LTC2619CGN-1 [Linear]

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface; 四通道16位/ 14位/ 12位轨至轨DAC,带有I2C接口
LTC2619CGN-1
型号: LTC2619CGN-1
厂家: Linear    Linear
描述:

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
四通道16位/ 14位/ 12位轨至轨DAC,带有I2C接口

文件: 总20页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2609/LTC2619/LTC2629  
Quad 16-/14-/12-Bit  
Rail-to-Rail DACs with  
I2C Interface  
U
DESCRIPTIO  
FEATURES  
The LTC®2609/LTC2619/LTC2629 are quad 16-, 14- and  
12-bit, 2.7V-to-5.5V rail-to-rail voltage output DACs in a  
16-lead SSOP package. They have built-in high perfor-  
mance output buffers and are guaranteed monotonic.  
Smallest Pin-Compatible Quad DACs:  
LTC2609: 16 Bits  
LTC2619: 14 Bits  
LTC2629: 12 Bits  
Guaranteed Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply,  
voltage-output DACs.  
Thepartsusea2-wire, I2Ccompatibleserialinterface. The  
LTC2609/LTC2619/LTC2629 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz).  
Separate Reference Inputs  
27 Selectable Addresses  
400kHz I2CInterface  
Wide 2.7V to 5.5V Supply Range  
Low Power Operation: 250µA per DAC at 3V  
Individual Channel Power Down to 1µA (Max)  
High Rail-to-Rail Output Drive (±15mA, Min)  
Ultralow Crosstalk Between DACs (5µV)  
LTC2609/LTC2619/LTC2629: Power-On Reset to  
The LTC2609/LTC2619/LTC2629 incorporate a power-on  
reset circuit. During power-up, the voltage outputs rise  
lessthan10mVabovezeroscale;afterpower-up,theystay  
at zero scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2609-1/LTC2619-1/  
LTC2629-1 to midscale. The voltage outputs stay at  
midscale until a valid write and update take place.  
Zero Scale  
LTC2609-1/LTC2619-1/LTC2629-1: Power-On Reset  
to Midscale  
Tiny 16-Lead Narrow SSOP Package  
U
APPLICATIO S  
Mobile Communications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5396245. Patent pending.  
Process Control and Industrial Automation  
Automatic Test Equipment and Instrumentation  
W
BLOCK DIAGRA  
V
REFLO  
2
GND  
1
CC  
16  
REFA  
3
4
15 REFD  
Differential Nonlinearity  
DAC A  
DAC B  
DAC D  
DAC C  
V
OUTA  
14  
V
OUTD  
(LTC2609)  
1.0  
0.8  
V
V
= 5V  
REF  
CC  
= 4.096V  
V
OUTB  
5
6
13  
V
OUTC  
0.6  
0.4  
REFB  
12 REFC  
0.2  
CONTROL  
LOGIC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32-BIT SHIFT REGISTER  
11 CA0  
10 CA1  
8
9
SCL  
SDA  
ADDRESS  
DECODE  
LOGIC  
2
I C  
0
16384  
32768  
CODE  
49152  
65535  
INTERFACE  
7
CA2  
2609 G02  
2609 BD  
26091929f  
1
LTC2609/LTC2619/LTC2629  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC .............................................6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
Operating Temperature Range:  
LTC2609C/LTC2619C/LTC2629C  
LTC2609C-1/LTC2619C-1/LTC2629C-1 ... 0°C to 70°C  
LTC2609I/LTC2619I/LTC2629I  
LTC2609I-1/LTC2619I-1/LTC2629I-1.. 40°C to 85°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
GN PART MARKING  
ORDER PART NUMBER  
TOP VIEW  
2609  
LTC2609CGN  
LTC2609CGN-1  
LTC2609IGN  
LTC2609IGN-1  
LTC2619CGN  
LTC2619CGN-1  
LTC2619IGN  
GND  
REFLO  
REFA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
26091  
2609I  
2609I1  
2619  
REFD  
V
OUTD  
V
V
OUTA  
OUTC  
V
REFC  
CA0  
CA1  
SDA  
OUTB  
26191  
2619I  
2619I1  
2629  
26291  
2629I  
2629I1  
REFB  
CA2  
LTC2619IGN-1  
LTC2629CGN  
LTC2629CGN-1  
LTC2629IGN  
SCL  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 135°C, θJA = 150°C  
LTC2629IGN-1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB =  
REFC = REFD = 2.048V (VCC = 2.7V), REFLO = 0V, VOUT unloaded, unless otherwise noted.  
LTC2629/LTC2629-1 LTC2619/LTC2619-1 LTC2609/LTC2609-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
±0.5  
±4  
±1  
±4 ±16  
±1  
Integral Nonlinearity  
Load Regulation  
±1  
±16 ±64  
V
= V = 5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.02 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.4  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Midscale  
OUT  
OUT  
REF  
I
I
CC  
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.8  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 4)  
1.5  
±1  
±6  
9
1.5  
±1  
±6  
9
1.5  
±1  
±6  
9
mV  
mV  
V
OS  
±9  
±9  
±9  
V
OS  
Temperature  
µV/°C  
Coefficient  
GE  
Gain Error  
±0.1 ±0.7  
±3  
±0.1 ±0.7  
±3  
±0.1 ±0.7  
±3  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
26091929f  
2
LTC2609/LTC2619/LTC2629  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB =  
REFC = REFD = 2.048V (VCC = 2.7V), REFLO = 0V, VOUT unloaded, unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
±10%  
–80  
dB  
R
DC Output Impedance  
V
REF  
V
REF  
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.030  
0.035  
0.15  
0.15  
OUT  
CC  
= V = 2.7V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
DC Crosstalk (Note 10)  
Due to Full-Scale Output Change (Note 11)  
Due to Load Current Change  
Due to Powering Down (Per Channel)  
±5  
±4  
±4  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
36  
36  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
CC  
= 2.7V, V = 2.7V  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
22  
30  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
125  
14  
160  
Capacitance  
I
Reference Current, Power Down Mode DAC Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
CC  
V
CC  
= 5V (Note 3)  
= 3V (Note 3)  
1.25  
1
0.35  
0.15  
2
1.6  
1
mA  
mA  
µA  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
1
µA  
Digital I/O (Note 9)  
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
0.7V  
CC  
IH  
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1, 2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1, 2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1, 2)  
2
0
to V or GND to Set CAn = Float  
CC  
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 7)  
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
Input Leakage  
0.1V V 0.9V  
1
µA  
pF  
pF  
pF  
IN  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 12)  
10  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
CAX  
26091929f  
3
LTC2609/LTC2619/LTC2629  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB =  
REFC = REFD = 2.048V (VCC = 2.7V), REFLO = 0V, VOUT unloaded, unless otherwise noted.  
LTC2629/LTC2629-1 LTC2619/LTC2619-1 LTC2609/LTC2609-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
UNITS  
t
Settling Time (Note 5)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 6)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.7  
1000  
12  
0.7  
1000  
12  
0.7  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 8, 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
= 2.7V to 5.5V  
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 7)  
(Note 7)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
f
B
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte  
to LDAC High or Low Transition  
400  
1
t
LDAC Low Pulse Width  
20  
ns  
2
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: V = 5V, V = 4.096V. DAC is stepped ±1LSB between half  
CC REF  
scale and half scale – 1. Load is 2k in parallel with 200pF to GND.  
Note 7: C = capacitance of one bus line in pF.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
B
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
Note 8: All values refer to V  
and V  
levels.  
L
L
REF  
IH(MIN)  
IL(MAX)  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 9: These specifications apply to LTC2609/LTC2609-1,  
LTC2619/LTC2619-1, LTC2629/LTC2629-1.  
256 and linearity is defined from code 256 to code 65,535.  
Note 3: SDA, SCL at 0V or V , CA0, CA1 and CA2 floating.  
CC  
Note 10: DC crosstalk is measured with V = 5V, REFA = REFB = REFC =  
CC  
Note 4: Inferred from measurement at code k (see Note 2) and at full  
REFD = 4.096V, with the measured DAC at midscale, unless otherwise  
noted.  
L
scale.  
Note 5: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
and 3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
Note 11: R = 2kto GND or V  
Note 12: Guaranteed by design and not production tested.  
.
CC  
REF  
L
CC  
26091929f  
4
LTC2609/LTC2619/LTC2629  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2609  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2609 G02  
2609 G01  
2609 G03  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
CC  
= 5.5V  
V
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
REF  
(V)  
V
(V)  
REF  
2609 G04  
2609 G05  
2609 G06  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
100µV/DIV  
OUT  
100µV/DIV  
12.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
2V/DIV  
SCR  
2V/DIV  
2609 G07  
2609 G08  
2µs/DIV  
5µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
SETTLING TO ±1LSB  
CC  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
= 2k, C = 200pF  
V
= 5V, V  
= 4.096V  
REF  
R
L
L
AVERAGE OF 2048 EVENTS  
26091929f  
5
LTC2609/LTC2619/LTC2629  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2619  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
100µV/DIV  
0.2  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2609 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2609 G09  
2609 G10  
LTC2629  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
2.0  
1.5  
1.0  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
0.8  
0.6  
= 4.096V  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
1mV/DIV  
0.2  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2609 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
= 2k, C = 200pF  
R
L
L
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
AVERAGE OF 2048 EVENTS  
2609 G12  
2609 G13  
26091929f  
6
LTC2609/LTC2619/LTC2629  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2609/LTC2619/LTC2629  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
1.0  
0.8  
3
2
0.10  
0.08  
CODE = MIDSCALE  
CODE = MIDSCALE  
V
= V = 5V  
CC  
REF  
0.6  
0.06  
V
REF  
= V = 3V  
CC  
0.4  
0.04  
1
0.2  
0.02  
0
0
0
V
REF  
= V = 5V  
CC  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
REF  
= V = 3V  
CC  
V
= V = 5V  
CC  
REF  
–35 –25 –15 –5  
I
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
–40 –30 –20 –10  
I
0
10 20 30 40  
(mA)  
TEMPERATURE (°C)  
(mA)  
OUT  
OUT  
2609 G16  
2609 G17  
2609 G15  
Gain Error vs Temperature  
Offset Error vs VCC  
Zero-Scale Error vs Temperature  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2609 G18  
2609 G19  
2609 G20  
Gain Error vs VCC  
ICC Shutdown vs VCC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2609 G22  
2609 G21  
26091929f  
7
LTC2609/LTC2619/LTC2629  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2609/LTC2619/LTC2629  
Large-Signal Response  
Midscale Glitch Impulse  
Power-On Reset Glitch  
V
OUT  
V
CC  
10mV/DIV  
1V/DIV  
V
OUT  
0.5V/DIV  
4mV PEAK  
SCL  
2V/DIV  
V
= V = 5V  
CC  
V
REF  
OUT  
1/4 SCALE TO 3/4 SCALE  
10mV/DIV  
2609 G24  
2609 G25  
2.5µs/DIV  
250µs/DIV  
2.5µs/DIV  
2609 G23  
Headroom at Rails  
vs Output Current  
Supply Current vs Logic Voltage  
Power-On Reset to Midscale  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 5V  
V
= V  
CC  
CC  
REF  
5V SOURCING  
SWEEP SCL  
AND SDA  
0V TO V  
CC  
AND V TO 0V  
CC  
3V SOURCING  
1V/DIV  
V
CC  
5V SINKING  
V
OUT  
3V SINKING  
0
0
2606 G27  
500µs/DIV  
0
0.5  
1
1.5  
2
2.5  
5
1
2
3
4
5
6
7
8
9
10  
3 3.5 4 4.5  
LOGIC VOLTAGE (V)  
I
(mA)  
OUT  
2609 G28  
2609 G26  
26091929f  
8
LTC2609/LTC2619/LTC2629  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2609/LTC2619/LTC2629  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10µV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
SECONDS  
CODE = FULL SCALE  
2609 G30  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2609 G29  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
Short-Circuit Output Current vs  
VOUT (Sinking)  
50  
40  
30  
20  
0
–10  
–20  
–30  
V = 5.5V  
CC  
V = 5.6V  
REF  
V = 5.5V  
CC  
V = 5.6V  
REF  
CODE = 0  
SWEPT 0V TO V  
CODE = FULL SCALE  
SWEPT V TO 0V  
V
V
OUT  
OUT  
CC  
CC  
10  
0
–40  
–50  
0
2
3
4
5
6
1
0
2
3
4
5
6
1
1V/DIV  
1V/DIV  
2609 G31  
2609 G32  
26091929f  
9
LTC2609/LTC2619/LTC2629  
U
U
U
PIN FUNCTIONS  
GND (Pin 1): Analog Ground.  
SDA (Pin 9): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance pin while data is shifted in and is an  
open-drain N-channel output during acknowledgment.  
SDA requires a pull-up resistor or current source to VCC.  
REFLO(Pin2): ReferenceLow. Thevoltageatthispinsets  
the zero scale (ZS) voltage of all DACs. This pin can be  
raised up to 1V above ground at VCC = 5V or 100mV above  
ground at VCC = 3V.  
CA1 (Pin 10): Chip Address Bit 1. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
REFA to REFD (Pins 3, 6, 12, 15): Reference Voltage  
InputsforeachDAC. REFxsetsthefull-scalevoltageofthe  
DACs. REFLO REFx VCC.  
CA0 (Pin 11): Chip Address Bit 0. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
V
OUTA to VOUTD (Pins 4, 5, 13, 14): DAC Analog Voltage  
Outputs. The output range is from REFLO to REFx.  
CA2 (Pin 7): Chip Address Bit 2. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
V
CC (Pin 16): Supply Voltage Input. 2.7V VCC 5.5V.  
SCL (Pin 8): Serial Clock Input Pin. Data is shifted into the  
SDA pin at the rising edges of the clock. This high  
impedancepinrequiresapull-upresistororcurrentsource  
to VCC.  
26091929f  
10  
LTC2609/LTC2619/LTC2629  
W
BLOCK DIAGRA  
V
CC  
REFLO  
2
GND  
1
16  
REFA  
3
4
15 REFD  
DAC A  
DAC B  
DAC D  
DAC C  
V
14  
V
OUTA  
OUTD  
V
OUTB  
5
6
13  
V
OUTC  
REFB  
12 REFC  
CONTROL  
LOGIC  
32-BIT SHIFT REGISTER  
11 CA0  
10 CA1  
8
9
SCL  
SDA  
ADDRESS  
DECODE  
LOGIC  
2
I C  
INTERFACE  
7
CA2  
2609 BD  
26091929f  
11  
LTC2609/LTC2619/LTC2629  
TEST CIRCUITS  
Test Circuit 1  
Test Circuit 2  
V
DD  
R /R /R  
INH INL INF  
100  
CAn  
CAn  
V
/V  
IH(CAn) IL(CAn)  
GND  
2609 TC  
W U  
W
TI I G DIAGRA S  
SDA  
t
f
t
SU(DAT)  
t
t
t
t
t
SP  
t
r
t
BUF  
f
LOW  
r
HD(STA)  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
S
S
P
S
HD(DAT)  
2609 F01  
ALL VOLTAGE LEVELS REFER TO V  
AND V  
LEVELS  
IH(MIN)  
IL(MAX)  
Figure 1  
26091929f  
12  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
Power-On Reset  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and REFx is the voltage at REFA,  
REFB, REFC and REFD (Pins 3, 6, 12 and 15).  
The LTC2609/LTC2619/LTC2629 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2609-1/  
LTC2619-1/LTC2629-1setthevoltageoutputstomidscale  
when power is first applied.  
Serial Digital Interface  
TheLTC2609/LTC2619/LTC2629communicatewithahost  
using the standard 2-wire I2C interface. The Timing Dia-  
gram (Figure 1) shows the timing relationship of the sig-  
nals on the bus. The two bus lines, SDA and SCL, must be  
high when the bus is not in use. External pull-up resistors  
or current sources are required on these lines. The value  
of these pull-up resistors is dependent on the power sup-  
plyandcanbeobtainedfromtheI2Cspecifications.Foran  
I2C bus operating in the fast mode, an active pull-up will  
be necessary if the bus capacitance is greater than 200pF.  
For some applications, downstream circuits are active  
during DAC power-up and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2609/  
LTC2619/LTC2629 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground(typ)duringpower-on.SeePower-OnResetGlitch  
in the Typical Performance Characteristics section.  
TheLTC2609/LTC2619/LTC2629arereceive-only(slave)  
devices. The master can write to the LTC2609/LTC2619/  
LTC2629. The LTC2609/LTC2619/LTC2629 do not re-  
spond to a read from the master.  
Power Supply Sequencing  
The voltage at REFx (Pins 3, 6, 12 and 15) should be kept  
within the range 0.3V REFx VCC + 0.3V (see Absolute  
Maximum Ratings). Particular care should be taken to  
observe these limits during power supply turn-on and  
turn-off sequences, when the voltage at VCC (Pin 16) is in  
transition. TheREFxpinscanbeclampedtostaybelowthe  
maximum voltage by using Schottky diodes as shown in  
Figure 2, thereby easing sequencing constraints.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition.  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
high to low while SCL is high.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generatedbytransitioningSDAfromlowtohighwhileSCL  
is high. The bus is then free for communication with  
another I2C device.  
V
CC  
16  
V
CC  
LTC2609/  
LTC2619/  
LTC2629  
3
REFA  
REFB  
REFC  
REFD  
REFA  
REFB  
REFC  
REFD  
6
12  
15  
Acknowledge  
2609 F02  
TheAcknowledgesignalisusedforhandshakingbetween  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the latest  
byte of information was received. The Acknowledge re-  
lated clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
bus line during the Acknowledge clock pulse so that it  
Figure 2. Use of Schottky Diodes for Power Supply Sequencing  
Transfer Function  
The digital-to-analog transfer function is:  
k
VOUT(IDEAL)  
=
[REFx – REFLO] + REFLO  
N
2
26091929f  
13  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
remainsastableLOWduringtheHIGHperiodofthisclock  
pulse. The LTC2609/LTC2619/LTC2629 respond to a  
write by a master in this manner. The LTC2609/LTC2619/  
LTC2629 do not acknowledge a read (retains SDA HIGH  
during the period of the Acknowledge clock pulse).  
Inadditiontotheaddressselectedbytheaddresspins, the  
parts also respond to a global address. This address  
allows a common write to all LTC2609, LTC2619 and  
LTC2629 parts to be accomplished with one 3-byte write  
transaction on the I2C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
Chip Address  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set to  
any one of three states: VCC, GND or float. This results in  
27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF, as these pins are driven  
during address detection to determine if they are floating.  
Table 1. Slave Address Map  
Write Word Protocol  
CA2  
GND  
CA1  
GND  
CA0  
GND  
SA6 SA5 SA4 SA3 SA2 SA1 SA0  
The master initiates communication with the LTC2609/  
LTC2619/LTC2629withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2609/  
LTC2619/LTC2629 acknowledges by pulling the SDA pin  
low at the 9th clock if the 7-bit slave address matches the  
addressoftheparts(setbyCA0,CA1andCA2)ortheglobal  
address.Themasterthentransmitsthreebytesofdata.The  
LTC2609/LTC2619/LTC2629 acknowledges each byte of  
databypullingtheSDAlinelowatthe9thclockofeachdata  
byte transmission. After receiving three complete bytes of  
data, the LTC2609/LTC2619/LTC2629 executes the com-  
mand specified in the 24-bit input word.  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
GND  
GND  
V
CC  
GND  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
FLOAT  
GND  
V
CC  
GND  
V
V
V
GND  
CC  
CC  
CC  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2609/LTC2619/LTC2629 do  
not acknowledge the extra bytes of data (SDA is high  
during the 9th clock).  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
TheformatofthethreedatabytesisshowninFigure3.The  
first byte of the input word consists of the 4-bit command  
and 4-bit DAC address. The next two bytes consist of the  
16-bit data word. The 16-bit data word consists of the  
16-, 14- or 12-bit input code, MSB to LSB, followed by 0,  
2 or 4 don’t care bits (LTC2609, LTC2619 and LTC2629  
respectively). AtypicalLTC2609writetransactionisshown  
in Figure 4.  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 2. The first four commands in the table  
consist of write and update operations. A write operation  
V
CC  
GLOBAL ADDRESS  
26091929f  
14  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
Write Word Protocol for LTC2609/LTC2619/LTC1629  
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
A
3RD DATA BYTE  
A
P
S
SLAVE ADDRESS  
INPUT WORD  
Input Word (LTC2609)  
C3  
C1  
A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
C2  
C0  
1ST DATA BYTE 2ND DATA BYTE 3RD DATA BYTE  
Input Word (LTC2619)  
C3  
C1  
A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
1ST DATA BYTE 2ND DATA BYTE 3RD DATA BYTE  
Input Word (LTC2629)  
C3  
C1  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0 A3 A2 A1 A0  
2609 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3  
Table 2  
COMMAND*  
C3 C2 C1 C0  
Power-Down Mode  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than four outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits and reference inputs are  
disabled, and draw essentially zero current. The DAC  
outputs are put into a high impedance state, and the  
output pins are passively pulled to REFLO through  
individual 90k resistors. Input- and DAC-register contents  
are not disturbed during power down.  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
ADDRESS (n)*  
A3 A2 A1 A0  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in  
combination with the appropriate DAC address, (n). The  
16-bit data word is ignored. The supply current is reduced  
by approximately 1/4 for each DAC powered down.  
The effective resistance at REFx (Pins 3, 6, 12 and 15)  
are at high impedance (typically > 1G) when the corre-  
sponding DACs are powered down. Normal operation can  
be resumed by executing any command which includes a  
DAC update, as shown in Table 2.  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
loads a 16-bit data word from the 32-bit shift register into  
the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the Block Diagram.  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state  
is powered up and updated, normal settling is delayed. If  
less than four DACs are in a powered-down state prior to  
the update command, the power-up delay time is 5µs.  
If on the other hand, all four DACs are powered down,  
26091929f  
15  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
then the main bias generation circuit block has been  
automatically shut down in addition to the individual DAC  
amplifiersandreferenceinputs. Inthiscase, thepower-up  
delay time is 12µs (for VCC = 5V) or 30µs (for VCC = 3V).  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
Voltage Output  
The rail-to-rail amplifier has guaranteed load regulation  
when sourcing or sinking up to 15mA at 5V (7.5mA at  
2.7V).  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a  
continuous and uninterrupted plane, except for necessary  
lead pads and vias, with signal traces on another layer.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is  
expressed in LSB/mA.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. When a zero scale  
DAC output voltage of zero is desired, REFLO (Pin 2)  
should be connected to system star ground.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifier’s DC output  
impedance is 0.035when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30• 1mA = 30mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteris-  
tics section.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Since the analog output of the device cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure 4b. Similarly, limiting can occur near full scale  
when the REF pins are tied to VCC. If REFx = VCC and the  
DAC full-scale error (FSE) is positive, the output for the  
highest codes limits at VCC as shown in Figure 4c. No full-  
scale limiting can occur if REFx is less than VCC – FSE.  
The amplifier is stable driving capacitive loads of up to  
1000pF.  
Board Layout  
The excellent load regulation and DC crosstalk perfor-  
mance of these devices is achieved in part by keeping  
“signal” and “power” grounds separate.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
26091929f  
16  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
26091929f  
17  
LTC2609/LTC2619/LTC2629  
U
OPERATIO  
26091929f  
18  
LTC2609/LTC2619/LTC2629  
U
TYPICAL APPLICATIO  
Demo Board Schematic—Onboard 20-Bit ADC Measures Key Performance Parameters  
V
REF  
REFA  
JP3  
REFB  
JP4  
REFC  
JP5  
REFD  
JP6  
ADC REF  
JP7  
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
C1  
0.1µF  
V
CC  
C
C
C
C
C
V
CC  
5V  
REF  
16  
4.096V  
2.048V  
REF  
REF  
V
CC  
LTC2609CGN  
11  
10  
7
4
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
CA0  
CA1  
CA2  
V
V
OUTA  
OUTA  
3
REFA  
REFA  
5
V
OUTB  
V
OUTB  
6
REFB  
REFB  
13  
12  
14  
15  
V
V
OUTC  
OUTC  
REFC  
REFC  
9
8
SDA  
SCL  
V
V
OUTD  
OUTD  
2
I C  
REFD  
REFD  
E10  
E11  
REFLO GND  
V
V
GND  
GND  
REF  
CC  
2
1
C4  
C5  
0.1µF  
0.1µF  
JP1 REFLO  
C3  
100pF  
R5  
7.5k  
EXT  
EXT REFLO  
REFLO  
R8  
22  
3
JP2  
ON/OFF  
GND  
V
CC  
7
4
2
8
DISABLE  
ADC  
MUXOUT ADCIN FSSET  
V
V
LTC2428CG  
CH0  
CC CC  
V
V
V
5V  
REF  
IN  
IN  
IN  
9
LT1790ACS6-5  
6
5
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
4
3
R6  
23  
V
V
OUT  
IN  
C7  
C6  
CSADC  
7.5k  
20  
25  
19  
21  
24  
CS  
1µF  
0.1µF  
NC  
NC  
CSMUX  
SCK  
CLK  
DIN  
SD0  
F0  
6.3V  
8-CHANNEL  
MUX  
20-BIT  
ADC  
+
GND GND  
SCK  
MOSI  
MISO  
SPI  
BUS  
1
2
26  
4.096V  
5
ZSSET  
REF  
LT1790ACS6-4.096  
R7  
7.5k  
6
4
GND GND GND GND GND GND GND  
16 18 22 27 28  
V
V
OUT  
IN  
C9  
1µF  
6.3V  
C8  
0.1µF  
1
6
3
5
2609 TA02  
NC  
NC  
GND GND  
1
2
2.048V  
REF  
LT1790ACS6-2.048  
6
4
V
V
OUT  
IN  
C11  
1µF  
6.3V  
C10  
0.1µF  
3
5
NC  
NC  
GND GND  
1
2
26091929f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2609/LTC2619/LTC2629  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.096V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610  
LTC2620  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2601/LTC2611  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2604/LTC2614  
LTC2624  
Quad 16-/14-/12-Bit V  
DACs in 16-Lead SSOP  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
OUT  
OUT  
Output, SPI Serial Interface  
2
LTC2605/LTC2615  
LTC2625  
Octal 16-/14-/12-Bit V  
DACs with I C Interface in 16-Lead SSOP 250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
Output  
2
LTC2606/LTC2616  
LTC2626  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN with I C Interface 270µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
OUT  
Output  
26091929f  
LT/LW/TP 0505 500 • PRINTED IN THE USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2619CGN-1#PBF

LTC2619 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2619CGN-1PBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGN-1TRPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGNPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619CGNTRPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619IGN

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619IGN#PBF

LTC2619 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2619IGN#TR

暂无描述
Linear

LTC2619IGN#TRPBF

暂无描述
Linear

LTC2619IGN-1

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2619IGN-1#PBF

LTC2619 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2619IGN-1#TRPBF

LTC2619 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear