LTC2617IDE#PBF [Linear]

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C;
LTC2617IDE#PBF
型号: LTC2617IDE#PBF
厂家: Linear    Linear
描述:

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C

文件: 总24页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2633  
2
Dual 12-/10-/8-Bit I C  
V DACs with  
OUT  
10ppm/°C Reference  
Description  
Features  
n
Integrated Precision Reference  
The LTC®2633 is a family of dual 12-, 10-, and 8-bit  
voltage-output DACs with an integrated, high accuracy,  
low drift reference in an 8-lead TSOT-23 package. It has  
rail-to-rail output buffers and is guaranteed monotonic.  
TheLTC2633-Lhasafull-scaleoutputof2.5V,andoperates  
from a single 2.7V to 5.5V supply. The LTC2633-H has a  
full-scale output of 4.096V, and operates from a 4.5V to  
5.5V supply. Each DAC can also operate with an external  
reference, which sets the full-scale output to the external  
reference voltage.  
2.5V Full-Scale 10ppm/°C (LTC2633-L)  
4.096V Full-Scale 10ppm/°C (LTC2633-H)  
n
Maximum INL Error: 1LSꢀ (LTC2633A-12)  
n
Low Noise: 0.75mV 0.1Hz to 200kHz  
P-P  
n
Guaranteed Monotonic Over –40°C to 125°C  
Temperature Range  
n
n
n
n
n
n
Selectable Internal or External Reference  
2.7V to 5.5V Supply Range (LTC2633-L)  
Low Power: 0.4mA at 3V  
Power-on-Reset to Zero-Scale/Mid-Scale/Hi-Z  
Double-Buffered Data Latches  
8-Lead ThinSOT™ Package  
2
These DACs communicate via a 2-wire I C-compatible  
serialinterface.TheLTC2633operatesinboththestandard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). The LTC2633 incorporates a power-on reset  
circuit. Options are available for reset to zero-scale, reset  
tomid-scaleininternalreferencemode, resettomid-scale  
in external reference mode, or reset with all DAC outputs  
in a high impedance state after power-up.  
applications  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Power Supply Margining  
Portable Equipment  
Automotive  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents including 5396245, 5859606, 6891433,  
6937178, 7414561.  
n
n
Block Diagram  
REF  
INTERNAL  
REFERENCE  
Integral Nonlinearity (LTC2633A-LZ12)  
SWITCH  
INL Curve  
GND  
V
REF  
2
V
= 3V  
CC  
INTERNAL REF.  
V
V
CC  
1
0
V
OUTA  
OUTB  
DAC A  
DAC B  
CONTROL  
POWER-ON  
–1  
–2  
DECODE LOGIC  
RESET  
SCL  
SDA  
0
1024  
2048  
CODE  
3072  
4095  
2
I C  
CA0  
2
ADDRESS  
DECODE  
I C INTERFACE  
2633 TA01  
2633 BD  
2633fb  
1
LTC2633  
aBsolute maximum ratings  
pin conFiguration  
(Notes 1, 2)  
Supply Voltage (V ) ................................... –0.3V to 6V  
CC  
SCL, SDA ..................................................... –0.3V to 6V  
OUTA OUTB CC  
TOP VIEW  
V
, V  
....................–0.3V to Min(V + 0.3V, 6V)  
SCL 1  
CA0 2  
REF 3  
GND 4  
8 SDA  
CA0...................................–0.3V to Min(V + 0.3V, 6V)  
CC  
7 V  
6 V  
5 V  
CC  
REF ...................................–0.3V to Min(V + 0.3V, 6V)  
CC  
OUTB  
OUTA  
Operating Temperature Range  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
LTC2633C ................................................ 0°C to 70°C  
LTC2633H (Note 3) ............................ –40°C to 125°C  
Maximum Junction Temperature........................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ..................300°C  
T
= 150°C (NOTE 6), θ = 195°C/W  
JA  
JMAX  
orDer inFormation  
A
C
LTC2633  
TS8 –L  
Z
12  
#TRM PꢀF  
LEAD FREE DESIGNATOR  
TAPE AND REEL  
TR = 2,500-Piece Tape and Reel  
TRM = 500-Piece Tape and Reel  
RESOLUTION  
12 = 12-Bit  
10 = 10-Bit  
8 = 8-Bit  
POWER-ON RESET  
I = Reset to Mid-Scale in Internal Reference Mode  
X = Reset to Mid-Scale in External Reference Mode (2.5V Full-Scale  
Voltage, Internal Reference Mode Option Only)  
O = Reset to Mid-Scale in Internal Reference Mode, DACs High Z  
(2.5V Full-Scale Voltage, Internal Reference Mode Option Only)  
Z = Reset to Zero-Scale in Internal Reference Mode  
FULL-SCALE VOLTAGE INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
TS8 = 8-Lead Plastic TSOT-23  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
ELECTRICAL GRADE (OPTIONAL)  
A = 1LSB Maximum INL (12-Bit)  
PRODUCT PART NUMꢀER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2633fb  
2
LTC2633  
proDuct selection guiDe  
POWER-ON  
REFERENCE  
MODE  
PART  
MARKING**  
VFS WITH INTERNAL  
REFERENCE  
POWER-ON RESET  
TO CODE  
MAXIMUM  
INL  
PART NUMꢀER  
RESOLUTION  
V
CC  
LTFTC  
LTFTB  
LTFSZ  
LTFTV  
LTFTF  
LTFTD  
2.5V (4095/4096)  
2.5V (4095/4096)  
2.5V (4095/4096)  
2.5V (4095/4096)  
4.096V (4095/4096)  
4.096V (4095/4096)  
Mid-Scale  
Mid-Scale  
Internal  
External  
Internal  
Internal  
Internal  
Internal  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
1LSB  
1LSB  
1LSB  
1LSB  
1LSB  
1LSB  
LTC2633A-LI12  
LTC2633A-LX12  
LTC2633A-LZ12  
LTC2633A-LO12*  
LTC2633A-HI12  
LTC2633A-HZ12  
Zero-Scale  
High Impedance  
Mid-Scale  
Zero-Scale  
LTFTC  
LTFTJ  
LTFTQ  
2.5V (4095/4096)  
2.5V (1023/1024)  
2.5V (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-Bit  
10-Bit  
8-Bit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-LI12  
LTC2633-LI10  
LTC2633-LI8  
LTFTB  
LTFTH  
LTFTP  
2.5V (4095/4096)  
2.5V (1023/1024)  
2.5V (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
External  
External  
External  
12-Bit  
10-Bit  
8-Bit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-LX12  
LTC2633-LX10  
LTC2633-LX8  
LTFSZ  
LTFTG  
LTFTN  
2.5V (4095/4096)  
2.5V (1023/1024)  
2.5V (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-Bit  
10-Bit  
8-Bit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-LZ12  
LTC2633-LZ10  
LTC2633-LZ8  
LTFTV  
LTFTW  
LTFTX  
2.5V (4095/4096)  
2.5V (1023/1024)  
2.5V (255/256)  
High Impedance  
High Impedance  
High Impedance  
Internal  
Internal  
Internal  
12-Bit  
10-Bit  
8-Bit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-LO12*  
LTC2633-LO10*  
LTC2633-LO8*  
LTFTF  
LTFTM  
LTFTS  
4.096V (4095/4096)  
4.096V (1023/1024)  
4.096V (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-Bit  
10-Bit  
8-Bit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-HI12  
LTC2633-HI10  
LTC2633-HI8  
LTFTD  
LTFTK  
LTFTR  
4.096V (4095/4096)  
4.096V (1023/1024)  
4.096V (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-Bit  
10-Bit  
8-Bit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSB  
1LSB  
0.5LSB  
LTC2633-HZ12  
LTC2633-HZ10  
LTC2633-HZ8  
* Contact Linear Technology for other Hi-Z options.  
**The temperature grade is identified by a label on the shipping container.  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-LI12/-LI10/-LI8/-LX12/-LX10/-LX8/-LZ12/-LZ10/-LZ8/-LO12/-LO10/-LO8/LTC2633A-LI12/-LX12/-LZ12/-LO12 (VFS = 2.5V)  
LTC2633-8  
LTC2633-10  
LTC2633-12  
LTC2633A-12  
SYMꢀOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
LSB  
Monotonicity  
V
V
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
CC  
DNL  
Differential  
Nonlinearity  
0.5  
0.5  
1
1
1
CC  
l
l
l
INL  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref., Code = 0  
= 3V, Internal Ref. (Note 5)  
= 3V, Internal Ref.  
0.05 0.5  
0.2  
0.5  
0.5  
10  
1
5
1
0.5  
0.5  
10  
2.5  
5
0.5  
0.5  
0.5  
10  
LSB  
mV  
ZSE  
0.5  
0.5  
10  
5
5
V
V
5
5
5
5
mV  
OS  
V
Temperature  
OS  
µV/°C  
OSTC  
Coefficient  
l
GE  
Gain Error  
V
CC  
= 3V, Internal Ref.  
0.2 0.8  
0.2 0.8  
0.2 0.8  
0.2 0.8 %FSR  
2633fb  
3
LTC2633  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-LI12/-LI10/-LI8/-LX12/-LX10/-LX8/-LZ12/-LZ10/-LZ8/-LO12/-LO10/-LO8/LTC2633A-LI12/-LX12/-LZ12/-LO12 (VFS = 2.5V)  
LTC2633-8  
LTC2633-10  
LTC2633-12  
LTC2633A-12  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
GE  
Gain Temperature  
Coefficient  
V
CC  
= 3V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
Load Regulation  
Internal Ref., Mid-Scale,  
= 3V 10%,  
l
l
V
0.009 0.016  
0.009 0.016  
0.035 0.064  
0.035 0.064  
0.14 0.256  
0.14 0.256  
0.14 0.256 LSB/mA  
0.14 0.256 LSB/mA  
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
DC Output  
Impedance  
Internal Ref., Mid-Scale,  
= 3V 10%,  
OUT  
l
l
V
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Ω
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to V  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
V
V
OUT  
REF  
0 to 2.5  
PSR  
Power Supply Rejection  
V
CC  
= 3V 10% or 5V 10%  
–80  
dB  
I
SC  
Short Circuit Output Current (Note 6)  
V
FS  
= V = 5.5V  
CC  
l
l
Sinking  
Zero Scale; V  
shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
Sourcing  
Full Scale; V  
shorted to GND  
OUT  
l
DAC I  
DAC Output Current in High Impedance LO Options Only  
Mode  
0.01  
0.5  
µA  
SD  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V, V = 2.5V, External Reference  
0.3  
0.4  
0.3  
0.4  
0.5  
0.6  
0.5  
0.6  
mA  
mA  
mA  
mA  
REF  
= 3V, Internal Reference  
= 5V V = 2.5V, External Reference  
REF  
= 5V, Internal Reference  
l
I
SD  
Supply Current in Power-Down Mode  
(Note 7)  
V
CC  
= 5V  
0.5  
2
µA  
Reference Input  
Input Voltage Range  
l
l
1
V
V
kΩ  
pF  
CC  
Resistance  
120  
160  
12  
200  
Capacitance  
l
l
I
Reference Current, Power Down Mode  
DAC Powered Down  
0.005  
5
µA  
REF  
Reference Output  
Output Voltage  
1.24  
1.25  
10  
1.26  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
CC  
= 5.5V, REF Shorted to GND  
2.5  
mA  
2633fb  
4
LTC2633  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-LI12/-LI10/-LI8/-LX12/-LX10/-LX8/-LZ12/-LZ10/-LZ8/-LO12/-LO10/-LO8/LTC2633A-LI12/-LX12/-LZ12/-LO12 (VFS = 2.5V)  
SYMꢀOL PARAMETER  
Digital I/O  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
(Note 11)  
–0.5  
0.3V  
V
V
IL  
CC  
V
High Level Input Voltage  
(SDA and SCL)  
0.7V  
CC  
IH  
l
l
l
V
V
Low Level Input Voltage on CA0  
High Level Input Voltage on CA0  
Resistance from CA0  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
0.15V  
V
V
IL(CA0)  
IH(CA0)  
CC  
0.85V  
CC  
R
R
R
10  
10  
kΩ  
INH  
INL  
INF  
OL  
to V to Set CA0 = V  
CC  
CC  
l
l
Resistance from CA0  
to GND to Set CA0 = GND  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
kΩ  
Resistance from CA0 to V or GND to  
2
0
MΩ  
CC  
Set CA0 = Float  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed by  
Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
8
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address Pin  
CA0  
CA0  
AC Performance  
t
s
Settling Time  
V
= 3V (Note 9)  
CC  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.4  
4.0  
4.5  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
2.8  
V/µs  
pF  
At Mid-Scale Transition  
nV•s  
nV•s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switch 0-FS  
External Reference  
5.2  
320  
e
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
200  
180  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
30  
35  
680  
730  
µV  
µV  
µV  
µV  
P-P  
P-P  
P-P  
P-P  
C
= 0.1µF  
REF  
2633fb  
5
LTC2633  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V. (See Figure 1) (Note 13)  
LTC2633-LI12/-LI10/-LI8/-LX12/-LX10/-LX8/-LZ12/-LZ10/-LZ8/-LO12/-LO10/-LO8/LTC2633A-LI12/-LX12/-LZ12/-LO12 (VFS = 2.5V)  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
ns  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
B
B
ns  
f
µs  
SU(STO)  
BUF  
Bus Free Time Between a Stop and Start  
Condition  
1.3  
µs  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-HI12/-HI10/-HI8/-HZ12/-HZ10/-HZ8/LTC2633A-HI12/-HZ12 (VFS = 4.096V)  
LTC2633-8  
LTC2633-10  
LTC2633-12  
LTC2633A-12  
SYMꢀOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
LSB  
Monotonicity  
V
V
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
CC  
DNL  
Differential  
Nonlinearity  
0.5  
0.5  
1
1
1
CC  
l
l
l
INL  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref., Code = 0  
= 5V, Internal Ref. (Note 5)  
= 5V, Internal Ref.  
0.05 0.5  
0.2  
0.5  
0.5  
10  
1
5
1
0.5  
0.5  
10  
2.5  
5
0.5  
0.5  
0.5  
10  
LSB  
mV  
ZSE  
0.5  
0.5  
10  
5
5
V
OS  
5
5
5
5
mV  
V
OSTC  
V
Temperature  
OS  
µV/°C  
Coefficient  
l
GE  
GE  
Gain Error  
V
= 5V, Internal Ref.  
0.2  
0.8  
0.2 0.8  
0.2 0.8  
0.2 0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
V
= 5V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
CC  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
l
l
Load Regulation  
V
= 5V 10%, Internal Ref.  
0.006 0.01  
0.022 0.04  
0.09 0.16  
0.09 0.16 LSB/mA  
CC  
CC  
Mid-Scale, –10mA ≤ I  
≤ 10mA  
OUT  
R
OUT  
DC Output  
Impedance  
V
= 5V 10%, Internal Ref.  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Mid-Scale, –10mA ≤ I  
≤ 10mA  
OUT  
2633fb  
6
LTC2633  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-HI12/-HI10/-HI8/-HZ12/-HZ10/-HZ8/LTC2633A-HI12/-HZ12 (VFS = 4.096V)  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to V  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
V
V
OUT  
REF  
0 to 4.096  
PSR  
Power Supply Rejection  
V
= 5V 10%  
–80  
dB  
CC  
FS  
I
SC  
Short Circuit Output Current (Note 6)  
V
= V = 5.5V  
CC  
l
l
Sinking  
Sourcing  
Zero Scale; V  
shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
Full Scale; V  
shorted to GND  
OUT  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
4.5  
5.5  
V
CC  
l
l
I
CC  
V
CC  
V
CC  
= 5V, V =4.096V, External Reference  
0.4  
0.5  
0.6  
0.7  
mA  
mA  
REF  
= 5V, Internal Reference  
l
I
SD  
Supply Current in Power-Down Mode  
(Note 7)  
V
CC  
= 5V  
0.5  
2
µA  
Reference Input  
Input Voltage Range  
l
l
1
V
V
kΩ  
pF  
CC  
Resistance  
120  
160  
12  
200  
Capacitance  
l
l
I
Reference Current, Power Down Mode  
DAC Powered Down  
0.005  
5
µA  
REF  
Reference Output  
Output Voltage  
2.032  
2.048  
10  
2.064  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
CC  
= 5.5V, REF Shorted to GND  
4
mA  
Digital I/O  
l
l
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
(Note 11)  
–0.5  
0.7V  
0.3V  
V
V
IL  
CC  
V
IH  
High Level Input Voltage  
(SDA and SCL)  
CC  
l
l
l
V
V
Low Level Input Voltage on CA0  
High Level Input Voltage on CA0  
Resistance from CA0  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
0.15V  
V
V
IL(CA0)  
CC  
0.85V  
IH(CA0)  
CC  
R
R
R
10  
10  
kΩ  
INH  
INL  
INF  
OL  
to V to Set CA0 = V  
CC  
CC  
l
l
Resistance from CA0  
to GND to Set CA0 = GND  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
kΩ  
Resistance from CA0 to V or GND to  
2
0
MΩ  
CC  
Set CA0 = Float  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 12)  
l
l
Pulse Width of Spikes Suppressed by  
Input Filter  
0
50  
1
ns  
SP  
IN  
Input Leakage  
0.1V ≤ V ≤ 0.9V  
CC  
µA  
CC  
IN  
2633fb  
7
LTC2633  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2633-HI12/-HI10/-HI8/-HZ12/-HZ10/-HZ8/LTC2633A-HI12/-HZ12 (VFS = 4.096V)  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
8
UNITS  
pF  
l
l
l
C
C
C
I/O Pin Capacitance  
(Note 8)  
IN  
Capacitive Load for Each Bus Line  
400  
10  
pF  
B
External Capacitive Load on Address Pin  
CA0  
pF  
CA0  
AC Performance  
t
s
Settling Time  
V
= 5V (Note 9)  
CC  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.7  
4.0  
4.7  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
3.0  
V/µs  
pF  
At Mid-Scale Transition  
nV•s  
nV•s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switch 0-FS  
External Reference  
6.7  
320  
e
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
250  
230  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
30  
40  
680  
750  
µV  
µV  
µV  
µV  
P-P  
P-P  
P-P  
P-P  
C
= 0.1µF  
REF  
2633fb  
8
LTC2633  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V. (See Figure 1) (Note 13)  
LTC2633-HI12/-HI10/-HI8/-HZ12/-HZ10/-HZ8/LTC2633A-HI12/-HZ12 (VFS = 4.096V)  
SYMꢀOL PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
ns  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
B
B
ns  
f
µs  
SU(STO)  
BUF  
Bus Free Time Between a Stop and Start  
Condition  
1.3  
µs  
Note 1. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
Note 7. Digital inputs at 0V or V  
.
CC  
Note 2. All voltages are with respect to GND  
Note 8. Guaranteed by design and not production tested.  
Note 3. High temperatures degrade operating lifetimes. Operating lifetime  
is derated at temperatures greater than 105°C.  
Note 9. Internal reference mode. DAC is stepped 1/4 scale to 3/4 scale and  
3/4 scale to 1/4 scale. Load is 2kΩ in parallel with 100pF to GND.  
Note 4. Linearity and monotonicity are defined from code k to code  
L
Note 10. Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
N
N
2 –1, where N is the resolution and k is given by k = 0.016 • (2 / V ),  
L
L
FS  
rounded to the nearest whole code. For V = 2.5V and N = 12, k = 26 and  
FS  
L
Note 11. Maximum V = V  
+ 0.5V  
CC(MAX)  
IH  
linearity is defined from code 26 to code 4,095. For V = 4.096V and  
FS  
Note 12. C = capacitance of one bus line in pF  
B
N = 12, k = 16 and linearity is defined from code 16 to code 4,095.  
L
Note 13. All values refer to V = V  
and V = V  
levels.  
IH  
IH(MIN)  
IL  
IL(MAX)  
Note 5. Inferred from measurement at code 16 (LTC2633-12), code 4  
(LTC2633-10) or code 1 (LTC2633-8), and at full scale.  
Note 6. This IC includes current limiting that is intended to protect the  
Note 14. Minimum V exceeds the absolute maximum rating. This  
IL  
condition won’t damage the IC, but could degrade performance.  
device during momentary overload conditions. Junction temperature can  
2633fb  
9
LTC2633  
typical perFormance characteristics  
TA = 25°C unless otherwise noted.  
LTC2633-L12 (Internal Reference, VFS = 2.5V)  
INL vs Temperature  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
1.0  
0.5  
V
= 3V  
V
= 3V  
V
= 3V  
CC  
CC  
CC  
0.5  
0
INL (POS)  
0
0
–0.5  
INL (NEG)  
–0.5  
–1.0  
–0.5  
–1.0  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
TEMPERATURE (°C)  
CODE  
CODE  
2633 G03  
2633 G01  
2633 G02  
Reference Output Voltage vs  
Temperature  
DNL vs Temperature  
1.0  
1.260  
1.255  
1.250  
1.245  
1.240  
V
= 3V  
V
= 3V  
CC  
CC  
0.5  
0
DNL (POS)  
DNL (NEG)  
–0.5  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2633 G04  
2633 G05  
Settling to 1LSꢀ Rising  
Settling to 1LSꢀ Falling  
9TH CLOCK OF  
3RD DATA BYTE  
3/4 SCALE TO 1/4 SCALE STEP  
V
= 3V, V = 2.5V  
CC  
FS  
RL = 2k, CL = 100pF  
AVERAGE OF 256 EVENTS  
SCL  
5V/DIV  
V
OUT  
1LSB/DIV  
3.6µs  
4.5µs  
V
9TH CLOCK OF  
3RD DATA BYTE  
OUT  
1/4 SCALE TO 3/4 SCALE STEP  
SCL  
5V/DIV  
1LSB/DIV  
V
= 3V, V = 2.5V  
CC  
FS  
RL = 2k, CL = 100pF  
AVERAGE OF 256 EVENTS  
2µs/DIV  
2µs/DIV  
2633 G06  
2633 G07  
2633fb  
10  
LTC2633  
typical perFormance characteristics  
TA = 25°C unless otherwise noted.  
LTC2633-H12 (Internal Reference, VFS = 4.096V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.5  
1.0  
0.5  
1.0  
0.5  
V
= 5V  
V
= 5V  
V
= 5V  
CC  
CC  
CC  
INL (POS)  
INL (NEG)  
0
0
0
–0.5  
–1.0  
–0.5  
–1.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
–50 –25  
0
25 50 75 100 125 150  
CODE  
CODE  
TEMPERATURE (°C)  
2633 G08  
2633 G09  
2633 G10  
Reference Output Voltage vs  
Temperature  
DNL vs Temperature  
1.0  
2.068  
2.058  
2.048  
2.038  
2.028  
V
= 5V  
V
= 5V  
CC  
CC  
0.5  
0
DNL (POS)  
DNL (NEG)  
–0.5  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2633 G11  
2633 G12  
Settling to 1LSꢀ Rising  
Settling to 1LSꢀ Falling  
3/4 SCALE TO 1/4 SCALE  
STEP  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
5V/DIV  
V
= 5V, V = 4.095V  
CC  
FS  
RL = 2k, CL = 100pF  
V
OUT  
AVERAGE OF 256 EVENTS  
1LSB/DIV  
4.7µs  
3.8µs  
9TH CLOCK OF  
3RD DATA BYTE  
V
SCL  
5V/DIV  
OUT  
1LSB/DIV  
1/4 SCALE TO 3/4 SCALE STEP  
V
= 5V, V = 4.095V  
CC  
FS  
RL = 2k, CL = 100pF  
AVERAGE OF 256 EVENTS  
2µs/DIV  
2µs/DIV  
2633 G13  
2633 G14  
2633fb  
11  
LTC2633  
typical perFormance characteristics  
TA = 25°C unless otherwise noted.  
Differential Nonlinearity (DNL)  
LTC2633-10  
Integral Nonlinearity (INL)  
1.0  
0.5  
1.0  
0.5  
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF  
INTERNAL REF  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
2633 G15  
2633 G16  
LTC2633-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.50  
0.25  
0
0.50  
0.25  
0
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF  
INTERNAL REF  
–0.25  
–0.50  
–0.25  
–0.50  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE  
CODE  
2633 G18  
2633 G17  
LTC2633  
Load Regulation  
Current Limiting  
Offset Error vs Temperature  
10  
8
3
2
0.20  
0.15  
0.10  
0.05  
0
V
CC  
V
CC  
V
CC  
= 5V (LTC2633-H)  
= 5V (LTC2633-L)  
= 3V (LTC2633-L)  
V
CC  
V
CC  
V
CC  
= 5V (LTC2633-H)  
= 5V (LTC2633-L)  
= 3V (LTC2633-L)  
6
4
1
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
–1  
–2  
–3  
INTERNAL REFERENCE  
CODE = MID-SCALE  
INTERNAL REFERENCE  
CODE = MID-SCALE  
–30  
–20  
–10  
0
10  
20  
30  
–50 –25  
0
25 50 75 100 125 150  
–30  
–20  
–10  
0
10  
20  
30  
I
(mA)  
TEMPERATURE (°C)  
OUT  
I
(mA)  
2633 G19  
OUT  
2633 G21  
2633 G20  
2633fb  
12  
LTC2633  
typical perFormance characteristics  
TA = 25°C unless otherwise noted.  
LTC2633  
Large-Signal Response  
Mid-Scale-Glitch Impulse  
Power-On Reset Glitch  
LTC2633-L  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
5V/DIV  
LTC2633-H12, V = 5V  
CC  
3nV•s TYPICAL  
V
CC  
2V/DIV  
V
OUT  
0.5V/DIV  
V
OUT  
ZERO-SCALE  
V
OUT  
2mV/DIV  
10mV/DIV  
LTC2633-L12, V = 3V  
CC  
2.8nV•s TYPICAL  
V
= V = 5V  
CC  
FS  
1/4 SCALE to 3/4 SCALE  
2633 G24  
2µs/DIV  
2µs/DIV  
200µs/DIV  
2633 G22  
2633 G23  
Headroom at Rails vs Output  
Current  
Exiting Power-Down to Mid-Scale  
Power-On Reset to Mid-Scale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
9TH CLOCK OF  
3RD DATA BYTE  
V
CC  
2V/DIV  
SCL  
5V/DIV  
LTC2633-H  
3V (LTC2633-L) SOURCING  
DAC B IN  
POWER-DOWN  
MODE  
V
OUTA  
0.5V/DIV  
LTC2633-L  
5V SINKING  
V
OUT  
0.5V/DIV  
LTC2633-H  
V
= 5V  
CC  
3V (LTC2633-L) SINKING  
INTERNAL REF.  
200µs/DIV  
5µs/DIV  
0
1
2
3
4
I
5
6
7
8
9
10  
2633 G27  
(mA)  
2633 G26  
OUT  
2633 G25  
Exiting Power-Down for Hi-Z  
Option  
Supply Current vs Logic Voltage  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
SWEEP SDA, SCL  
BETWEEN  
9TH CLOCK OF  
3RD DATA BYTE  
ON AND V  
CC  
SCL  
V
= 5V  
CC  
5V/DIV  
LTC2633-LO, V = 3V  
CC  
DAC OUTPUT SET  
TO MID-SCALE  
DAC OUTPUT DRIVEN  
BY 1V SOURCE  
THROUGH 15k  
RESISTOR  
V
OUT  
500mV/DIV  
V
= 3V  
HIGH-IMPEDANCE  
(POWER-DOWN) MODE  
CC  
(LTC2633-L)  
0
1
2
3
4
5
5µs/DIV  
LOGIC VOLTAGE (V)  
2633 G28  
2633 G29  
2633fb  
13  
LTC2633  
typical perFormance characteristics  
LTC2633  
TA = 25°C unless otherwise noted.  
Multiplying ꢀandwidth  
Noise Voltage vs Frequency  
Gain Error vs Reference Input  
500  
400  
300  
200  
100  
0
2
0
0.8  
0.6  
V
= 5V  
V
= 5.5V  
CC  
CC  
CODE = MID-SCALE  
GAIN ERROR OF 2 CHANNELS  
INTERNAL REFERENCE  
–2  
0.4  
–4  
0.2  
–6  
LTC2633-H  
LTC2633-L  
0
–8  
–10  
–12  
–14  
–16  
–18  
–0.2  
–0.4  
–0.6  
–0.8  
V
V
V
= 5V  
REF(DC)  
REF(AC)  
CC  
= 2V  
= 0.2V  
P-P  
CODE = FULL-SCALE  
100  
1k  
10k  
100k  
1M  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
REFERENCE VOLTAGE (V)  
FREQUENCY (Hz)  
2633 G32  
2633 G33  
2633 G31  
0.1Hz to 10Hz Voltage Noise  
Gain Error vs Temperature  
DAC to DAC Crosstalk (Dynamic)  
1.0  
0.5  
V
= 5V, V = 2.5V  
FS  
CC  
9TH CLOCK OF  
3RD DATA BYTE  
CODE = MID-SCALE  
SCL  
5V/DIV  
INTERNAL REFERENCE  
1 DAC  
SWITCH 0-FS  
2V/DIV  
10µV/DIV  
0
LTC2633-H12, V = 5V  
CC  
6.7nV•s TYP  
V
OUT  
–0.5  
2mV/DIV  
–1.0  
2632 G34  
2µs/DIV  
–50 –25  
0
25 50 75 100 125 150  
1s/DIV  
TEMPERATURE (°C)  
2633 G35  
2633 G36  
pin Functions  
SCL (Pin 1): Serial Clock Input Pin. Data is shifted into the  
(0.1µF is recommended) and must be buffered when  
driving external DC load current.  
SDApinattherisingedgesoftheclock.Thishighimpedance  
pin requires a pull-up resistor or current source to V .  
CC  
GND (Pin 4): Ground.  
CA0 (Pin 2): Chip Address Bit 0. Tie this pin to V , GND  
CC  
V
, V  
(Pins 5,6): DAC Analog Voltage Output.  
OUTA OUTꢀ  
2
or leave it floating to select an I C slave address for the  
V
(Pin 7): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V  
part (see Table 1).  
CC  
CC  
(LTC2633-L) or 4.5V ≤ V ≤ 5.5V (LTC2633-H). Bypass  
CC  
REF (Pin 3): Reference Voltage Input or Output. When  
external reference mode is selected, REF is an input (1V ≤  
to GND with a 0.1µF capacitor.  
SDA (Pin 8): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in. Open drain  
N-channeloutputduringacknowledgement. SDArequires  
V
≤ V ) where the voltage supplied sets the full-scale  
REF  
CC  
DAC output voltage. When internal reference is selected,  
the 10ppm/°C 1.25V (LTC2633-L) or 2.048V (LTC2633-H)  
internal reference (half full-scale) is available at the pin.  
This output may be bypassed to GND with up to 10µF  
a pull-up resistor or current source to V .  
CC  
2633fb  
14  
LTC2633  
Block Diagram  
REF  
INTERNAL  
REFERENCE  
SWITCH  
GND  
V
REF  
V
V
CC  
V
OUTA  
OUTB  
DAC A  
DAC B  
CONTROL  
DECODE LOGIC  
POWER-ON  
RESET  
SCL  
SDA  
2
I C  
CA0  
2
ADDRESS  
DECODE  
I C INTERFACE  
2633 BD  
test circuit Test circuits for I2C digital I/O (see Electrical Characteristics)  
Test Circuit 1  
Test Circuit 2  
V
DD  
100Ω  
CA0  
R
/R  
R
INH INL/ INF  
V
/V  
IH(CA0) IL(CA0)  
CA0  
2633 TC01  
2633 TC02  
GND  
timing Diagram  
SDA  
t
f
t
BUF  
t
r
t
t
t
LOW  
SU(DAT)  
HD(STA)  
t
f
t
r
t
SP  
SCL  
t
HD(STA)  
t
t
t
t
HD(DAT)  
HIGH  
SU(STA)  
S
SU(STO)  
P
S
S
2633 F01  
ALL VOLTAGE LEVELS REFER TO V  
IH(MIN)  
AND V LEVELS  
IL(MAX)  
Figure 1. I2C Timing  
SLAVE ADDRESS  
A6 A5 A4 A3 A2 A1 A0  
1ST DATA BYTE  
ACK C3 C2 C1 C0 A3 A2 A1 A0 ACK  
2ND DATA BYTE  
3RD DATA BYTE  
START  
SDA  
SCL  
W
ACK  
9
X
5
X
6
X
7
X
8
ACK  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
2633 F02  
Figure 2. Typical LTC2633 Write Transaction  
2633fb  
15  
LTC2633  
operation  
The LTC2633 is a family of dual voltage output DACs in an  
8-lead TSOT package. Each DAC can operate rail-to-rail  
using an external reference, or with its full-scale voltage  
set by an integrated reference. Eighteen combinations of  
accuracy (12-, 10-, and 8-bit), power-on reset value (zero-  
scale, mid-scale in internal reference mode, or mid-scale  
inexternalreferencemode), DACpower-downoutputload  
(high impedance or 200kΩ), and full-scale voltage (2.5V  
or 4.096V) are available. The LTC2633 is controlled using  
Power Supply Sequencing  
The voltage at REF (Pin 3) must be kept within the range  
–0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum Rat-  
REF  
CC  
ings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at V is in transition.  
CC  
Transfer Function  
2
The digital-to-analog transfer function is:  
a 2-wire I C interface.  
k
Power-On Reset  
VOUT(IDEAL)  
=
VREF  
2N  
TheLTC2633-HZ/LTC2633-LZcleartheoutputtozero-scale  
when power is first applied, making system initialization  
consistent and repeatable.  
where k is the decimal equivalent of the binary DAC input  
code,Nistheresolution,andV iseither2.5V(LTC2633-LI/  
REF  
Forsomeapplications,downstreamcircuitsareactivedur-  
ingDACpower-up,andmaybesensitivetononzerooutputs  
from the DAC during this time. The LTC2633 contains  
circuitry to reduce the power-on glitch: the analog output  
typically rises less than 10mV above zero scale during  
power-on.Ingeneral,theglitchamplitudedecreasesasthe  
power supply ramp time is increased. See power-on reset  
glitch in the Typical Performance Characteristics section.  
LTC2633-LX/LTC2633-LO/LTC2633-LZ) or 4.096V  
(LTC2633-HI/LTC2633-HZ) when in internal reference  
mode, and the voltage at REF when in external reference  
mode.  
2
I C Serial Interface  
The LTC2633 communicates with a host using the stan-  
2
dard 2-wire I C interface. The Timing Diagram (Figures  
1 and 2) show the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines. The value of  
these pull-up resistors is dependent on the power supply  
The LTC2633-HI/LTC2633-LI/LTC2633-LX provide an  
alternative reset, setting the output to mid-scale when  
power is first applied. The LTC2633-LI/ and LTC2633-HI  
power up in internal reference mode, with the output set  
to a mid-scale voltage of 1.25V and 2.048V respectively.  
TheLTC2633-LXpower-upinexternalreferencemode,with  
the output set to mid-scale of the external reference. The  
LTC2633-LO powers up in internal reference mode with  
all the DAC channels placed in the high impedance state  
(powered down). Input and DAC registers are set to the  
mid-scalecode, andonlytheinternalreferenceispowered  
up, causing supply current to be typically 180µA upon  
power up. Default reference mode selection is described  
in the Reference Modes section.  
2
and can be obtained from the I C specifications. For an  
2
I C bus operating in the fast mode, an active pull-up will  
be necessary if the bus capacitance is greater than 200pF.  
The LTC2633 is a receive-only (slave) device. The master  
can write to the LTC2633. The LTC2633 will not acknowl-  
edge (NAK) a read request from the master.  
2633fb  
16  
LTC2633  
operation  
START (S) and STOP (P) Conditions  
In addition to the address selected by the address pin,  
the part also responds to a global address. This address  
allows a common write to all LTC2633 parts to be ac-  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
2
complished using one 3-byte write transaction on the I C  
bus. The global address, listed at the end of Tables 1, is a  
7-bit hardwired address not selectable by CA0. If another  
address is required, please consult the factory.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
The maximum capacitive load allowed on the address pin  
(CA0) is 10pF, as these pins are driven during address  
detection to determine if they are floating.  
2
another I C device.  
Write Word Protocol  
Acknowledge  
The master initiates communication with the LTC2633  
with a START condition and a 7-bit slave address followed  
by the write bit (W) = 0. The LTC2633 acknowledges by  
pulling the SDA pin low at the 9th clock if the 7-bit slave  
address matches the address of the part (set by CA0) or  
the global address. The master then transmits three bytes  
of data. The LTC2633 acknowledges each byte of data  
by pulling the SDA line low at the 9th clock of each data  
byte transmission. After receiving three complete bytes  
of data, the LTC2633 executes the command specified in  
the 24-bit input word.  
The acknowledge (ACK) signal is used for handshaking  
betweenthemasterandtheslave.AnACKgeneratedbythe  
slave lets the master know that the latest byte of informa-  
tion was properly received. The ACK related clock pulse is  
generated by the master. The master releases the SDA line  
(HIGH)duringtheACKclockpulse.Theslave-receivermust  
pull down the SDA bus line during the ACK clock pulse  
so that it remains a stable LOW during the HIGH period  
of this clock pulse. The LTC2633 responds to a write by a  
master in this manner but does not acknowledge a read  
operation; in that case, SDA is retained HIGH during the  
period of the ACK clock pulse.  
If more than three data bytes are transmitted after a valid  
7-bitslaveaddress,theLTC2633doesnotacknowledgethe  
extra bytes of data (SDA is high during the 9th clock).  
Chip Address  
The state of pin CA0 determines the slave address of the  
part.Thispincanbesettoanyoneofthreestates:V ,GND  
CC  
or float. This results in 3 selectable addresses for the part.  
The slave address assignments is shown in Table 1.  
Table 1. Slave Address Map  
CA0  
A6  
0
A5  
0
A4  
1
A3  
0
A2  
0
A1  
0
A0  
0
GND  
FLOAT  
0
0
1
0
0
0
1
V
0
0
1
0
0
1
0
CC  
GLOBAL ADDR  
1
1
1
0
0
1
1
2633fb  
17  
LTC2633  
operation  
Table 3. Command Codes  
COMMAND*  
The format of the three data bytes is shown in Figure  
3. The first byte of the input word consists of the 4-bit  
command, followed by the 4-bit DAC address. The next  
two bytes contain the 16-bit data word, which consists  
of the 12-, 10- or 8-bit input code, MSB to LSB, followed  
by 4, 6 or 8 don’t-care bits (LTC2633-12, LTC2633-10  
and LTC2633-8 respectively). A typical LTC2633 write  
transaction is shown in Figure 4.  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power-Up) DAC Register n  
Write to Input Register n, Update (Power-Up) All  
Write to and Update (Power-Up) DAC Register n  
Power-Down n  
Power-Down Chip (All DAC’s and Reference)  
Select Internal Reference (Power-Up Reference)  
The command bit assignments (C3-C0) and address (A3-  
A0) assignments are shown in Tables 3 and 4. The first  
four commands in the table consist of write and update  
operations. A write operation loads a 16-bit data word  
from the 32-bit shift register into the input register. In an  
update operation, the data word is copied from the input  
register to the DAC register. Once copied into the DAC  
register, the data word becomes the active 12-, 10-, or  
8-bit input code, and is converted to an analog voltage at  
the DAC output. Write to and update combines the first  
two commands. The update operation also powers up the  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
Select External Reference (Power-Down Internal  
Reference)  
1
1
1
1
No Operation  
*Command codes not shown are reserved and should not be used.  
Table 4. Address Codes  
ADDRESS (n)*  
A3 A2 A1 A0  
0
0
1
0
0
1
0
0
1
0
1
1
DAC A  
DAC B  
All DACs  
* Address codes not shown are reserved and should not be used.  
WRITE WORD PROTOCOL LTC2633  
S
W
A2  
A2  
A2  
A
A
A
A
D1  
X
P
SLAVE ADDRESS  
1ST DATA BYTE  
2ND DATA BYTE  
INPUT WORD  
3RD DATA BYTE  
INPUT WORD (LTC2633-12)  
C3 C2 C1 C0  
A3  
A1  
A1  
A1  
A0  
D11 D10  
D9  
D7  
D5  
D8  
D7  
D6  
D4  
D2  
D5  
D3  
D1  
D4  
D2  
D0  
D3  
D1  
X
D2  
D0  
X
D0  
X
X
X
X
X
X
X
X
X
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
INPUT WORD (LTC2633-10)  
C3 C2 C1 C0  
A3  
A0  
A0  
D9  
D7  
D8  
D6  
D6  
D5  
X
X
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
INPUT WORD (LTC2633-8)  
C3  
C2  
C1  
C0  
A3  
D4  
D3  
X
X
X
X
2633 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3. Command and Data Input Format  
2633fb  
18  
LTC2633  
operation  
2633fb  
19  
LTC2633  
operation  
Reference Modes  
the output pins are passively pulled to ground through  
individual 200kΩ resistors (LTC2633-LI/LTC2633-LX/  
LTC2633-LO/LTC2633-LZ/LTC2633-HI/LTC2633-HZ). For  
the LTC2633-LO options, the output pins are not passively  
pulled to ground, but are also placed in a high impedance  
state (open-circuited state) during power-down, typically  
drawing less than 0.1µA. The LTC2633-LO options power-  
up with all DAC outputs in this high impedance state. They  
remain that way until given a software update command.  
ForallLTC2633options, Input-andDAC-registercontents  
are not disturbed during power-down.  
For applications where an accurate external reference is  
either not available, or not desirable due to limited space,  
the LTC2633 has a user-selectable, integrated reference.  
The integrated reference voltage is internally amplified  
by 2x to provide the full-scale DAC output voltage range.  
The LTC2633-LI/LTC2633-LX/LTC2633-LO/LTC2633-LZ  
provides a full-scale output of 2.5V. The LTC2633-HI/  
LTC2633-HZ provides a full-scale output of 4.096V. The  
internal reference can be useful in applications where  
the supply voltage is poorly regulated. Internal reference  
mode can be selected by using command 0110b, and is  
thepower-ondefaultforLTC2633-HZ/LTC2633-LZ,aswell  
as for LTC2633-HI/LTC2633-LI/LTC2633-LO.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in combi-  
nation with the appropriate DAC address, (n). The supply  
current is reduced approximately 30% for each DAC  
powered down. The integrated reference is automatically  
powered down when external reference is selected using  
command0111b.Inaddition,alltheDACchannelsandthe  
integrated reference together can be put into power-down  
mode using Power Down Chip command 0101b. When  
the integrated reference is in power-down mode, the REF  
pin becomes high impedance (typically > 1GΩ). For all  
power-down commands the 16-bit data word is ignored.  
The10ppm/°C,1.25V(LTC2633-LI/LTC2633-LX/LTC2633-  
LO/LTC2633-LZ) or 2.048V (LTC2633-HI/LTC2633-HZ)  
internal reference is available at the REF pin. Adding  
bypass capacitance to the REF pin will improve noise  
performance; 0.1µF is recommended and up to 10µF can  
bedrivenwithoutoscillation.Thisoutputmustbebuffered  
when driving an external DC load current.  
Alternatively, the DAC can operate in external reference  
modeusingcommand0111b.Inthismode,aninputvoltage  
supplied externally to the REF pin provides the reference  
Normal operation resumes after executing any command  
that includes a DAC update, (as shown in Table 1). The  
selected DAC is powered up as its voltage output is up-  
dated. When a DAC which is in a powered-down state is  
powered up and updated, normal settling is delayed. If  
less than two DACs are in a powered-down state prior to  
the update command, the power-up delay time is 10µs.  
However, if both DACs and the integrated reference are  
powereddown, thenthemainbiasgenerationcircuitblock  
has been automatically shut down in addition to the DAC  
amplifiersandreferencebuffers.Inthiscase,thepowerup  
delay time is 12µs. The power-up of the integrated refer-  
ence depends on the command that powered it down. If  
the reference is powered down using the select external  
reference command (0111b), then it can only be powered  
backupusingselectinternalreferencecommand(0110b).  
However, if the reference was powered down using power  
down chip command (0101b), then in addition to select  
(1V ≤ V ≤ V ) and the supply current is reduced. The  
REF  
CC  
external reference voltage supplied sets the full-scale DAC  
output voltage. External reference mode is the power-on  
default for LTC2633-LX.  
The reference mode of LTC2633-HZ/LTC2633-LZ/  
LTC2633-HI/LTC2633-LI/LTC2633-LO (internal reference  
power-on default), can be changed by software command  
after power up. The same is true for LTC2633-LX (external  
reference power-on default).  
Power-Down Mode  
Forpower-constrainedapplications,power-downmodecan  
be used to reduce the supply current whenever less than  
two DAC outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits, and integrated reference  
circuits are disabled, and draw essentially zero current.  
The DAC outputs are put into a high impedance state, and  
2633fb  
20  
LTC2633  
operation  
internal reference command (0110b), any command in  
software that powers up the DACs will also power up the  
integrated reference.  
50Ω • 1mA, or 50mV). See the graph Headroom at Rails  
vs Output Current in the Typical Performance Character-  
istics section.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
Voltage Output  
The LTC2633’s integrated rail-to-rail amplifier has guaran-  
teed load regulation when sourcing or sinking up to 10mA  
at 5V, and 5mA at 3V.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSB/mA.  
SincetheanalogoutputoftheDACcannotgobelowground,  
it may limit for the lowest codes as shown in Figure 5b.  
Similarly, limiting can occur near full scale when the REF  
pin is tied to V . If V = V and the DAC full-scale error  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change  
in units from LSB/mA to Ω. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
CC  
REF  
CC  
(FSE) is positive, the output for the highest codes limits  
at V , as shown in Figure 5c. No full-scale limiting can  
CC  
occur if V is less than V –FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 50Ω typical channel resistance of the output devices  
(e.g., when sinking 1mA, the minimum output voltage is  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2633 F05  
(c)  
OUTPUT  
VOLTAGE  
0V  
0
2,048  
4,095  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
Figure 5. Effects of Rail-to-Rail Operation on a DAC Transfer Curve (Shown for 12 ꢀits).  
(a) Overall Transfer Function  
(b) Effect of Negative Offset for Codes Near Zero  
(c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
2633fb  
21  
LTC2633  
operation  
ꢀoard Layout  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
analog ground, digital ground, and power ground. When  
the LTC2633 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane. The resistance from  
the LTC2633 GND pin to the ground plane should be as  
low as possible. Resistance here will add directly to the  
effective DC output impedance of the device (typically  
0.1Ω). Note that the LTC2633 is no more susceptible to  
this effect than any other parts of this type; on the con-  
trary, it allows layout-based performance improvements  
to shine rather than limiting attainable performance with  
excessive internal resistance.  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion of  
the plane. When doing this, make the gap in the plane only  
as long as it needs to be to serve its purpose and ensure  
that no traces cross over the gap.  
package Description  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637 Rev A)  
2.90 BSC  
(NOTE 4)  
0.40  
MAX  
0.65  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
TS8 TSOT-23 0710 REV A  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
2633fb  
22  
LTC2633  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMꢀER  
A
3/11  
Revised part numbering.  
2 to 9, 13, 16,  
20, 26  
B
3/11  
Revised title of Typical Application.  
24  
2633fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2633  
typical application  
Voltage Margining Application with LTC3850 (1.2V 5ꢁ) LTC2633-LO Option Only  
V
IN  
6.5V  
TO 14V  
0.1µF  
4.7µF  
5V  
CMDSH-3  
2.2k  
100k  
3
7
6
REF  
V
CC  
0.1µF  
V
PGOOD INTV  
LTC3850EUF  
0.1µF  
IN  
CC  
LTC2633CTS8-L012  
RJK0305DPB  
10k  
15k  
I
TG1  
LM  
5
DAC A  
DAC B  
10k  
BOOST1  
SW1  
0.1µF  
2.2µH  
0.008k  
0.22µF  
2
1
8
V
OUT  
1.2V 5ꢀ  
FREQ  
CA0  
SCL  
SDA  
4
RJK0301DPB  
BG1  
GND  
2
TO I C  
1nF  
3.32k  
BUS  
PGND  
10k  
10k  
+
I
SENSE1  
TH1  
1nF  
500kHz  
100pF  
MODE/PLLIN  
TKSS1  
RUN1  
1nF  
10k  
SENSE1  
10nF  
V
FB1  
SGND  
63.4k  
15pF  
2633 TA02  
20k  
relateD parts  
PART NUMꢀER  
DESCRIPTION  
COMMENTS  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Internal Reference  
DACs with  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode, Rail-to-Rail  
Output, 8-Pin ThinSOT™ Package  
OUT  
2
LTC2607/LTC2617/ Dual 16-/14-/12-Bit, I C V  
DACs with  
DACs with  
260μA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output, 16-Lead SSOP Package  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead MSOP Package  
1.5μA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead MSOP Package  
OUT  
OUT  
LTC2627  
External Reference  
LTC2602/LTC2612/ Dual 16-/14-/12-Bit SPI V  
LTC2622  
LTC1662  
External Reference  
Dual 10-Bit, SPI V  
Reference  
DAC with External  
OUT  
2
LTC2630/LTC2631 Single 12-/10-/8-Bit, SPI/ I C V  
with 10ppm/°C Reference  
DACs  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, Rail-to-Rail Output,  
in SC70 (LTC2630)/ ThinSOT (LTC2631)  
OUT  
LTC2640  
Single 12-/10-/8-Bit, SPI V  
10ppm/°C Reference  
DACs with  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, in ThinSOT  
OUT  
2
LTC2634/LTC2635 Quad 12-/10-/8-Bit SPI/I C V  
10ppm/°C Reference  
DACs with 2.5LSB INL, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
16-Pin 3mm × 3mm QFN and 10-Lead MSOP Packages  
OUT  
2
LTC2636/LTC2637 Octal 12-/10-/8-Bit, SPI/I C V  
DACs with 125μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 14-Lead 4mm × 3mm DFN and 16-Lead MSOP Packages  
OUT  
10ppm/°C Reference  
2
LTC2654/LTC2655 Quad 16-/12 Bit, SPI/I C V  
10ppm/°C Max Reference  
DACs with  
4LSB INL Max at 16-Bits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 4mm QFN and 16-Lead Narrow SSOP Packages  
OUT  
2
LTC2656/LTC2657 Octal 16-/12 Bit, SPI/I C V  
DACs with  
4LSB INL Max at 16-Bits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 5mm QFN and 16-Lead TSSOP Packages  
OUT  
10ppm/°C Max Reference  
2633fb  
LT 0311 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2617IDE#TR

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2617IDE-1#PBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1#TR

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617IDE-1#TRPBF

LTC2617 - 14-Bit Dual Rail-to-Rail DAC with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2617_15

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2619

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGN

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGN#PBF

暂无描述
Linear

LTC2619CGN-1

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGN-1#PBF

LTC2619 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2619CGN-1PBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear