LTC2622IMS8#TRPBF [Linear]

暂无描述;
LTC2622IMS8#TRPBF
型号: LTC2622IMS8#TRPBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总16页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2602/LTC2612/LTC2622  
Dual 16-/14-/12-Bit  
Rail-to-Rail DACs in 8-Lead MSOP  
U
DESCRIPTIO  
FEATURES  
The LTC®2602/LTC2612/LTC2622 are dual 16-,14- and  
12-bit, 2.5V-to-5.5Vrail-to-railvoltage-outputDACs, ina  
tiny 8-lead MSOP package. They have built-in high per-  
formance output buffers and are guaranteed monotonic.  
Smallest Pin-Compatible Dual DACs:  
LTC2602: 16-Bits  
LTC2612: 14-Bits  
LTC2622: 12-Bits  
Guaranteed 16-Bit Monotonic Over Temperature  
These parts establish advanced performance standards  
for output drive, crosstalk and load regulation in single-  
supply, voltage output multiples.  
Wide 2.5V to 5.5V Supply Range  
Low Power Operation: 300µA per DAC at 3V  
Individual Channel Power-Down to 1µA, Max  
The parts use a simple SPI/MICROWIRE™ compatible  
3-wire serial interface which can be operated at clock  
rates up to 50MHz.  
Ultralow Crosstalk between DACs (30µV)  
High Rail-to-Rail Output Drive (±15mA)  
Double-Buffered Data Latches  
Pin-Compatible 10-Bit Version (LTC1661)  
The LTC2602/LTC2612/LTC2622 incorporate a power-  
on reset circuit. During power-up, the voltage outputs  
rise less than 10mV above zero scale, and after power-  
up, they stay at zero scale until a valid write and update  
take place.  
Tiny 8-Lead MSOP Package  
U
APPLICATIO S  
Mobile Communications  
Process Control and Industrial Automation  
Instrumentation  
Automatic Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
W
BLOCK DIAGRA  
LTC2602  
Differential Nonlinearity (DNL)(LTC2602)  
1.0  
V
V
= 5V  
REF  
CC  
16-BIT  
DAC A  
16-BIT  
DAC B  
0.8  
0.6  
= 4.096V  
V
V
V
8
7
5
6
OUT A  
OUT B  
0.4  
0.2  
GND  
CC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
CONTROL  
LOGIC  
DECODE  
1
2
4
3
REF  
SDI  
CS/LD  
SCK  
24-BIT SHIFT REGISTER  
0
16384  
32768  
CODE  
49152  
65535  
2602 TA01  
2602 BD01  
2602f  
1
LTC2602/LTC2612/LTC2622  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC ........................................................ –6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LTC2602C/LTC2612C/LTC2622C .......... 0°C to 70°C  
LTC2602I/LTC2612I/LTC2622I.......... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
ORDER PART  
NUMBER  
LTC2602CMS8  
LTC2602IMS8  
LTC2612CMS8  
LTC2612IMS8  
LTC2622CMS8  
LTC2622IMS8  
TOP VIEW  
CS/LD  
SCK  
SDI  
1
2
3
4
8 V  
OUT A  
7 GND  
6 V  
5 V  
CC  
REF  
OUT B  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
TJMAX = 125°C, θJA = 300°C/W  
LTACX  
LTACY  
LTACZ  
LTADA  
LTADB  
LTADC  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC2622  
LTC2612  
LTC2602  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
V
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= 4.096V (Note 2)  
= 4.096V (Note 2)  
= 4.096V (Note 2)  
CC  
CC  
CC  
REF  
I
I
REF  
REF  
REF  
DNL  
INL  
Differential Nonlinearity  
±0.5  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
±0.75 ±4  
±3 ±16  
±12 ±64  
= V = 5V, Midscale  
CC  
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.05 0.125  
0.1  
0.2  
0.5  
0.5  
0.4  
0.65  
2
2
LSB/mA  
LSB/mA  
OUT  
OUT  
V
= V = 2.5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.1 0.25  
0.2  
0.4  
1
1
0.9  
1.3  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
V
V
= 5V, V  
= 5V, V  
= 4.096V Code = 0  
= 4.096V, (Note 7)  
1
9
1
9
1
9
mV  
mV  
CC  
CC  
REF  
REF  
V
OS  
±1  
±5  
±9  
±1  
±5  
±9  
±1  
±5  
±9  
V
OS  
Temperature  
µV/°C  
Coefficient  
GE  
Gain Error  
V
= 5V, V  
= 4.096V  
±0.1 ±0.7  
±3  
±0.1 ±0.7  
±3  
±0.1 ±0.7  
±3  
%FSR  
CC  
REF  
Gain Temperature  
Coefficient  
ppm/°C  
2602f  
2
LTC2602/LTC2612/LTC2622  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC2602/LTC2612/LTC2622  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 5V ±10%  
–80  
dB  
CC  
R
OUT  
DC Output Impedance  
V
V
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.05  
0.05  
0.15  
0.15  
REF  
REF  
CC  
= V = 2.5V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
DC Crosstalk (Note 4)  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±30  
±16  
±4  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
38  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.5V, V = 2.5V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
20  
28  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
44  
64  
23  
80  
Capacitance  
I
Reference Current, Power Down Mode All DACs Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.5  
5.5  
V
CC  
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
0.7  
0.6  
0.35  
0.10  
1.3  
1
1
1
mA  
mA  
µA  
CC  
CC  
CC  
All DACs Powered Down (Note 3) V = 5V  
CC  
CC  
All DACs Powered Down (Note 3) V = 3V  
µA  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
= 2.5V to 5.5V  
0.8  
0.6  
0.5  
V
V
V
IL  
CC  
CC  
CC  
I
Digital Input Leakage  
V
= GND to V  
CC  
±1  
µA  
LK  
IN  
C
Digital Input Capacitance  
(Note 6)  
8
pF  
IN  
LTC2622  
LTC2612  
LTC2602  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 8)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
s
Settling Time for  
1LSB Step (Note 9)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
n
Output Voltage Noise  
Density  
At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
2602f  
3
LTC2602/LTC2612/LTC2622  
W U  
TI I G CHARACTERISTICS The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Note 6)  
LTC2602/LTC2612/LTC2622  
SYMBOL PARAMETER  
= 2.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
t
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
4
4
ns  
ns  
1
SDI Valid to SCK Hold  
SCK High Time  
2
9
ns  
3
SCK Low Time  
9
ns  
4
CS/LD Pulse Width  
10  
7
ns  
5
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
6
7
ns  
7
7
ns  
10  
50% Duty Cycle  
50  
MHz  
Note 5: R = 2kto GND or V at the output of the DAC not being tested.  
Note 1: Absolute maximum ratings are those values beyond which the life  
L
CC  
of a device may be impaired.  
Note 6: Guaranteed by design and not production tested.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 7: Inferred from measurement at code 256 (LTC2602), code 64  
(LTC2612) or code 16 (LTC2622), and at fullscale.  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 8: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
256 and linearity is defined from code 256 to code 65,535.  
and 3/4 scate to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
Note 3: Digital inputs at 0V or V  
.
CC  
Note 9: V = 5V, V = 4.096V. DAC is stepped ±LBS between half scale  
CC  
REF  
Note 4: DC crosstalk is measured with V = 5V and V  
= 4.096V, with  
CC  
REF  
and half scale –1. Load is 2k in parallel with 200pF to GND.  
the measured DAC at midscale, unless otherwise noted.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2602)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
V
V
= 5V  
REF  
= 4.096V  
CC  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2602 G21  
2602 G20  
2602 G22  
2602f  
4
LTC2602/LTC2612/LTC2622  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2602)  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2602 G23  
2602 G24  
2602 G25  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
100µV/DIV  
OUT  
100µV/DIV  
12.3µs  
9.7µs  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
2602 G26  
2602 G27  
2µs/DIV  
= 4.096V  
5µs/DIV  
V
= 5V, V  
V
CC  
= 5V, V  
= 4.096V  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
REF  
REF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
SETTLING TO ±1LSB  
R
L
L
AVERAGE OF 2048 EVENTS  
(LTC2612)  
Integral Nonlinearity (INL)  
Settling to ±1LSB  
Differential Nonlinearity (DNL)  
8
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
6
0.6  
4
0.4  
V
OUT  
2
100µV/DIV  
0.2  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2602 G30  
2µs/DIV  
V
= 5V, V  
= 4.096V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2602 G28  
2602 G29  
2602f  
5
LTC2602/LTC2612/LTC2622  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2622)  
Settling to ±1LSB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
1.0  
0.8  
2.0  
1.5  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
1mV/DIV  
0.2  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2602 G33  
2µs/DIV  
V
= 5V, V  
= 4.096V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2602 G32  
2602 G31  
(LTC2602/LTC2612/LTC2622)  
Current Limiting  
Offset Error vs Temperature  
Load Regulation  
0.10  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
0.08  
V
REF  
REF  
= V = 5V  
CC  
0.06  
0.04  
0.6  
V
= V = 3V  
CC  
0.4  
1
0.02  
0.2  
0
0
0
V
REF  
= V = 5V  
CC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
REF  
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2602 G01  
2602 G02  
2602 G03  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2602 G04  
2602 G05  
2602 G06  
2602f  
6
LTC2602/LTC2612/LTC2622  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2602/LTC2612/LTC2622)  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Settling  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5µs/DIV  
2602 G09  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2602 G08  
2602 G07  
Headroom at Rails vs Output  
Current  
Midscale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
1V/DIV  
10mV/DIV  
3V SOURCING  
12nV-s TYP  
4mV PEAK  
CS/LD  
5V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2602 G10  
2602 G11  
3V SINKING  
2.5µs/DIV  
250µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2602 G12  
Supply Current vs Logic Voltage  
Exiting Power-Down to Midscale  
Multiplying Frequency Response  
0
–3  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
V
= 5V  
V
V
= 5V  
= 2V  
CC  
CC  
REF  
SWEEP SCK, SDI  
AND CS/LD  
–6  
0V TO V  
CC  
–9  
V
OUT  
0.5V/DIV  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
ONE DAC IN  
POWER DOWN MODE  
CS/LD  
5V/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
(AC) = 0.2V  
P-P  
2.5µs/DIV  
2602 G14  
CODE = FULL SCALE  
1k  
10k  
100k  
1M  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
FREQUENCY (Hz)  
LOGIC VOLTAGE (V)  
2602 G16  
2602 G13  
2602f  
7
LTC2602/LTC2612/LTC2622  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2602/LTC2612/LTC2622)  
Short-Circuit Output Current vs  
OUT (Sourcing)  
Output Voltage Noise,  
0.1Hz to 10Hz  
Short-Circuit Output Current vs  
VOUT (Sinking)  
V
0mA  
V
OUT  
10µV/DIV  
0mA  
V
V
= 5.5V  
= 5.6V  
V
V
= 5.5V  
= 5.6V  
CC  
REF  
CC  
REF  
CODE = 0  
SWEPT 0V TO V  
CODE = FULL SCALE  
0
1
2
3
4
5
6
7
8
9
10  
V
V
OUT  
SWEPT V TO 0V  
OUT  
CC  
CC  
SECONDS  
2602 G17  
1V/DIV  
2602 G18  
1V/DIV  
2602 G19  
2602f  
8
LTC2602/LTC2612/LTC2622  
U
U
U
PIN FUNCTIONS  
CS/LD (Pin 1): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow,SCKisenabledforshiftingdataonSDI  
into the register. When CS/LD is taken high, SCK is dis-  
abled and the specified command (see Table 1) is ex-  
ecuted.  
LTC2602/LTC2612/LTC2622 accept input word lengths  
of either 24 or 32 bits.  
REF (Pin 4): Reference Voltage Input. 0V VREF VCC.  
VOUT B and VOUT A (Pins 5 and 8): DAC Analog Voltage  
Outputs. The output range is 0 – VREF  
.
SCK (Pin 2): Serial Interface Clock Input. CMOS and TTL  
compatible.  
VCC (Pin 6): Supply Voltage Input. 2.5V VCC 5.5V.  
GND (Pin 7): Analog Ground.  
SDI (Pin 3): Serial Interface Data Input. Data is applied to  
SDIfortransfertothedeviceat therisingedgeofSCK. The  
W
BLOCK DIAGRA  
V
V
V
8
DAC A  
DAC B  
5
6
OUT A  
OUT B  
GND  
7
CC  
CONTROL  
LOGIC  
DECODE  
1
2
4
3
REF  
SDI  
CS/LD  
SCK  
24-BIT SHIFT REGISTER  
2602 BD  
W U  
W
TI I G DIAGRA  
t
1
t
t
t
3
t
4
6
2
SCK  
SDI  
1
2
3
23  
24  
t
10  
C3  
C2  
C1  
D1  
D0  
t
t
7
5
CS/LD  
2602 F01  
Figure 1  
2602f  
9
LTC2602/LTC2612/LTC2622  
U
OPERATIO  
Power-On Reset  
TheLTC2602/LTC2612/LTC2622cleartheoutputstozero  
scalewhenpowerisfirstapplied,makingsysteminitializa-  
tion consistent and repeatable.  
Serial Interface  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, activating the SDI and  
SCK buffers and enabling the input shift register. Data  
(SDI input) is transferred at the next 24 rising SCK edges.  
The 4-bit command, C3-C0, is loaded first; then the 4-bit  
DAC address, A3-A0; and finally the 16-bit data word. The  
data word comprises the 16-, 14- or 12-bit input code,  
ordered MSB-to-LSB, followed by 0, 2 or 4 don’t-care bits  
(LTC2602, LTC2612andLTC2622respectively). Datacan  
only be transferred to the device when the CS/LD signal is  
low.The rising edge of CS/LD ends the data transfer and  
causes the device to carry out the action specified in the  
24-bit input word. The complete sequence is shown in  
Figure 2a.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2602/  
LTC2612/LTC2622 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
smallerbyreducingtheramprateofthepowersupply. For  
example, if the power supply is ramped to 5V in 1ms, the  
analog outputs rise less than 10mV above ground (typ)  
during power-on. See Power-On Reset Glitch in the Typi-  
cal Performance Characteristics section.  
Power Supply Sequencing  
The voltage at REF (Pin 4) should be kept within the range  
0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 6) is in transition.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register into  
the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the block diagram.  
Transfer Function  
The digital-to-analog transfer function is  
k
2N  
VOUT(IDEAL)  
=
VREF  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and VREF is the voltage at REF  
(Pin 4).  
Table 1.  
COMMAND*  
While the minimum input word is 24 bits, it may optionally  
be extended to 32 bits to accommodate microprocessors  
which have a minimum word width of 16 bits (2 bytes). To  
usethe32-bitwordwidth, 8don’t-carebitsaretransferred  
to the device first, followed by the 24-bit word as just  
described. Figure 2b shows the 32-bit sequence.  
C3 C2 C1 C0  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
Power-Down Mode  
No Operation  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than two outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits and reference inputs are  
disabled, and draw essentially zero current. The DAC  
outputs are put into a high-impedance state, and the  
ADDRESS (n)*  
A3 A2 A1 A0  
0
0
1
0
0
1
0
0
1
0
1
1
DAC A  
DAC B  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
2602f  
10  
LTC2602/LTC2612/LTC2622  
U
OPERATIO  
INPUT WORD (LTC2602)  
COMMAND  
ADDRESS  
DATA (16 BITS)  
A3 A2  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
C3  
C1  
A1  
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C2  
C0  
LSB  
2602 TBL01  
INPUT WORD (LTC2612)  
COMMAND  
ADDRESS  
DATA (14 BITS + 2 DON’T-CARE BITS)  
A3 A2  
A0  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D7  
C2  
C0  
MSB  
LSB  
2602 TBL02  
INPUT WORD (LTC2622)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DON’T-CARE BITS)  
A3 A2  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D11 D10 D9 D8  
MSB  
D7  
C2  
C0  
LSB  
2602 TBL03  
output pins are passively pulled to ground through indi-  
vidual 90kresistors. Input- and DAC-register contents  
are not disturbed during power-down.  
Voltage Outputs  
Each of the two rail-to-rail amplifiers contained in these  
parts has guaranteed load regulation when sourcing or  
sinking up to 15mA at 5V (7.5mA at 3V).  
Either channel or both channels can be put into power-  
downmodebyusingcommand0100bincombinationwith  
the appropriate DAC address, (n). The 16-bit data word is  
ignored.Thesupplyandreferencecurrentsarereducedby  
approximately 50% for each DAC powered down; the  
effective resistance at REF (pin 4) rises accordingly,  
becoming a high-impedance input (typically > 1G) when  
both DACs are powered down.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is ex-  
pressed in LSB/mA.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.050when driving a load well away from  
the rails.  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state is  
poweredupandupdated, normalsettlingisdelayed. Ifone  
of the two DACs is in a powered-down state prior to the  
update command, the power-up delay is 5µs. If, on the  
other hand, both DACs are powered down, then the main  
bias generation circuit block has been automatically shut  
down in addition to the individual DAC amplifiers and  
reference inputs. In this case, the power up delay time is  
12µs (for VCC = 5V) or 30µs (for VCC = 3V).  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by the  
25typical channel resistance of the output devices; e.g.,  
when sinking 1mA, the minimum output voltage = 25•  
1mA = 25mV. See the graph Headroom at Rails vs Output  
Current in the Typical Performance Characteristics sec-  
tion.  
The amplifiers are stable driving capacitive loads of up to  
1000pF.  
2602f  
11  
LTC2602/LTC2612/LTC2622  
U
OPERATIO  
The GND pin of the part should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here will  
add directly to the effective DC output impedance of the  
device (typically 0.050), and will degrade DC crosstalk.  
Note that the LTC2602/LTC2612/LTC2622 are no more  
susceptible to these effects than other parts of their type;  
on the contrary, they allow layout-based performance  
improvements to shine rather than limiting attainable  
performance with excessive internal resistance.  
Board Layout  
The excellent load regulation and DC crosstalk perfor-  
mance of these devices is achieved in part by keeping  
“signal” and “power” grounds separated internally and by  
reducing shared internal resistance.  
The GND pin functions both as the node to which the  
reference and output voltages are referred and as a return  
path for power currents in the device. Because of this,  
careful thought should be given to the grounding scheme  
and board layout in order to ensure rated performance.  
Rail-to-Rail Output Considerations  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown in  
Figure 3b. Similarly, limiting can occur near full scale  
when the REF pin is tied to VCC. If VREF = VCC and the DAC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 3c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
2602f  
12  
LTC2602/LTC2612/LTC2622  
U
OPERATIO  
2602f  
13  
LTC2602/LTC2612/LTC2622  
U
OPERATIO  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
2600 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect  
of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
2602f  
14  
LTC2602/LTC2612/LTC2622  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2602f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2602/LTC2612/LTC2622  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1661  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DAC in 16-Pin Narrow SSOP  
V
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
CC  
CC  
Dual 10-Bit V  
DAC in 8-Lead MSOP Package  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
OUT  
LTC1821  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610/  
LTC2620  
Octal 16/14/12-Bit Rail-to-Rail DACs in 16-Lead SSOP  
250µA per DAC, 2.5V to 5.5V Supply Range  
Rail-to-Rail Output  
2602f  
LT/TP 1003 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY