LTC2624CGN-1#TRPBF [Linear]

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2624CGN-1#TRPBF
型号: LTC2624CGN-1#TRPBF
厂家: Linear    Linear
描述:

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总16页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2604/LTC2614/LTC2624  
Quad 16-Bit Rail-to-Rail DACs  
in 16-Lead SSOP  
FEATURES  
DESCRIPTION  
The LTC®2604/LTC2614/LTC2624 are quad 16-,14- and  
12-bit 2.5V to 5.5V rail-to-rail voltage output DACs in  
16-leadnarrowSSOPpackages.Thesepartshaveseparate  
referenceinputsforeachDAC. Theyhavebuilt-inhighper-  
formance output buffers and are guaranteed monotonic.  
n
Smallest Pin Compatible Quad 16-Bit DAC:  
LTC2604: 16-Bits  
LTC2614: 14-Bits  
LTC2624: 12-Bits  
n
Guaranteed 16-Bit Monotonic Over Temperature  
n
Separate Reference Inputs for each DAC  
These parts establish advanced performance standards  
for output drive, crosstalk and load regulation in single-  
supply, voltage output multiples.  
n
Wide 2.5V to 5.5V Supply Range  
n
Low Power Operation: 250μA per DAC at 3V  
n
Individual DAC Power-Down to 1μA, Max  
n
n
n
n
The parts use a simple SPI/MICROWIRE compatible  
3-wireserialinterfacewhichcanbeoperatedatclockrates  
up to 50MHz. Daisy-chain capability and a hardware CLR  
function are included.  
Ultralow Crosstalk Between DACs (<5μV)  
High Rail-to-Rail Output Drive ( 15mA)  
Double Buffered Digital Inputs  
LTC2604-1/LTC2614-1/LTC2624-1: Power-On Reset  
to Midscale  
16-Lead Narrow SSOP Package  
The LTC2604/LTC2614/LTC2624 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than 10mV above zero scale; and after power-up, they stay  
at zero scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2604-1/LTC2614-1  
/LTC2624-1 to midscale. The voltage outputs stay at mid-  
scale until a valid write and update take place.  
n
APPLICATIONS  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Instrumentation  
Automatic Test Equipment  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
BLOCK DIAGRAM  
V
CC  
GND  
1
REF LO  
2
16  
REF D  
15  
Differential Nonlinearity (LTC2604)  
REF A  
3
1.0  
V
OUT D  
14  
V
V
= 5V  
REF  
CC  
DAC D  
DAC C  
0.8  
0.6  
= 4.096V  
V
OUTA  
4
DAC A  
DAC B  
0.4  
V
OUT C  
13  
0.2  
0
V
OUTB  
5
REF C  
12  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
REF B  
6
CLR  
11  
CONTROL  
LOGIC  
SDO  
10  
CS/LD  
7
DECODE  
0
16384  
32768  
CODE  
49152  
65535  
SCK  
8
SDI  
9
2604 TA01  
32-BIT SHIFT REGISTER  
2604 BD  
2604fd  
1
LTC2604/LTC2614/LTC2624  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Any Pin to GND............................................ –0.3V to 6V  
1
2
3
4
5
6
7
8
V
CC  
16  
15  
14  
13  
12  
11  
10  
9
GND  
REF LO  
REF A  
Any Pin to V ............................................. –6V to 0.3V  
CC  
REF D  
Maximum Junction Temperature .......................... 125°C  
V
OUT D  
Operating Temperature Range  
V
V
OUT A  
OUT C  
LTC2604C/LTC2614C/LTC2624C ............. 0°C to 70°C  
LTC2604C-1/LTC2614C-1/  
REF C  
CLR  
SDO  
SDI  
V
OUT B  
REF B  
CS/LD  
SCK  
LTC2624C-1............................................. 0°C to 70°C  
LTC2604I/LTC2614I/LTC2624I.............–40°C to 85°C  
LTC2604I-1/LTC2614I-1/  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 125°C, θ = 150°C/W  
LTC2624I-1 ..........................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2604CGN#PBF  
LTC2604CGN-1#PBF  
LTC2604IGN#PBF  
LTC2604IGN-1#PBF  
LTC2614CGN#PBF  
LTC2614CGN-1#PBF  
LTC2614IGN#PBF  
LTC2614IGN-1#PBF  
LTC2624CGN#PBF  
LTC2624CGN-1#PBF  
LTC2624IGN#PBF  
LTC2624IGN-1#PBF  
TAPE AND REEL  
PART MARKING  
2604  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2604CGN#TRPBF  
LTC2604CGN-1#TRPBF  
LTC2604IGN#TRPBF  
LTC2604IGN-1#TRPBF  
LTC2614CGN#TRPBF  
LTC2614CGN-1#TRPBF  
LTC2614IGN#TRPBF  
LTC2614IGN-1#TRPBF  
LTC2624CGN#TRPBF  
LTC2624CGN-1#TRPBF  
LTC2624IGN#TRPBF  
LTC2624IGN-1#TRPBF  
0°C to 70°C  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
16-Lead Narrow SSOP Package  
26041  
2604I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2604I1  
2614  
26141  
2614I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2614I1  
2624  
26241  
2624I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
2624I1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B =  
REF C = REF D = 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded, unless otherwise noted. (Note 10)  
LTC2624/LTC2624-1 LTC2614/LTC2614-1 LTC2604/LTC2604-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX MIN TYP MAX MIN  
TYP MAX UNITS  
l
l
l
l
12  
12  
14  
14  
16  
16  
Bits  
Bits  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
0.5  
4
1
1
LSB  
Integral Nonlinearity  
0.9  
4
16  
14  
64  
LSB  
2604fd  
2
LTC2604/LTC2614/LTC2624  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B =  
REF C = REF D = 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded, unless otherwise noted. (Note 10)  
LTC2624/LTC2624-1 LTC2614/LTC2614-1 LTC2604/LTC2604-1  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN TYP MAX MIN  
TYP MAX UNITS  
Load Regulation  
V
= V = 5V, Midscale  
REF CC  
l
l
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.025 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.3  
2
2
LSB/mA  
LSB/mA  
OUT  
I
OUT  
V
= V = 2.5V, Midscale  
OUT  
OUT  
REF  
CC  
l
l
I
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.7  
4
4
LSB/mA  
LSB/mA  
I
l
l
ZSE  
Zero-Scale Error  
Offset Error  
1.5  
1.5  
5
9
1.5  
1.5  
5
9
9
1.5  
1.5  
5
9
mV  
mV  
V
(Note 7)  
9
9
OS  
V
Temperature  
μV/°C  
OS  
Coefficient  
l
GE  
Gain Error  
0.1  
5
0.7  
0.1  
5
0.7  
0.1  
5
0.7  
ꢀFSR  
Gain Temperature  
Coefficient  
ppm/°C  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. REF  
A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D = 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded,  
unless otherwise noted. (Note 10)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PSR  
Power Supply Rejection  
V
CC  
V
CC  
= 5V 10ꢀ  
= 3V 10ꢀ  
–80  
–80  
dB  
dB  
l
l
R
OUT  
DC Output Impedance  
DC Crosstalk (Note 4)  
V
V
= V = 5V, Midscale; –15mA ≤ I ≤ 15mA  
OUT  
0.025  
0.030  
0.15  
0.15  
Ω
Ω
REF  
REF  
CC  
= V = 2.5V, Midscale; –7.5mA ≤ I  
≤ 7.5mA  
CC  
OUT  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
5
1
3.5  
μV  
μV/mA  
μV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
SC  
CC REF  
l
l
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
36  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.5V, V = 2.5V  
CC  
REF  
l
l
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
18  
24  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
l
l
0
V
μA  
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
128  
14  
160  
Capacitance  
l
l
I
Reference Current, Power Down Mode All DACs Powered Down  
0.001  
1
μA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.5  
5.5  
V
CC  
l
l
l
l
I
CC  
V
V
= 5V (Note 3)  
= 3V (Note 3)  
1.3  
1
0.35  
0.10  
2
1.6  
1
mA  
mA  
μA  
CC  
CC  
All DACs Powered Down (Note 3) V = 5V  
CC  
CC  
All DACs Powered Down (Note 3) V = 3V  
1
μA  
Digital I/O  
l
l
V
IH  
Digital Input High Voltage  
V
CC  
V
CC  
= 2.5V to 5.5V  
= 2.5V to 3.6V  
2.4  
2.0  
V
V
2604fd  
3
LTC2604/LTC2614/LTC2624  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B =  
REF C = REF D = 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded, unless otherwise noted. (Note 10)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Digital Input Low Voltage  
V
CC  
V
CC  
= 4.5V to 5.5V  
= 2.5V to 5.5V  
0.8  
0.6  
V
V
IL  
l
l
l
l
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
Load Current = –100μA  
Load Current = +100μA  
V
CC  
– 0.4  
V
V
OH  
0.4  
1
OL  
I
LK  
V
= GND to V  
CC  
μA  
pF  
IN  
C
Digital Input Capacitance  
(Note 6)  
8
IN  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. REF  
A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D = 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded,  
unless otherwise noted. (Note 10)  
LTC2624/LTC2624-1 LTC2614/LTC2614-1 LTC2604/LTC2604-1  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN  
TYP  
MAX MIN TYP MAX MIN  
TYP MAX UNITS  
t
Settling Time (Note 8)  
0.024ꢀ ( 1LSB at 12 Bits)  
0.006ꢀ ( 1LSB at 14 Bits)  
0.0015ꢀ ( 1LSB at 16 Bits)  
7
7
9
7
9
10  
μs  
μs  
μs  
s
Settling Time for  
1LSB Step (Note 9)  
0.024ꢀ ( 1LSB at 12 Bits)  
0.006ꢀ ( 1LSB at 14 Bits)  
0.0015ꢀ ( 1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
μs  
μs  
μs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/μs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
n
Output Voltage Noise  
Density  
At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV√Hz  
nV√Hz  
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
μV  
P–P  
TIMING CHARACTERISTICS The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D  
= 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded, unless otherwise noted. (Note 10)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 2.5V to 5.5V  
CC  
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
9
SCK Low Time  
9
CS/LD Pulse Width  
10  
7
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
7
SDO Propagation Delay from SCK Falling Edge CLOAD = 10pF  
l
l
V
CC = 4.5V to 5.5V  
CC = 2.5V to 5.5V  
20  
45  
ns  
ns  
V
l
t
9
CLR Pulse Width  
20  
ns  
2604fd  
4
LTC2604/LTC2614/LTC2624  
TIMING CHARACTERISTICS The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D  
= 2.048V (VCC = 2.5V), REF LO = 0V, VOUT unloaded, unless otherwise noted. (Note 10)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
t
CS/LD High to SCK Positive Edge  
SCK Frequency  
7
10  
50ꢀ Duty Cycle  
50  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: R = 2kΩ to GND or V .  
L CC  
Note 6: Guaranteed by design and not production tested.  
Note 7: Inferred from measurement at code 256 (LTC2604), code 64  
(LTC2614) or code 16 (LTC2624), and at full scale.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 8: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale and  
CC  
REF  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
rounded to the nearest whole code. For V = 4.096V and N = 16,  
REF  
Note 9: V = 5V, V = 4.096V. DAC is stepped 1LSB between half scale  
CC  
REF  
k = 256, linearity is defined from code 256 to code 65,535.  
L
and half scale –1. Load is 2k in parallel with 200pF to GND.  
Note 3: Digital inputs at 0V or V  
.
CC  
Note 10: These specifications apply to LTC2604/LTC2604-1, LTC2614/  
LTC2614-1, LTC2624/LTC2624-1.  
Note 4: DC crosstalk is measured with V = 5V and V = 4.096V, with  
CC  
REF  
the measured DAC at midscale, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC2604/LTC2604-1, LTC2614/LTC2614-1, LTC2624/LTC2624-1)  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
V
V
= V = 5V  
CC  
REF  
REF  
0.6  
= V = 3V  
CC  
0.4  
1
0.2  
0
0
V
= V = 5V  
CC  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2604 G01  
2604 G02  
2604 G03  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
2
1
0.2  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2604 G04  
2604 G05  
2604 G06  
2604fd  
5
LTC2604/LTC2614/LTC2624  
TYPICAL PERFORMANCE CHARATERISTICS  
(LTC2604/LTC2604-1, LTC2614/LTC2614-1, LTC2624/LTC2624-1)  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Settling  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5μs/DIV  
2604 G09  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2604 G07  
2604 G08  
Midscale Glitch Impulse  
Power-On Reset Glitch  
Power-On Reset to Midscale  
V
= V  
CC  
REF  
V
OUT  
V
CC  
10mV/DIV  
1V/DIV  
12nV-s TYP  
2.5μs/DIV  
V
CC  
4mV PEAK  
1V/DIV  
CS/LD  
5V/DIV  
V
V
OUT  
OUT  
1V/DIV  
10mV/DIV  
2604 G10  
2604 G34  
2604 G11  
500μs/DIV  
250μs/DIV  
Headroom at Rails  
vs Output Current  
Supply Current vs Logic Voltage  
Exiting Power-Down to Midscale  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
CC  
V
V
= 5V  
REF  
CC  
5V SOURCING  
SWEEP SCK, SDI  
= 2V  
AND CS/LD  
0V TO V  
CC  
V
OUT  
0.5V/DIV  
3V SOURCING  
DACs A-C IN  
POWER-DOWN MODE  
CS/LD  
5V/DIV  
5V SINKING  
3V SINKING  
2.5μs/DIV  
2604 G14  
0
1
2
3
4
I
5
(mA)  
6
7
8
9
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
OUT  
2604 G12  
2604 G13  
2604fd  
6
LTC2604/LTC2614/LTC2624  
TYPICAL PERFORMANCE CHARATERISTICS  
(LTC2604/LTC2604-1, LTC2614/LTC2614-1, LTC2624/LTC2624-1)  
Hardware CLR Hardware CLR to Midscale  
Multiplying Frequency Response  
0
–3  
V
V
= 5V  
REF  
CODE = FULL SCALE  
CC  
= 4.096V  
–6  
V
OUT  
1V/DIV  
–9  
V
OUT  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
1V/DIV  
CLR  
5V/DIV  
CLR  
5V/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
2604 G15  
(AC) = 0.2V  
2604 G35  
P-P  
1μs/DIV  
1μs/DIV  
CODE = FULL SCALE  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2604 G16  
Output Voltage Noise,  
0.1Hz to 10Hz  
Short-Circuit Output Current vs  
OUT (Sinking)  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
V
0
–10  
–20  
–30  
50  
40  
30  
20  
V
V
= 5.5V  
= 5.6V  
V
= 5.5V  
= 5.6V  
CC  
REF  
CC  
REF  
V
CODE = FULL SCALE  
CODE =  
V
0
V
SWEPT V TO 0V  
SWEPT 0V TO V  
OUT  
CC  
OUT  
CC  
V
OUT  
10μV/DIV  
–40  
–50  
10  
0
0
1
2
3
4
5
6
7
8
9
10  
SECONDS  
2604 G17  
0
2
3
4
5
6
0
2
3
4
5
6
1
1
1V/DIV  
1V/DIV  
2604 G19  
2604 G18  
(LTC2604/LTC2604-1)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
24  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
0
16384  
32768  
CODE  
49152  
65535  
TEMPERATURE (°C)  
2604 G21  
2604 G22  
2604 G20  
2604fd  
7
LTC2604/LTC2614/LTC2624  
TYPICAL PERFORMANCE CHARATERISTICS  
(LTC2604/LTC2604-1)  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.5  
1.0  
1.0  
0.8  
32  
24  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
0.2  
DNL (POS)  
DNL (NEG)  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2604 G23  
2604 G24  
2604 G25  
Settling to 1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100μV/DIV  
100μV/DIV  
12.3μs  
9.7μs  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
2604 G26  
2604 G27  
2μs/DIV  
5μs/DIV  
V
= 5V, V  
= 4.096V  
V
= 5V, V  
= 4.096V  
REF  
CC  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
SETTLING TO 1LSB  
R
L
L
AVERAGE OF 2048 EVENTS  
(LTC2614/LTC2614-1)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
1.0  
0.8  
8
6
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100μV/DIV  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9μs  
2604 G30  
2μs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
L
L
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2604 G28  
2604 G29  
2604fd  
8
LTC2604/LTC2614/LTC2624  
TYPICAL PERFORMANCE CHARATERISTICS  
(LTC2624/LTC2624-1)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8μs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2604 G33  
2μs/DIV  
V
CC  
= 5V, V  
= 4.096V  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
L
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
L
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2604 G31  
2604 G32  
PIN FUNCTIONS  
GND (Pin 1): Analog Ground.  
The LTC2604/LTC2604-1, LTC2614/LTC2614-1, LTC2624/  
LTC2624-1 accept input word lengths of either 24 or  
32 bits.  
REF LO (Pin 2): Reference Low. The voltage at this pin  
sets the zero scale (ZS) voltage of all DACs. This pin can  
be raised up to 1V above ground at V = 5V or 100mV  
SDO (Pin 10): Serial Interface Data Output. This pin is  
used for daisy-chain operation. The serial output of the  
shift register appears at the SDO pin. The data transferred  
to the device via the SDI pin is delayed 32 SCK rising  
edges before being output at the next falling edge. SDO  
is an active output and does not go high impedance, even  
when CS/LD is taken to a logic high level.  
CC  
above ground at V = 3V.  
CC  
REF A, REF B, REF C, REF D (Pins 3, 6, 12, 15): Refer-  
ence Voltage Inputs for each DAC. REF x sets the full scale  
voltage of the DACs. 0V ≤ REF x ≤ V .  
CC  
V
to V  
(Pins 4, 5, 13, 14): DAC Analog Voltage  
OUT A  
OUT D  
Outputs. The output range is from REF LO to REF x.  
CLR (Pin 11): Asynchronous Clear Input. A logic low at  
this level-triggered input clears all registers and causes  
the DAC voltage outputs to drop to 0V for the LTC2604/  
LTC2614/LTC2624.Alogiclowatthisinputsetsallregisters  
to midscale code and causes the DAC voltage outputs to  
go to midscale for the LTC2604-1/LTC2614-1/LTC2624-1.  
CMOS and TTL compatible.  
CS/LD(Pin7):SerialInterfaceChipSelect/LoadInput.When  
CS/LD is low, SCK is enabled for shifting data on SDI into  
the register. When CS/LD is taken high, SCK is disabled  
and the specified command (see Table 1) is executed.  
SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL  
compatible.  
V
CC  
(Pin 16): Supply Voltage Input. 2.5V ≤ V ≤ 5.5V.  
CC  
SDI (Pin 9): Serial Interface Data Input. Data is applied to  
SDI for transfer to the device at the rising edge of SCK.  
2604fd  
9
LTC2604/LTC2614/LTC2624  
BLOCK DIAGRAM  
V
CC  
GND  
1
REF LO  
2
16  
REF D  
15  
REF A  
3
V
OUT D  
14  
DAC D  
DAC C  
V
OUTA  
4
DAC A  
DAC B  
V
OUT C  
13  
V
OUTB  
5
REF C  
12  
REF B  
6
CLR  
11  
CONTROL  
LOGIC  
SDO  
10  
CS/LD  
7
DECODE  
SCK  
8
SDI  
9
32-BIT SHIFT REGISTER  
2604 BD  
TIMING DIAGRAM  
t
1
t
t
t
t
4
6
2
3
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
t
8
SDO  
2604 F01  
Figure 1  
OPERATION  
Power-On Reset  
outputs from the DAC during this time. The LTC2604/  
LTC2614/LTC2624 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground (typ) during power-on. See Power-On Reset Glitch  
in the Typical Performance Characteristics section.  
The LTC2604/LTC2614/LTC2624 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2604-1/  
LTC2614-1/LTC2624-1setthevoltageoutputstomidscale  
when power is first applied.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
2604fd  
10  
LTC2604/LTC2614/LTC2624  
OPERATION  
Power Supply Sequencing  
Table 1.  
COMMAND*  
The voltage at REF (Pins 3, 6, 12 and 15) should be kept  
within the range 0.3V ≤ REF x ≤ V + 0.3V (see Abso-  
lute Maximum Ratings). Particular care should be taken  
to observe these limits during power supply turn-on and  
turn-off sequences, when the voltage at V (Pin 16) is  
in transition.  
C3 C2 C1 C0  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
CC  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
CC  
No Operation  
ADDRESS (n)*  
A3 A2 A1 A0  
Transfer Function  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
The digital-to-analog transfer function is  
N ꢄ  
k
VOUT(IDEAL)  
=
[REF x – REFLO]+REFLO  
2
*Command and address codes not shown are reserved and should not  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and REF x is the voltage at REF  
A, REF B, REF C and REF D (Pins 3, 6, 12 and 15).  
be used.  
(LTC2604, LTC2614 and LTC2624 respectively). Data can  
only be transferred to the device when the CS/LD signal  
is low. The rising edge of CS/LD ends the data transfer  
and causes the device to carry out the action specified in  
the 24-bit input word. The complete sequence is shown  
in Figure 2a.  
Serial Interface  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, powering-on the SDI  
and SCK buffers and enabling the input shift register. Data  
(SDI input) is transferred at the next 24 rising SCK edges.  
The 4-bit command, C3-C0, is loaded first; then the 4-bit  
DAC address, A3-A0; and finally the 16-bit data word. The  
data word comprises the 16-, 14- or 12-bit input code,  
ordered MSB-to-LSB, followed by 0, 2 or 4 don’t-care bits  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
INPUT WORD (LTC2604)  
COMMAND  
ADDRESS  
DATA (16 BITS)  
A3 A2  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
C3  
C1  
C2  
A1  
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C0  
LSB  
2604 TBL01  
INPUT WORD (LTC2614)  
COMMAND  
ADDRESS  
DATA (14 BITS + 2 DONT-CARE BITS)  
A3 A2  
A0  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D7  
C2  
C0  
MSB  
LSB  
2604 TBL02  
INPUT WORD (LTC2624)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DONT-CARE BITS)  
A3 A2  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D11 D10 D9 D8  
MSB  
D7  
C2  
C0  
LSB  
2604 TBL03  
2604fd  
11  
LTC2604/LTC2614/LTC2624  
OPERATION  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DAC if it had been in power-down mode. The data path  
and registers are shown in the block diagram.  
Power-Down Mode  
Forpower-constrainedapplications,power-downmodecan  
be used to reduce the supply current whenever less than  
four outputs are needed. When in power-down, the buffer  
amplifiers, bias circuits and reference inputs are disabled,  
and draw essentially zero current. The DAC outputs are  
put into a high-impedance state, and the output pins are  
passively pulled to ground through individual 90k resis-  
tors. Input- and DAC-register contents are not disturbed  
during power-down.  
While the minimum input word is 24 bits, it may optionally  
be extended to 32 bits. To use the 32-bit word width, 8  
don’t-care bits are transferred to the device first, followed  
by the 24-bit word as just described. Figure 2b shows the  
32-bit sequence. The 32-bit word is required for daisy-  
chain operation, and is also available to accommodate  
microprocessors which have a minimum word width of  
16 bits (2 bytes).  
Any channel or combination of channels can be put into  
power-down mode by using command 0100 in combi-  
b
nation with the appropriate DAC address, (n). The 16-bit  
data word is ignored. The supply current is reduced by  
approximately 1/4 for each DAC powered down. The ef-  
fective resistance at REF x (pins 3, 6, 12 and 15) are at  
high-impedance input (typically > 1GΩ) when the cor-  
responding DACs are powered down.  
Daisy-Chain Operation  
The serial output of the shift register appears at the SDO  
pin. Data transferred to the device from the SDI input is  
delayed 32 SCK rising edges before being output at the  
next SCK falling edge.  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state  
is powered up and updated, normal settling is delayed. If  
less than four DACs are in a powered-down state prior to  
theupdatecommand, thepower-updelaytimeis5μs. Ifon  
the other hand, all four DACs are powered down, then the  
main bias generation circuit block has been automatically  
shut down in addition to the individual DAC amplifiers and  
reference inputs. In this case, the power up delay time is  
TheSDOoutputcanbeusedtofacilitatecontrolofmultiple  
serial devices from a single 3-wire serial port (i.e., SCK,  
SDIandCS/LD). Suchadaisy-chainseriesisconfigured  
by connecting SDO of each upstream device to SDI of the  
next device in the chain. The shift registers of the devices  
are thus connected in series, effectively forming a single  
input shift register which extends through the entire  
chain. Because of this, the devices can be addressed and  
controlledindividuallybysimplyconcatenatingtheirinput  
words; the first instruction addresses the last device in  
the chain and so forth. The SCK and CS/LD signals are  
common to all devices in the series.  
12μs (for V = 5V) or 30μs (for V = 3V).  
CC  
CC  
Voltage Outputs  
Each of the four rail-to-rail amplifiers contained in these  
parts has guaranteed load regulation when sourcing or  
sinking up to 15mA at 5V (7.5mA at 3V).  
In use, CS/LD is first taken low. Then the concatenated  
input data is transferred to the chain, using SDI of the  
first device as the data input. When the data transfer is  
complete, CS/LD is taken high, completing the instruction  
sequence for all devices simultaneously. A single device  
can be controlled by using the no-operation command  
(1111) for the other devices in the chain.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
permilliampereofforcedloadcurrentchangeisexpressed  
in LSB/mA.  
2604fd  
12  
LTC2604/LTC2614/LTC2624  
OPERATION  
2604fd  
13  
LTC2604/LTC2614/LTC2624  
OPERATION  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.025Ω when driving a load well away from  
the rails.  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shielditfromnoise.Analoggroundshouldbeacontinuous  
and uninterrupted plane, except for necessary lead pads  
and vias, with signal traces on another layer.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30Ω typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30Ω • 1mA = 30mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteristics  
section.  
The GND pin functions as a return path for power sup-  
ply currents in the device and should be connected to  
analog ground. Resistance from the GND pin to system  
star ground should be as low as possible. When a zero  
scale DAC output voltage of zero is desired, the REFLO pin  
(pin 2) should be connected to system star ground.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
Board Layout  
TheexcellentloadregulationandDCcrosstalkperformance  
of these devices is achieved in part by keeping “signal”  
and “power” grounds separate.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown in  
Figure3b.Similarly,limitingcanoccurnearfullscalewhen  
the REF pins are tied to V . If REF x = V and the DAC  
CC  
CC  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
full-scale error (FSE) is positive, the output for the highest  
codes limits at V as shown in Figure 3c. No full-scale  
CC  
limiting can occur if REF x is less than V – FSE.  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
OUTPUT  
VOLTAGE  
(c)  
0
32,768  
INPUT CODE  
65,535  
0V  
NEGATIVE  
OFFSET  
(a)  
INPUT CODE  
2600 F03  
(b)  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect  
of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
2604fd  
14  
LTC2604/LTC2614/LTC2624  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2604fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC2604/LTC2614/LTC2624  
TYPICAL APPLICATION  
5V  
5V  
1k  
1k  
10k  
10k  
10k  
0.1μF  
0.1μF  
10pF  
10k  
49.9Ω  
0.01μF  
0.01μF  
20Ω  
70MHz IN  
OUT  
47pF  
ZC830  
49.9Ω  
49.9Ω  
20pF  
ZC830  
DAC A  
DAC B  
DAC D  
OPTIONAL  
OPTIONAL  
20k  
DAC C  
20k  
0.1μF  
CS/LD  
SCK  
0.1μF  
SDI  
LTC2604  
5V  
5V  
LO  
2.74k  
1ꢀ  
2.74k  
1ꢀ  
100k  
100k  
2.74k  
1ꢀ  
2.74k  
1ꢀ  
90°  
I + Q  
MODULATOR  
Q INPUT  
I INPUT  
5V  
5V  
2.74k  
1ꢀ  
2.74k  
1ꢀ  
0°  
2.74k  
1ꢀ  
2.74k  
1ꢀ  
RF  
2604 F04  
*ZETEX  
(516) 543-7100  
Figure 4. Using DAC A and DAC B for Nearly Continuous Attenuation Control and DAC C and  
DAC D to Trim for Minimum LO Feedthrough in a Mixer  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.096V  
OUT  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
= 5V(3V), Low Power, Deglitched  
OUT  
CC  
Parallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 8-Bit/10-Bit V  
DAC in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2μs for 10V Step  
250μA per DAC, 2.5V to 5.5V Supply Range  
300μA per DAC, 2.5V to 5.5V Supply Range  
LTC2600/LTC2610/LTC2620 Octal 16-Bit/14-Bit/12-Bit Rail-to-Rail DACs in 16-Lead SSOP  
LTC2602/LTC2612/LTC2622 Dual 16-Bit/14-Bit/12-Bit Rail-to-Rail DACs in 8-Lead MSOP  
2604fd  
LT 0309 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2624IGN

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2624IGN-1#PBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2624IGN-1#TRPBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2624_15

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625CGN

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625CGN#PBF

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2625CGN#TR

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2625CGN#TRPBF

暂无描述
Linear

LTC2625CGN-1

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625CGN-1#PBF

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2625CGN-1#TR

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear