 G12  
2607 G13  
26071727fa  
LTC2607/LTC2617/LTC2627  
typical perFormance characteristics  
LTC2607/LTC2617/LTC2627  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
3
2
CODE = MID-SCALE  
CODE = MID-SCALE  
V
V
= V = 5V  
CC  
REF  
REF  
0.6  
= V = 3V  
CC  
0.4  
1
0.2  
0
0
V
= V = 5V  
CC  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
TEMPERATURE (°C)  
OUT  
OUT  
2607 G15  
2607 G16  
2607 G17  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2607 G18  
2607 G19  
2607 G20  
Gain Error vs VCC  
ICC Shutdown vs VCC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2607 G21  
2607 G22  
26071727fa  
LTC2607/LTC2617/LTC2627  
typical perFormance characteristics  
LTC2607/LTC2617/LTC2627  
Large-Signal Response  
Mid-Scale Glitch Impulse  
Power-On Reset to Zeroscale  
TRANSITION FROM  
MS-1 TO MS  
V
OUT  
V
CC  
10mV/DIV  
1V/DIV  
V
OUT  
0.5V/DIV  
TRANSITION FROM  
MS TO MS-1  
9TH CLOCK  
OF 3RD DATA  
BYTE  
4mV PEAK  
SCL  
2V/DIV  
V
= V = 5V  
CC  
REF  
V
OUT  
1/4-SCALE TO 3/4-SCALE  
10mV/DIV  
2607 G24  
2607 G25  
2.5µs/DIV  
2.5µs/DIV  
2607 G23  
250µs/DIV  
Headroom at Rails  
vs Output Current  
Power-On Reset to Midscale  
Supply Current vs Logic Voltage  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
5V SOURCING  
V
CC  
= 5V  
SWEEP LDAC  
OV TO V  
CC  
3V SOURCING  
1V/DIV  
5V SINKING  
V
CC  
3V SINKING  
V
OUT  
2607 G27  
500µs/DIV  
0
1
2
3
4
I
5
(mA)  
6
7
8
9
10  
0
0.5  
1
1.5  
2
2.5  
5
3
3.5  
4
4.5  
LOGIC VOLTAGE (V)  
OUT  
2607 G26  
2607 G28  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
Supply Current vs Logic Voltage  
0
–3  
1300  
1200  
1100  
1000  
V
= 5V  
CC  
SWEEP SCL AND  
SDA OV TO V  
AND V TO OV  
CC  
–6  
CC  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
HYSTERSIS  
370mV  
10µV/DIV  
900  
800  
700  
600  
500  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
CODE = FULL SCALE  
SECONDS  
2607 G31  
1k  
10k  
100k  
1M  
1
2
4
0
5
3
FREQUENCY (Hz)  
LOGIC VOLTAGE (V)  
2607 G30  
2607 G029  
26071727fa  
LTC2607/LTC2617/LTC2627  
typical perFormance characteristics  
LTC2607/LTC2617/LTC2627  
Short-Circuit Output Current vs  
VOUT (Sinking)  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
50  
0
–10  
–20  
–30  
V
V
= 5.5V  
REF  
CODE = 0  
V
V
= 5.5V  
REF  
CC  
CC  
= 5.6V  
= 5.6V  
CODE = FULL SCALE  
40  
30  
20  
V
SWEPT 0V TO V  
V
SWEPT V TO 0V  
OUT  
CC  
OUT CC  
10  
0
–40  
–50  
0
2
3
4
5
6
0
2
3
4
5
6
1
1
1V/DIV  
1V/DIV  
2607 G32  
2607 G33  
pin Functions  
CA0 (Pin 1): Chip Address Bit 0. Tie this pin to V , GND  
CA2 (Pin 6): Chip Address Bit 2. Tie this pin to V , GND  
CC  
CC  
2
2
or leave it floating to select an I C slave address for the  
or leave it floating to select an I C slave address for the  
part (Table 1).  
part (Table 1).  
CA1 (Pin 2): Chip Address Bit 1. Tie this pin to V , GND  
V
(Pin 7): DAC Analog Voltage Output. The output  
OUTB  
CC  
2
or leave it floating to select an I C slave address for the  
range is V  
to V  
.
REFLO  
REF  
part (Table 1).  
V
(Pin 8): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
CC  
CC  
LDAC (Pin 3): Asynchronous DAC Update. A falling edge  
of this input after four bytes have been written into the part  
immediately updates the DAC register with the contents of  
the input register. A low on this input without a complete  
32-bit (four bytes including the slave address) data write  
transfer to the part wakes up sleeping DACs without up-  
dating the DAC output. Software power-down is disabled  
when LDAC is low. LDAC is disabled when tied high.  
REF (Pin 9): Reference Voltage Input. The input range  
is V ≤ V ≤ V .  
REFLO  
REF  
CC  
GND (Pin 10): Analog Ground.  
REFLO (Pin 11): Reference Low. The voltage at this pin  
sets the zero scale (ZS)voltage ofallDACs. The V  
pin  
REFLO  
can be used at voltages up to 1V for V = 5V, or 100mV  
CC  
for V = 3V.  
CC  
SCL (Pin 4): Serial Clock Input Pin. Data is shifted into  
the SDA pin at the rising edges of the clock. This high  
impedance pin requires a pull-up resistor or current  
V
(Pin 12): DAC Analog Voltage Output. The output  
OUTA  
range is V  
to V  
.
REFLO  
REF  
Exposed Pad (Pin 13): Ground. Must be soldered to  
PCB ground.  
source to V .  
CC  
SDA (Pin 5): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in and an open-  
drainN-channeloutputduringacknowledgment.Requires  
a pull-up resistor or current source to V  
CC.  
26071727fa  
ꢀ0  
LTC2607/LTC2617/LTC2627  
Block Diagram  
9
11  
10  
8
REFLO  
GND  
REF  
V
CC  
12-/14-/16-BIT DAC  
12-/14-/16-BIT DAC  
12  
V
7
V
OUTB  
OUTA  
DAC REGISTER  
DAC REGISTER  
INPUT REGISTER  
INPUT REGISTER  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
SDA  
CA0  
CA1  
LDAC  
SCL  
CA2  
5
6
1
2
3
4
2607 BD  
test circuits  
Test Circuit 1  
Test Circuit 2  
V
DD  
R
/R /R  
INH INL INF  
100Ω  
/V  
CAn  
CAn  
V
IH(CAn) IL(CAn)  
GND  
2607 TC  
26071727fa  
ꢀꢀ  
LTC2607/LTC2617/LTC2627  
timing Diagrams  
26071727fa  
ꢀꢁ  
LTC2607/LTC2617/LTC2627  
operation  
Power-On Reset  
2
specifications. For an I C bus operating in the fast mode,  
anactivepull-upwillbenecessaryifthebuscapacitanceis  
The LTC2607/LTC2617/LTC2627 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2607-1/  
LTC2617-1/LTC2627-1setthevoltageoutputstomidscale  
when power is first applied.  
greaterthan200pF. TheV powershouldnotberemoved  
CC  
2
from the LTC2607/LTC2617/LTC2627 when the I C bus  
2
is active to avoid loading the I C bus lines through the  
internal ESD protection diodes.  
The LTC2607/LTC2617/LTC2627 are receive-only (slave)  
devices. The master can write to the LTC2607/LTC2617/  
LTC2627.TheLTC2607/LTC2617/LTC2627donotrespond  
to a read from the master.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2607/  
LTC2617/LTC2627 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground (typ) during power-on. See Power-On Reset Glitch  
in the Typical Performance Characteristics section.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
Power Supply Sequencing  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
The voltage at REF (Pin 9) should be kept within the range  
–0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum Rat-  
REF  
CC  
ings). Particular care should be taken to observe these  
2
limitsduringpowersupplyturn-onandturn-offsequences,  
another I C device.  
when the voltage at V (Pin 8) is in transition.  
CC  
Acknowledge  
Transfer Function  
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the lat-  
est byte of information was received. The Acknowledge  
related clock pulse is generated by the master. The master  
releasestheSDAline(HIGH)duringtheAcknowledgeclock  
pulse. The slave-receiver must pull down the SDA bus line  
during the Acknowledge clock pulse so that it remains a  
stable LOW during the HIGH period of this clock pulse.  
The LTC2607/LTC2617/LTC2627 respond to a write by a  
master in this manner. The LTC2607/LTC2617/LTC2627  
do not acknowledge a read (retains SDA HIGH during the  
period of the Acknowledge clock pulse).  
The digital-to-analog transfer function is:  
k
VOUT(IDEAL)  
=
VREF VREFLO + V  
REFLO  
(
)
N   
2
where k is the decimal equivalent of the binary DAC  
input code, N is the resolution and V  
REF (Pin 6).  
is the voltage at  
REF  
Serial Digital Interface  
The LTC2607/LTC2617/LTC2627 communicate with a  
2
host using the standard 2-wire I C interface. The Timing  
Diagrams (Figures 1 and 2) show the timing relationship  
of the signals on the bus. The two bus lines, SDA and  
SCL, must be high when the bus is not in use. External  
pull-up resistors or current sources are required on these  
lines. The value of these pull-up resistors is dependent  
Chip Address  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set  
to any one of three states: V , GND or float. This results  
CC  
2
on the power supply and can be obtained from the I C  
26071727fa  
ꢀꢂ  
LTC2607/LTC2617/LTC2627  
operation  
in 27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximum capacitive load allowed on the address pins  
(CA0,CA1andCA2)is10pF,asthesepinsaredrivenduring  
address detection to determine if they are floating.  
Table 1. Slave Address Map  
CA2  
GND  
CA1  
GND  
CA0  
GND  
SA6 SA5 SA4 SA3 SA2 SA1 SA0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
Write Word Protocol  
GND  
GND  
V
CC  
The master initiates communication with the LTC2607/  
LTC2617/LTC2627withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2607/  
LTC2617/LTC2627 acknowledges by pulling the SDA pin  
low at the 9th clock if the 7-bit slave address matches the  
address of the parts (set by CA0, CA1 and CA2) or the  
global address. The master then transmits three bytes of  
data.TheLTC2607/LTC2617/LTC2627acknowledgeseach  
byte of data by pulling the SDA line low at the 9th clock of  
eachdatabytetransmission.Afterreceivingthreecomplete  
bytesofdata,theLTC2607/LTC2617/LTC2627executesthe  
command specified in the 24-bit input word.  
GND  
FLOAT  
GND  
GND  
FLOAT FLOAT  
FLOAT  
GND  
V
CC  
GND  
V
CC  
V
CC  
V
CC  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
GND  
FLOAT  
V
CC  
FLOAT FLOAT  
FLOAT FLOAT FLOAT  
FLOAT FLOAT  
GND  
V
CC  
If more than three data bytes are transmitted after a valid  
7-bitslaveaddress,theLTC2607/LTC2617/LTC2627donot  
acknowledge the extra bytes of data (SDA is high during  
the 9th clock).  
FLOAT  
FLOAT  
FLOAT  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
GND  
GND  
The format of the three data bytes is shown in Figure 3.  
The first byte of the input word consists of the 4-bit com-  
mandwordC3-C0, and4-bitDACaddressA3-A0. Thenext  
two bytes consist of the 16-bit data word. The 16-bit data  
word consists of the 16-, 14- or 12-bit input code, MSB  
to LSB, followed by 0, 2 or 4 don’t care bits (LTC2607,  
LTC2617 and LTC2627 respectively). A typical LTC2607  
write transaction is shown in Figure 4.  
FLOAT  
GND  
V
CC  
FLOAT  
GND  
FLOAT FLOAT  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
GLOBAL ADDRESS  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 2. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
In addition to the address selected by the address pins,  
the parts also respond to a global address. This address  
allows a common write to all LTC2607, LTC2617 and  
LTC2627 parts to be accomplished with one 3-byte write  
transaction on the I C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
2
26071727fa  
ꢀꢃ  
LTC2607/LTC2617/LTC2627  
operation  
Write Word Protocol for LTC2607/LTC2617/LTC1627  
W
A
1STDATABYTE  
A
2NDDATABYTE  
A
3RDDATABYTE  
A
P
S
SLAVEADDRESS  
INPUT WORD  
Input Word (LTC2607)  
C3  
C1  
A3 A2 A1  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
C2  
C0  
A0  
A0  
A0  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2617)  
C3  
C1  
A3 A2 A1  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
X
X
X
C2  
C0  
1ST DATA BYTE  
Input Word (LTC2627)  
C3  
C1  
A3 A2 A1  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
2607 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3  
appropriateDACaddress. The16-bitdatawordisignored.  
Thesupplyandreferencecurrentsarereducedbyapproxi-  
mately 50% for each DAC powered down; the effective  
resistance at REF (Pin 9) rises accordingly, becoming a  
high-impedance input (typically > 1GΩ) when both DACs  
are powered down.  
Table 2  
COMMAND*  
C3 C2 C1 C0  
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
1
1
0
1
Write to Input Register  
Update (Power Up) DAC Register  
Write to and Update (Power Up)  
Power Down  
Normal operation can be resumed by executing any  
command which includes a DAC update, as shown in  
Table 2 or performing an asychronous update (LDAC) as  
describedinthenextsection.TheselectedDACispowered  
upasitsvoltageoutputisupdated.WhenaDACinpowered-  
down state is powered up and updated, normal settling  
is delayed. If one of the two DACs is in a powered- down  
state prior to the update command, the power up delay is  
5µs. If on the other hand, both DACs are powered down,  
the main bias generation circuit has been automatically  
shut down in addition to the DAC amplifiers and reference  
input and so the power up delay time is  
No Operation  
ADDRESS*  
A3 A2 A1 A0  
0
0
1
0
0
1
0
0
1
0
1
1
DAC A  
DAC B  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
Power-Down Mode  
Forpower-constrainedapplications,thepower-downmode  
can be used to reduce the supply current whenever one or  
both of the DAC outputs are not needed. When in power-  
down,thebufferamplifiers,biascircuitsandreferenceinput  
are disabled and draw essentially zero current. The DAC  
outputsareputintoahighimpedancestate,andtheoutput  
12µs (for V = 5V) or 30µs (for V = 3V)  
CC  
CC  
Asynchronous DAC Update Using LDAC  
In addition to the update commands shown in Table 2, the  
LDAC pin asynchronously updates the DAC registers with  
the contents of the input registers. Asynchronous update  
is disabled when the input word is being clocked into  
the part.  
pins are passively pulled to V  
through 90k resistors.  
REFLO  
Input-registerandDAC-registercontentsarenotdisturbed  
during power-down.  
Either or both DAC channels can be put into power-down  
mode by using command 0100b in combination with the  
26071727fa  
ꢀꢄ  
LTC2607/LTC2617/LTC2627  
operation  
If a complete input word has been written to the part, a low  
on the LDAC pin causes the DAC registers to be updated  
with the contents of the input registers.  
Board Layout  
The excellent load regulation performance is achieved in  
partbyseparatingthesignalandpowergroundsasREFLO  
and GND pins, respectively.  
If the input word is being written to the part, a low going  
pulseontheLDACpinbeforethecompletionofthreebytes  
ofdatapowersuptheDACsbutdoesnotcausetheoutputs  
to be updated. If LDAC remains low after a complete input  
wordhasbeenwrittentothepart,thenLDACisrecognized,  
the command specified in the 24-bit word just transferred  
is executed and the DAC outputs updated.  
The PC Board should have separate areas for the analog  
and digital sections of the circuit. This keeps the digital  
signals away from the sensitive analog signals and facili-  
tates the use of separate digital and analog ground planes  
that have minimal interaction with each other.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground. Ideally, the  
analog ground plane should be located on the component  
side of the board, and should be allowed to run under the  
part to shield it from noise. Analog ground should be a  
continuous and uninterrupted plane, except for necessary  
lead pads and vias, with signal traces on another layer.  
The DACs are powered up when LDAC is taken low, inde-  
2
pendent of any activity on the I C bus.  
If LDAC is low at the falling edge of the 9th clock of the  
3rd byte of data, it inhibits any software power-down  
command that was specified in the input word. LDAC is  
disabled when tied high.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground. Resistance from the GND pin to the analog power  
supply return should be as low as possible. Resistance  
herewilladddirectlytothechannelresistanceoftheoutput  
device when sinking load current. When a zero scale DAC  
output voltage of zero is required, the REFLO pin should  
be connected to system star ground. Any shared trace  
resistance between REFLO and GND pins is undesirable  
since it adds to the effective DC output impedance (typi-  
Voltage Output  
Both of the two rail-to-rail amplifiers have guaranteed  
load regulation when sourcing or sinking up to 15mA at  
5V (7.5mA at 3V).  
Load regulation is a measure of the amplifiers’ ability to  
maintain the rated voltage accuracy over a wide range  
of load conditions. The measured change in output volt-  
age per milliampere of forced load current change is  
expressed in LSB/mA.  
Ω) of the part.  
cally 0.035  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.035Ω when driving a load well away from  
the rails.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
Since the analog output of the device cannot go below  
ground,itmaylimitforthelowestcodesasshowninFigure  
5b. Similarly, limiting can occur near full scale when the  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited  
by the 30Ω typical channel resistance of the output  
devices; e.g., when sinking 1mA, the minimum output  
voltage = 30Ω • 1mA = 30mV. See the graph Headroom  
at Rails vs Output Current in the Typical Performance  
Characteristics section.  
REF pin is tied to V . If V = V and the DAC full-scale  
CC  
REF  
CC  
error (FSE) is positive, the output for the highest codes  
limits at V as shown in Figure 5c. No full-scale limiting  
CC  
will occur if V is less than V – FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
26071727fa  
ꢀꢅ  
LTC2607/LTC2617/LTC2627  
operation  
26071727fa  
ꢀꢆ  
LTC2607/LTC2617/LTC2627  
package Description  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.70 p0.05  
3.30 p0.05  
1.70 p 0.05  
3.60 p0.05  
2.20 p0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
2.50 REF  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 p 0.10  
4.00 p0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 p0.10  
3.00 p0.10  
(2 SIDES)  
1.70 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 s 45o  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
26071727fa  
ꢀꢇ  
LTC2607/LTC2617/LTC2627  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
1/10  
Revised Features  
1
2
Added Pin Configuration and Updated Order Information  
Added Text to Serial Digital Interface Section  
13  
26071727fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢀꢈ  
LTC2607/LTC2617/LTC2627  
typical application  
Demo Circuit Schematic. Onboard 20-Bit ADC Measures Key Performance Parameters  
5V  
5V  
V
REF  
1V TO 5V  
0.1µF  
8
6
REF  
2
1
V
CC  
3
1
2
6
V
FS  
CC  
LDAC  
CA0  
CA1  
CA2  
SET  
100Ω  
7.5k  
7
3
4
V
CH 1  
CH 0  
OUTB  
9
8
7
SCK  
SDO  
CS  
DAC  
OUTPUT B  
LTC2607  
SPI BUS  
LTC2422  
4
5
100Ω  
7.5k  
12  
2
SCL  
SDA  
V
I C BUS  
OUTA  
10  
F
O
ZS  
GND  
6
DAC  
OUTPUT A  
SET  
5
GND  
10, 13  
REFLO  
2607 TA01  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1664  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
LTC1821  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610/  
LTC2620  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2601/LTC2611/  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
DACs in 16-Lead SSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2604/LTC2614/  
LTC2624  
Quad 16-/14-/12-Bit V  
Octal 16-/14-/12-Bit V  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
2
LTC2605/LTC2615/  
LTC2625  
DACs with I C Interface  
250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
OUT  
2
Output, I C Interface  
2
LTC2606/LTC2616/  
LTC2626  
16-/14-/12-Bit V  
DACs with I C Interface  
270µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
OUT  
2
Output, I C Interface  
2
LTC2609/LTC2619/  
LTC2629  
Quad 16-/14-/12-Bit V  
DACs with I C Interface  
250µA Range per DAC, 2.7V to 5.5V Supply Range,  
OUT  
Rail-to-Rail Output with Separate V Pins for Each DAC  
REF  
26071727fa  
LT 0110 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁ0  
LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2617CDE-1

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2617CDE-1#PBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2617CDE-1#TR

暂无描述
Linear

LTC2617IDE

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2617IDE#PBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE#TR

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2617IDE-1#PBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1#TR

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1#TRPBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617_15

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2619

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear