LTC2625CGN-1#TR [Linear]

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2625CGN-1#TR
型号: LTC2625CGN-1#TR
厂家: Linear    Linear
描述:

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2605/LTC2615/LTC2625  
Octal 16-/14-/12-Bit  
Rail-to-Rail DACs in 16-Lead SSOP  
U
DESCRIPTIO  
FEATURES  
The LTC®2605/LTC2615/LTC2625 are octal 16-, 14-  
and 12-bit,2.7Vto5.5Vrail-to-railvoltage-outputDACsin  
16-lead narrow SSOP packages. They have built-in  
high performance output buffers and are guaranteed  
monotonic.  
Smallest Pin-Compatible Octal DACs:  
LTC2605: 16 Bits  
LTC2615: 14 Bits  
LTC2625: 12 Bits  
Guaranteed Monotonic Over Temperature  
400kHz I2C Interface  
Wide 2.7V to 5.5V Supply Range  
These parts establish new board-density benchmarks  
for 16- and 14-bit DACs and advance performance  
standards for output drive, crosstalk and load regulation  
in single-supply, voltage-output multiples.  
The parts use the 2-wire I2C compatible serial interface.  
The LTC2605/LTC2615/LTC2625 operate in both the  
standard mode (maximum clock rate of 100kHz) and the  
fast mode (maximum clock rate of 400kHz).  
Low Power Operation: 250µA per DAC at 3V  
Individual Channel Power-Down to 1µA, Max  
Ultralow Crosstalk Between DACs (<10µV)  
High Rail-to-Rail Output Drive (±15mA, Min)  
Double-Buffered Digital Inputs  
27 Selectable Addresses  
LTC2605/LTC2615/LTC2625: Power-On Reset to  
Zero Scale  
The LTC2605/LTC2615/LTC2625 incorporate a power-on  
LTC2605-1/LTC2615-1/LTC2625-1: Power-On Reset  
reset circuit. During power-up, the voltage outputs rise  
lessthan10mVabovezeroscale;andafterpower-up, they  
stay at zero scale until a valid write and update take place.  
The power-on reset circuit resets the LTC2605-1/  
LTC2615-1/LTC2625-1 to midscale. The voltage output  
stays at midscale until a valid write and update  
takes place.  
to Midscale  
Tiny 16-Lead Narrow SSOP Package  
U
APPLICATIO S  
Mobile Communications  
Process Control and Industrial Automation  
Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Automatic Test Equipment  
W
BLOCK DIAGRA  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
OUT A  
OUT H  
Differential Nonlinearity (LTC2605)  
1.0  
V
V
= 5V  
REF  
CC  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
OUT G  
V
OUT F  
3
4
14  
13  
OUT B  
OUT C  
0.8  
0.6  
= 4.096V  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DAC D  
DAC E  
V
V
5
12  
OUT D  
OUT E  
REF  
CA0  
CA1  
6
7
11  
10  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
0
16384  
32768  
CODE  
49152  
65535  
CA2  
2605 G02  
9
SDA  
SCL  
8
2605/15/25 BD  
2605f  
1
LTC2605/LTC2615/LTC2625  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC .............................................6V to 0.3V  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Operating Temperature Range  
LTC2605C/LTC2615C/LTC2625C ............. 0°C to 70°C  
LTC2605C-1/LTC2615C-1/LTC2625C-1 ... 0°C to 70°C  
LTC2605I/LTC2615I/LTC2625I ............ 40°C to 85°C  
LTC2605I-1/LTC2615I-1/LTC2625I-1 .. 40°C to 85°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART NUMBER  
GN PART MARKING  
TOP VIEW  
LTC2605CGN  
LTC2605CGN-1  
LTC2605IGN  
LTC2605IGN-1  
LTC2615CGN  
LTC2615CGN-1  
LTC2615IGN  
2605  
1
2
3
4
5
6
7
8
V
V
V
V
V
16  
15  
14  
13  
12  
11  
10  
9
GND  
CC  
26051  
2605I  
26O5I1  
2615  
V
V
V
V
OUT H  
OUT G  
OUT F  
OUT E  
OUT A  
OUT B  
OUT C  
OUT D  
REF  
26151  
2615I  
2615I1  
2625  
26251  
2625I  
2625I1  
CA0  
CA1  
SDA  
CA2  
SCL  
LTC2615IGN-1  
LTC2625CGN  
LTC2625CGN-1  
LTC2625IGN  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 125°C, θ = 150°C/W  
T
JMAX  
JA  
LTC2625IGN-1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted.  
LTC2625/-1  
LTC2615/-1  
LTC2605/-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
±0.5  
±4  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
±1  
±4 ±16  
±18 ±64  
V
= V = 5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.03 0.125  
0.07 0.5  
0.10 0.5  
0.3  
0.4  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Midscale  
OUT  
OUT  
REF  
I
I
CC  
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.07 0.25  
0.15  
0.20  
1
1
0.6  
0.8  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 4)  
1.7  
±1  
±5  
9
1.7  
±1  
±5  
9
1.7  
±1  
±5  
9
mV  
mV  
V
OS  
±9  
±9  
±9  
V
OS  
Temperature  
µV/°C  
Coefficient  
GE  
Gain Error  
±0.1 ±0.7  
±8  
±0.1 ±0.7  
±8  
±0.1 ±0.7  
±8  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
2605f  
2
LTC2605/LTC2615/LTC2625  
E
LECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
unless otherwise noted. (Note 9)  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
±10%  
–80  
dB  
CC  
R
OUT  
DC Output Impedance  
V
V
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.02  
0.03  
0.15  
0.15  
REF  
REF  
CC  
= V = 2.7V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
DC Crosstalk (Note 10)  
Due to Full Scale Output Change (Note 11)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±10  
±3.5  
±7  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
34  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.7V, V = 2.7V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
20  
27  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
11  
16  
90  
20  
Capacitance  
I
Reference Current, Power Down Mode DAC Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
2.50  
2.00  
0.38  
0.16  
4.0  
3.2  
1.0  
1.0  
mA  
mA  
µA  
CC  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
µA  
Digital I/O (Note 9)  
V
Low Level Input Voltage  
(SDA and SCL)  
0.3V  
V
V
IL  
CC  
V
High Level Input Voltage  
(SDA and SCL)  
0.7V  
CC  
IH  
V
V
Low Level Input Voltage (CA0 to CA2) See Test Circuit 1  
High Level Input Voltage (CA0 to CA2) See Test Circuit 1  
0.15V  
V
V
IL(CA)  
IH(CA)  
CC  
0.85V  
CC  
R
R
R
Resistance from CA (n = 0,1,2)  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
10  
10  
kΩ  
INH  
INL  
INF  
OL  
n
to V to Set CA = V  
CC  
CC  
n
Resistance from CA (n = 0,1,2)  
kΩ  
n
to GND to Set CA = GND  
n
Resistance from CA (n = 0,1,2)  
2
0
MΩ  
n
to V or GND to Set CA = FLOAT  
CC  
n
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 7)  
B
Pulse Width of Spikes Surpassed  
by Input Filter  
0
50  
ns  
SP  
Input Leakage  
0.1V V 0.9V  
1
µA  
pF  
pF  
pF  
IN  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 12)  
10  
IN  
Capacitance Load for Each Bus Line  
400  
10  
B
External Capacitive Load on  
Address Pins CA0, CA1 and CA2  
CAn  
2605f  
3
LTC2605/LTC2615/LTC2625  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
LTC2625/-1  
LTC2615/-1  
LTC2605/-1  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 5)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 6)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 8, 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 2.7V to 5.5V  
CC  
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Program  
Data Hold Time  
HD(STA)  
LOW  
1.3  
0.6  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 7)  
(Note 7)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
f
B
SU(STO)  
BUF  
1.3  
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: V = 5V, V = 4.096V. DAC is stepped ±1LSB between half  
CC REF  
scale and half scale – 1. Load is 2kin parallel with 200pF to GND.  
Note 7: C = capacitance of one bus line in pF.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
B
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
Note 8: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
rounded to the nearest whole code. For V = 4.096V and N = 16,  
REF  
Note 9: These specifications apply to LTC2605/LTC2605-1, LTC2615/  
LTC2615-1 and LTC2625/LTC2625-1.  
k = 256 and linearity is defined from code 256 to code 65,535.  
L
Note 3: SDA, SCL at 0V or V , CA0, CA1 and CA2 floating.  
CC  
Note 10: DC Crosstalk is measured with V = 5V and V = 4096V, with  
CC  
REF  
Note 4: Inferred from measurement at code 256 (LTC2605/LTC2605-1),  
code 64 (LTC2615/LTC2615-1) or code 16 (LTC2625/LTC2625-1) and  
at full scale.  
the measured DAC at midscale, unless otherwise noted.  
Note 11: R = 2kto GND or V  
.
CC  
L
Note 12: Guaranteed by design and not production tested.  
Note 5: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
and 3/4 scale to 1/4 scale. Load is 2kin parallel with 200pF to GND.  
2605f  
4
LTC2605/LTC2615/LTC2625  
ELECTRICAL CHARACTERISTICS  
Test Circuit 1  
Test Circuit 2  
V
DD  
100  
CA  
n
R
/R /R  
INH INL INF  
V
/V  
IH(CA ) IL(CA )  
n
n
2605/15/25 EC01  
2605/15/25 EC02  
GND  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2605  
Differential Nonlinearity (DNL)  
INL vs Temperature  
Integal Nonlinearity (INL)  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2605 G02  
2605 G01  
2605 G03  
INL vs VREF  
DNL vs VREF  
DNL vs Temperature  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
CC  
V
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
INL (POS)  
INL (NEG)  
0.5  
DNL (POS)  
DNL (NEG)  
8
0.2  
DNL (POS)  
DNL (NEG)  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
V
3
4
5
TEMPERATURE (°C)  
V
(V)  
REF  
(V)  
REF  
2605 G04  
2605 G05  
2605 G06  
2605f  
5
LTC2605/LTC2615/LTC2625  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2605  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
12.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
2V/DIV  
SCR  
2V/DIV  
2605 G07  
2605 G08  
2µs/DIV  
= 4.096V  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
AVERAGE OF 2048 EVENTS  
5µs/DIV  
V
= 5V, V  
REF  
SETTLING TO ±1LSB  
V = 5V, V = 4.096V  
CC  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
CC  
REF  
R
L
L
LTC2615  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100µV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2605 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
4096  
8192  
CODE  
12288  
16383  
L
L
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2605 G09  
2605 G10  
LTC2625  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2605 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
2605 G12  
2605 G13  
2605f  
6
LTC2605/LTC2615/LTC2625  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2605/LTC2615/LTC2625  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
1.0  
0.8  
0.10  
0.08  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
V
V
= V = 5V  
CC  
REF  
REF  
0.6  
0.06  
= V = 3V  
CC  
0.4  
0.04  
1
0.2  
0.02  
0
0
0
V
= V = 5V  
CC  
REF  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 3V  
CC  
V
= V = 5V  
CC  
REF  
–35 –25 –15 –5  
I
5
15  
25  
35  
–40 –30 –20 –10  
I
0
10 20 30 40  
–50 –30 –10 10  
30  
50  
70  
90  
(mA)  
(mA)  
TEMPERATURE (°C)  
OUT  
OUT  
2606 G16  
2605 G15  
2605 G17  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
0.4  
0.3  
3
2
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
CC  
2605 G19  
2605 G20  
2605 G18  
Large-Signal Response  
Gain Error vs VCC  
ICC Shutdown vs VCC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5µs/DIV  
2605 G23  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2605 G22  
2605 G21  
2605f  
7
LTC2605/LTC2615/LTC2625  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2605/LTC2615/LTC2625  
Headroom at Rails  
vs Output Current  
Midscale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
1V/DIV  
10mV/DIV  
3V SOURCING  
4mV PEAK  
SCL  
2V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2605 G24  
2605 G25  
3V SINKING  
2.5µs/DIV  
250µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2605 G26  
Multiplying Bandwidth  
Supply Current vs Logic Voltage  
Power-On Reset to Midscale  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
0
V
= V  
CC  
REF  
V
= 5V  
CC  
–3  
–6  
SWEEP SCL  
AND SDA 0V  
TO V AND  
CC  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
TO 0V  
CC  
1V/DIV  
V
CC  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
V
OUT  
(AC) = 0.2V  
P-P  
2605 G28  
CODE = FULL SCALE  
LOGIC VOLTAGE (V)  
2605 G27  
500µs/DIV  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2605 G29  
Output Voltage Noise,  
0.1Hz to 10Hz  
Short-Circuit Output Current vs  
VOUT (Sinking)  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
0mA  
–10mA  
–20mA  
–30mA  
–40mA  
–50mA  
40mA  
30mA  
20mA  
10mA  
0mA  
V
OUT  
10µV/DIV  
V
V
= 5.5V  
REF  
CODE = 0  
V
V
= 5.5V  
REF  
CC  
CC  
= 5.6V  
= 5.6V  
CODE = FULL SCALE  
0
1
2
3
4
5
6
7
8
9
10  
V
OUT  
SWEPT 0V TO V  
V
SWEPT V TO 0V  
CC  
OUT CC  
SECONDS  
2605 G30  
0
1
2
3
4
5
0
1
2
3
4
5
1V/DIV  
2605 G32  
1V/DIV  
2605 G31  
2605f  
8
LTC2605/LTC2615/LTC2625  
U
U
U
PIN FUNCTIONS  
GND (Pin 1): Analog Ground.  
SDA (Pin 9): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This is  
a high impedance pin while data is shifted in. It is an open-  
drain N-channel output during acknowledgment. This pin  
requires a pull-up resistor or current source to VCC.  
VOUT A to VOUT H (Pins 2-5 and 12-15): DAC Analog  
Voltage Output. The output range is 0V to VREF  
.
REF (Pin 6): Reference Voltage Input. 0V VREF VCC.  
CA2 (Pin 7): Chip Address Bit 2. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 2).  
CA1 (Pin 10): Chip Address Bit 1. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 2).  
SCL (Pin 8): Serial Clock Input Pin. Data is shifted into the  
SDA pin at the rising edges of the clock. This high  
impedance pin requires a pull-up resistor or current  
source to VCC.  
CA0 (Pin 11): Chip Address Bit 0. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 2).  
V
CC (Pin 16): Supply Voltage Input. 2.7V VCC 5.5V.  
W
BLOCK DIAGRA  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
OUT A  
OUT H  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
OUT G  
V
OUT F  
3
4
14  
13  
OUT B  
OUT C  
DAC D  
DAC E  
V
OUT D  
V
OUT E  
5
12  
REF  
CA0  
CA1  
6
7
11  
10  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
CA2  
9
SDA  
SCL  
8
2605/15/25 BD01  
W U  
W
TI I G DIAGRA  
SDA  
t
t
f
SU(DAT)  
t
t
t
t
t
t
t
BUF  
f
LOW  
r
HD(STA)  
SP  
r
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
S
S
P
S
HD(DAT)  
HIGH  
2605/15/25 TD01  
ALL VOLTAGE LEVELS REFER TO V  
AND V LEVELS  
IL(MAX)  
IH(MIN)  
Figure 1  
2605f  
9
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
Power-On Reset  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and VREF is the voltage at REF  
(Pin 6).  
The LTC2605/LTC2615/LTC2625 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2605-1/  
LTC2615-1/LTC2625-1setthevoltageoutputstomidscale  
when power is first applied.  
Serial Digital Interface  
The LTC2605/LTC2615/LTC2625 communicate with a  
host using the standard 2-wire digital interface. The  
Timing Diagram (Figure 1) shows the timing relationship  
of the signals on the bus. The two bus lines, SDA and SCL,  
must be high when the bus is not in use. External pull-up  
resistors or current sources are required on these lines.  
The value of these pull-up resistors is dependent on the  
power supply and can be obtained from the I2C specifica-  
tions. For an I2C bus operating in the fast mode, an active  
pull-up will be necessary if the bus capacitance is greater  
than 200pF.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2605/  
LTC2615/LTC2625 contain circuitry to reduce the  
power-on glitch: the analog outputs typically rise less  
than 10mV above zero scale during power on if the  
power supply is ramped to 5V in 1ms or more. In general,  
the glitch amplitude decreases as the power supply ramp  
time is increased. See Power-On Reset Glitch in the  
Typical Performance Characteristics section.  
The LTC2605/LTC2615/LTC2625 are receive-only (slave)  
devices. The master can write to the LTC2605/LTC2615/  
LTC2625. The LTC2605/LTC2615/LTC2625 do not  
respond to a read from the master.  
Power Supply Sequencing  
The voltage at REF (Pin 6) should be kept within the range  
0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 16) is in transition.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition.  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
high to low while SCL is high.  
Transfer Function  
The digital-to-analog transfer function is  
k
2
VOUT(IDEAL)  
=
V
REF  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generatedbytransitioningSDAfromlowtohighwhileSCL  
is high. The bus is then free for communication with  
another I2C device.  
N
Table 1.  
ADDRESS (n)*  
COMMAND*  
A3 A2 A1 A0  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
*Address and command codes not shown are reserved and should not be used.  
2605f  
10  
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
WRITE WORD PROTOCOL FOR LTC2605/LTC2615/LTC2625  
S
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
INPUT WORD  
A
A
P
SLAVE ADDRESS  
3RD DATA BYTE  
INPUT WORD (LTC2605)  
A3 A2  
1ST DATA BYTE  
INPUT WORD (LTC2615)  
A3 A2  
1ST DATA BYTE  
INPUT WORD (LTC2625)  
A3 A2  
1ST DATA BYTE  
A0  
A0  
A0  
D12  
D6  
D4  
D2  
D0  
X
C3  
C1  
A1  
A1  
A1  
D15 D14 D13  
D11 D10 D9 D8  
D5 D4 D3 D2 D1  
3RD DATA BYTE  
C2  
C0  
D7  
D5  
D3  
2ND DATA BYTE  
C3  
C1  
D13 D12 D11  
D10  
D9 D8 D7 D6  
D3 D2 D1 D0  
3RD DATA BYTE  
X
C2  
C0  
2ND DATA BYTE  
C3  
C1  
D11 D10 D9  
D8  
D7 D6 D5 D4  
D1 D0  
X
X
X
X
C2  
C0  
2605/2615/2625 O01  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 2  
maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF.  
Acknowledge  
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the latest  
byte of information was received. The Acknowledge  
related clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
during the Acknowledge clock pulse so that it remains a  
stableLOWduringtheHIGHperiodofthisclockpulse.The  
LTC2605/LTC2615/LTC2625 respond to a write by a mas-  
ter in this manner. The LTC2605/LTC2615/LTC2625 do  
not acknowledge a read (it retains SDA HIGH during the  
period of the Acknowledge clock pulse).  
Write Word Protocol  
The master initiates communication with the LTC2605/  
LTC2615/LTC2625 with a START condition and a 7-bit  
slave address followed by the Write bit (W) = 0. The  
LTC2605/LTC2615/LTC2625acknowledgesbypullingthe  
SDA pin low at the 9th clock if the 7-bit slave address  
matches the address of the parts (set by CA0, CA1 and  
CA2) or the global address. The master then transmits  
three bytes of data. The LTC2605/LTC2615/LTC2625  
acknowledgeseachbyteofdatabypullingtheSDAlinelow  
at the 9th clock of each data byte transmission. After  
receiving three complete bytes of data, the LTC2605/  
LTC2615/LTC2625 executes the command specified in  
the 24-bit input word.  
Chip Address  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set to  
any one of three states: VCC, GND or FLOAT. This results  
in 27 selectable addresses for the part. The addresses  
corresponding to the states of CA0, CA1 and CA2 and the  
global address are shown in Table 2.  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2605/LTC2615/LTC2625 do  
not acknowledge the extra bytes of data (SDA is high  
during the 9th clock).  
TheformatofthethreedatabytesisshowninFigure2.Thefirst  
byte of the input word consists of the 4-bit command and 4-  
bit DAC address. The next two bytes consist of the 16-bit data  
word. The 16-bit data word consists of the 16-, 14- or 12-bit  
input code, MSB to LSB, followed by 0, 2 or 4 don’t care bits  
In addition to the address selected by the address pins, the  
partsalsorespondtoaglobaladdress. Thisaddressallows  
a common write to all LTC2605, LTC2615 and LTC2625  
parts to be accomplished with one 3-byte write transaction  
on the I2C bus. The global address is a 7-bit hardwired  
address and is not selectable by CA0, CA1 and CA2. The  
2
(LTC2605, LTC2615 and LTC2625 respectively). A typical I C  
write transaction is shown in Figure 3.  
2605f  
11  
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads the 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the block diagram.  
Power Down Mode  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than eight outputs are needed. When in power-down, the  
buffer amplifiers and reference inputs are disabled and  
drawessentiallyzerocurrent.TheDACoutputsareputinto  
a high-impedance state, and the output pins are passively  
pulled to ground through individual 90k resistors. When  
all eight DACs are powered down, the bias generation  
circuit is also disabled. Input- and DAC- registers are not  
disturbed during power-down.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in  
combination with the appropriate DAC address, (n). The  
16-bit data word is ignored. The supply and reference  
currents are reduced by approximately 1/8 for each DAC  
powereddown;theeffectiveresistanceatREF(Pin6)rises  
accordingly, becoming a high-impedance input (typically  
>1G) when all eight DACs are powered down.  
Table 2. Slave Address Map  
CA2  
GND GND  
GND GND FLOAT  
GND GND  
CA1  
CA0 SA6 SA5 SA4 SA3 SA2 SA1 SA0  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V
CC  
GND FLOAT GND  
GND FLOAT FLOAT  
GND FLOAT  
V
CC  
GND  
GND  
GND  
V
CC  
V
CC  
V
CC  
GND  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
The selected DAC is powered up as its voltage output  
is updated.  
FLOAT  
V
CC  
FLOAT GND  
FLOAT GND FLOAT  
FLOAT GND  
GND  
V
There is an initial delay as the DAC powers up before it  
begins its usual settling behavior. If less than eight DACs  
are in a powered-down state prior to the updated  
command, the power-up delay is 5µs. If, on the other  
hand, all eight DACs are powered down, then the bias  
generation circuit is also disabled and must be restarted.  
In this case, the power-up delay is greater: 12µs for  
VCC = 5V, 30µs for VCC = 3V.  
CC  
FLOAT FLOAT GND  
FLOAT FLOAT FLOAT  
FLOAT FLOAT  
V
CC  
FLOAT  
FLOAT  
FLOAT  
V
CC  
V
CC  
V
CC  
GND  
FLOAT  
V
CC  
V
V
V
V
V
V
V
V
V
GND  
GND FLOAT  
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
Voltage Outputs  
FLOAT GND  
FLOAT FLOAT  
Each of the eight rail-to-rail amplifiers contained in these  
parts has guaranteed load regulation when sourcing or  
sinking up to 15mA at 5V (7.5mA at 3V).  
FLOAT  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
FLOAT  
Load regulation is a measure of the amplifier’s ability  
to maintain the rated voltage accuracy over a wide range  
ofloadconditions.Themeasuredchangeinoutputvoltage  
per milliampere of forced load current change is  
expressed in LSB/mA.  
V
CC  
GLOBAL ADDRESS  
2605f  
12  
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
DC output impedance is equivalent to load regulation and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifier’s DC output  
impedance is 0.020when driving a load well away from  
the rails.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by the  
30typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30• 1mA = 30mV. See the graph Headroom at Rails vs  
OutputCurrentintheTypicalPerformanceCharacteristics  
section.  
The GND pin of the part should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here will  
add directly to the effective DC output impedance of the  
device (typically 0.020), and will degrade DC crosstalk.  
Note that the LTC2605/LTC2615/LTC2625 are no more  
susceptible to these effects than other parts of their type;  
on the contrary, they allow layout-based performance  
improvements to shine rather than limiting attainable  
performance with excessive internal resistance.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
Board Layout  
The excellent load regulation and DC crosstalk perfor-  
mance of these devices is achieved in part by keeping  
“signal” and “power” grounds separated internally and by  
reducing shared internal resistance to just 0.005.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
The GND pin functions both as the node to which the  
reference and output voltages are referred and as a return  
path for power currents in the device. Because of this,  
careful thought should be given to the grounding scheme  
and board layout in order to ensure rated performance.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown in  
Figure 4b. Similarly, limiting can occur near full scale  
when the REF pin is tied to VCC. If VREF = VCC and the DAC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 4c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimalcapacitiveandresistiveinteractionwitheach other.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
2605f  
13  
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
2605f  
14  
LTC2605/LTC2615/LTC2625  
U
OPERATIO  
POSITIVE  
FSE  
V
REF  
= V  
CC  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
2605/15/25 O05  
Figure 4. Effects of Rail-to-Rail Operation on a DAC Transfer Curve. (a) Overall Transfer Function, (b) Effect  
of Negative Offset for Codes Near Zero Scale, (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0 – 8 TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2605f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2605/LTC2615/LTC2625  
U
TYPICAL APPLICATIO  
Demonstration Circuit—LTC2428 20-Bit ADC Measures Key Performance Parameters  
ADDRESS SELECTION  
V
V
V
V
V
CC  
CC  
CC  
CC  
REF  
C1  
0.1µF  
C2  
0.1µF  
6
16  
REF  
V
CC  
11  
10  
7
2
TP3  
CA0  
CA1  
CA2  
V
V
V
A
B
C
D
E
OUT  
OUT  
OUT  
OUT  
DAC A  
3
4
TP4  
DAC B  
5
V
V
CC  
12  
13  
14  
15  
TP5  
DAC C  
V
OUT  
10k  
10k  
V
F
OUT  
9
8
TP6  
DAC D  
SDA  
SCL  
V
V
G
H
2
OUT  
OUT  
I C  
BUS  
DAC OUTPUTS  
TP7  
DAC E  
V
REF  
V
V
CC  
CC  
GND  
1
U2  
LTC2605CGN  
TP8  
DAC F  
C4  
0.1µF  
C5  
0.1µF  
TP9  
DAC G  
R5  
7.5k  
JP1  
R8  
22  
ON/OFF  
3
TP10  
DAC H  
C10  
100pF  
2
DISABLE  
ADC  
V
IN  
7
4
3
2
8
U4  
1
LT1236ACS8-5  
V
V
MUXOUT ADCIN FS  
CC CC  
SET  
2
6
V
REF  
V
IN  
V
OUT  
1
9
CH0  
5V  
TP11  
REF  
23  
R6  
7.5k  
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
GND  
4
CSADC  
V
2
3
4.096V  
20  
25  
19  
21  
24  
CS  
C7  
4.7µF  
6.3V  
C6  
0.1µF  
CSMUX  
SCK  
JP2  
REF  
V
4-/8-CHANNEL  
MUX  
20-BIT  
+
SCK  
SPI  
BUS  
ADC  
CLK  
U5  
D
IN  
LT1461ACS8-4  
2
3
6
SD0  
V
CC  
V
V
OUT  
IN  
1
26  
SHDN  
GND  
5V  
TP12  
FO  
REF  
5
ZS  
SET  
V
CC  
2
3
GND GND GND GND GND GND GND  
16 18 22 27 28  
R7  
7.5k  
C9  
0.1µF  
C8 REGULATOR  
4
1µF  
16V  
JP3  
1
6
U3  
LTC2428CG  
TP13  
GND  
V
CC  
2605 TA01  
5V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10-/8-Bit V  
DAC in 16-Pin Narrow SSOP  
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
CC  
OUT  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
250µA per DAC, 2.5V–5.5V Supply Range, Rail-to-Rail  
Output, SPI Interface  
LTC2600/LTC2610/  
LTC2620  
OUT  
LTC2601/LTC2611/  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
300µA per DAC, 2.5V–5.5V Supply Range, Rail-to-Rail  
Output, SPI Interface  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
300µA per DAC, 2.5V–5.5V Supply Range, Rail-to-Rail  
Output, SPI Interface  
OUT  
LTC2604/LTC2614/  
LTC2624  
Quad 16-/14-/12-Bit V  
DACs in 16-Lead SSOP  
250µA per DAC, 2.5V–5.5V Supply Range, Rail-to-Rail  
OUT  
Output, SPI Interface  
2
LTC2606/LTC2616/  
LTC2626  
Single 16-/14-/12-Bit V  
DACs with I C Interface in 10-Lead DFN 270µA per DAC, 2.7V–5.5V Supply Range, Rail-to-Rail  
OUT  
2
Output, I C Interface  
2605f  
LT/LWI/TP 0405 500 • PRINTED IN THE USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY