LTC2624CGN [Linear]

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; 四通道16位轨至轨数模转换器采用16引脚SSOP
LTC2624CGN
型号: LTC2624CGN
厂家: Linear    Linear
描述:

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP
四通道16位轨至轨数模转换器采用16引脚SSOP

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2604/LTC2614/LTC2624  
Quad 16-Bit Rail-to-Rail DACs  
in 16-Lead SSOP  
U
FEATURES  
DESCRIPTIO  
The LTC®2604/LTC2614/LTC2624 are quad 16-,14- and  
12-bit 2.5V to 5.5V rail-to-rail voltage output DACs in  
16-lead narrow SSOP packages. These parts have sepa-  
rate reference inputs for each DAC. They have built-in  
high performance output buffers and are guaranteed  
monotonic.  
Smallest Pin Compatible Quad 16-Bit DAC:  
LTC2604: 16-Bits  
LTC2614: 14-Bits  
LTC2624: 12-Bits  
Guaranteed 16-Bit Monotonic Over Temperature  
Separate Reference Inputs for each DAC  
Wide 2.5V to 5.5V Supply Range  
These parts establish advanced performance standards  
for output drive, crosstalk and load regulation in single-  
supply, voltage output multiples.  
The parts use a simple SPI/MICROWIRETM compatible  
3-wire serial interface which can be operated at clock  
ratesupto50MHz.Daisy-chaincapabilityandahardware  
CLR function are included.  
Low Power Operation: 250µA per DAC at 3V  
Individual DAC Power-Down to 1µA, Max  
Ultralow Crosstalk Between DACs (<5µV)  
High Rail-to-Rail Output Drive (±15mA)  
Double Buffered Digital Inputs  
16-Lead Narrow SSOP Package  
U
APPLICATIO S  
The LTC2604/LTC2614/LTC2624 incorporate a power-  
on reset circuit. During power-up, the voltage outputs  
rise less than 10mV above zero scale; and after power-  
up, they stay at zero scale until a valid write and update  
take place.  
Mobile Communications  
Process Control and Industrial Automation  
Instrumentation  
Automatic Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corp.  
W
BLOCK DIAGRA  
V
CC  
GND  
1
REF LO  
2
REF A  
3
16  
REF D  
15  
Differential Nonlinearity (LTC2604)  
V
OUT D  
14  
1.0  
DAC D  
DAC C  
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
V
OUTA  
DAC A  
DAC B  
4
V
OUT C  
13  
0.4  
0.2  
V
OUTB  
5
REF C  
12  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
REF B  
6
CLR  
11  
CONTROL  
LOGIC  
SDO  
10  
CS/LD  
7
DECODE  
0
16384  
32768  
CODE  
49152  
65535  
SCK  
8
SDI  
9
32-BIT SHIFT REGISTER  
2604 TA01  
2604 BD  
2604f  
1
LTC2604/LTC2614/LTC2624  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC ............................................ 6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LTC2604/LTC2614/LTC2624C ............... 0°C to 70°C  
LTC2604/LTC2614/LTC2624I ............ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
1
2
3
4
5
6
7
8
V
CC  
16  
15  
14  
13  
12  
11  
10  
9
GND  
REF LO  
REF A  
LTC2604CGN  
LTC2604IGN  
LTC2614CGN  
LTC2614IGN  
LTC2624CGN  
LTC2624IGN  
REF D  
V
OUT D  
V
OUT C  
V
OUT A  
REF C  
CLR  
SDO  
SDI  
V
OUT B  
REF B  
CS/LD  
SCK  
GN PART MARKING  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 150°C/W  
2604  
2604I  
2614  
2614I  
2624  
2624I  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D = 2.048V (VCC = 2.5V),  
REF LO = 0V, VOUT unloaded, unless otherwise noted.  
LTC2624  
LTC2614  
LTC2604  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity  
±0.5  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
±0.9 ±4  
±4 ±16  
±14 ±64  
V
= V = 5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.025 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.3  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.5V, Midscale  
OUT  
OUT  
REF  
I
I
CC  
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.7  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
1.5  
9
1.5  
9
1.5  
9
mV  
mV  
V
(Note 7)  
±1.5 ±9  
±5  
±1.5 ±9  
±5  
±1.5 ±9  
±5  
OS  
V
Temperature  
µV/°C  
OS  
Coefficient  
GE  
Gain Error  
±0.1 ±0.7  
±5  
±0.1 ±0.7  
±5  
±0.1 ±0.7  
±5  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
LTC2604/LTC2614/LTC2624  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= 5V ±10%  
= 3V ±10%  
–80  
–80  
dB  
dB  
CC  
CC  
R
OUT  
DC Output Impedance  
V
V
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.025  
0.030  
0.15  
0.15  
REF  
REF  
CC  
= V = 2.5V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
2604f  
2
LTC2604/LTC2614/LTC2624  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D = 2.048V (VCC = 2.5V),  
REF LO = 0V, VOUT unloaded, unless otherwise noted.  
LTC2604/LTC2614/LTC2624  
SYMBOL PARAMETER  
DC Crosstalk (Note 4)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±5  
±1  
±3.5  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
36  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.5V, V = 2.5V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
18  
24  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
128  
14  
160  
Capacitance  
I
Reference Current, Power Down Mode All DACs Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.5  
5.5  
V
CC  
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
1.3  
1
0.35  
0.10  
2
1.6  
1
mA  
mA  
µA  
CC  
CC  
CC  
All DACs Powered Down (Note 3) V = 5V  
CC  
CC  
All DACs Powered Down (Note 3) V = 3V  
1
µA  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
= 4.5V to 5.5V  
= 2.5V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
Load Current = –100µA  
Load Current = +100µA  
V
– 0.4  
CC  
V
V
OH  
OL  
0.4  
±1  
8
I
V
= GND to V  
CC  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance  
(Note 6)  
IN  
LTC2624  
LTC2614  
LTC2604  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 8)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
s
Settling Time for  
1LSB Step (Note 9)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise  
Density  
At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
2604f  
3
LTC2604/LTC2614/LTC2624  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. REF A = REF B = REF C = REF D = 4.096V (VCC = 5V), REF A = REF B = REF C = REF D = 2.048V (VCC = 2.5V),  
REF LO = 0V, VOUT unloaded, unless otherwise noted.  
LTC2604/LTC2614/LTC2624  
SYMBOL PARAMETER  
= 2.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDI Valid to SCK Hold  
2
3
4
5
6
7
SCK High Time  
9
SCK Low Time  
9
CS/LD Pulse Width  
10  
7
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SDO Propagation Delay from SCK Falling Edge  
7
t8  
CLOAD = 10pF  
V
CC = 4.5V to 5.5V  
20  
45  
ns  
ns  
VCC = 2.5V to 5.5V  
t9  
CLR Pulse Width  
20  
7
ns  
ns  
t
CS/LD High to SCK Positive Edge  
SCK Frequency  
10  
50% Duty Cycle  
50  
MHz  
Note 5: R = 2kto GND or V  
.
Note 1: Absolute maximum ratings are those values beyond which the life  
L
CC  
of a device may be impaired.  
Note 6: Guaranteed by design and not production tested.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 7: Inferred from measurement at code 256 (LTC2604), code 64  
(LTC2614) or code 16 (LTC2624), and at full scale.  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V  
= 4.096V and N = 16,  
REF  
Note 8: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
k = 256, linearity is defined from code 256 to code 65,535.  
L
and 3/4 scate to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
Note 3: Digital inputs at 0V or V  
.
CC  
Note 9: V = 5V, V = 4.096V. DAC is stepped 1LSB between half scale  
CC  
REF  
Note 4: DC crosstalk is measured with V = 5V and V  
= 4.096V, with  
CC  
REF  
and half scale –1. Load is 2k in parallel with 200pF to GND.  
the measured DAC at midscale, unless otherwise noted.  
U W  
(LTC2604/LTC2614/LTC2624)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Offset Error vs Temperature  
Current Limiting  
Load Regulation  
0.10  
0.08  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
V
REF  
REF  
= V = 5V  
CC  
0.06  
0.6  
V
= V = 3V  
CC  
0.04  
0.4  
1
0.02  
0.2  
0
0
0
V
REF  
= V = 5V  
CC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
REF  
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
TEMPERATURE (°C)  
OUT  
OUT  
2604 G01  
2604 G02  
2604 G03  
2604f  
4
LTC2604/LTC2614/LTC2624  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC2604/LTC2614/LTC2624)  
U W  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2604 G04  
2604 G05  
2604 G06  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Settling  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5µs/DIV  
2604 G09  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2604 G07  
2604 G08  
Headroom at Rails vs Output  
Current  
Midscale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
10mV/DIV  
3V SOURCING  
1V/DIV  
12nV-s TYP  
4mV PEAK  
CS/LD  
5V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2604 G11  
2604 G10  
3V SINKING  
250µs/DIV  
2.5µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2604 G12  
2604f  
5
LTC2604/LTC2614/LTC2624  
U W  
(LTC2604/LTC2614/LTC2624)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Logic Voltage  
Exiting Power-Down to Midscale  
Hardware CLR  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
V
V
= 5V  
= 2V  
V
= 5V  
CC  
REF  
CC  
SWEEP SCK, SDI  
AND CS/LD  
0V TO V  
CC  
V
OUT  
V
OUT  
0.5V/DIV  
1V/DIV  
DACs A-C IN  
POWER-DOWN MODE  
CS/LD  
5V/DIV  
CLR  
5V/DIV  
2604 G15  
2.5µs/DIV  
2604 G14  
1µs/DIV  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
2604 G13  
Output Voltage Noise,  
0.1Hz to 10Hz  
Short-Circuit Output Current vs  
VOUT (Sinking)  
Multiplying Frequency Response  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10µV/DIV  
0mA  
V
V
= 5.5V  
REF  
CODE = 0  
CC  
V
V
V
= 5V  
CC  
= 5.6V  
(DC) = 2V  
REF  
REF  
(AC) = 0.2V  
P-P  
0
1
2
3
4
5
6
7
8
9
10  
V
SWEPT 0V TO V  
OUT  
CC  
CODE = FULL SCALE  
SECONDS  
2604 G17  
1k  
10k  
100k  
1M  
1V/DIV  
2604 G18  
FREQUENCY (Hz)  
2604 G16  
Short-Circuit Output Current vs  
OUT (Sourcing)  
V
0mA  
V
V
= 5.5V  
REF  
CC  
= 5.6V  
CODE = FULL SCALE  
V
OUT  
SWEPT V TO 0V  
CC  
1V/DIV  
2604 G19  
2604f  
6
LTC2604/LTC2614/LTC2624  
U W  
(LTC2604)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
32  
24  
1.0  
0.8  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
V
V
= 5V  
REF  
= 4.096V  
= 4.096V  
CC  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
TEMPERATURE (°C)  
2604 G22  
2604 G21  
2604 G20  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2604 G23  
2604 G24  
2604 G25  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
12.3µs  
9.7µs  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
2604 G27  
2604 G26  
5µs/DIV  
2µs/DIV  
V
= 5V, V  
= 4.096V  
V
= 5V, V  
= 4.096V  
CC  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
REF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
SETTLING TO ±1LSB  
R
L
L
AVERAGE OF 2048 EVENTS  
2604f  
7
LTC2604/LTC2614/LTC2624  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC2614)  
Settling to ±1LSB  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
100µV/DIV  
0.2  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2604 G30  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2604 G28  
2604 G29  
(LTC2624)  
Settling to ±1LSB  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
2.0  
1.5  
1.0  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
0.8  
0.6  
= 4.096V  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
1mV/DIV  
0.2  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2604 G33  
2µs/DIV  
V
= 5V, V  
= 4.096V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2604 G31  
2604 G32  
U
U
U
PIN FUNCTIONS  
CS/LD (Pin 7): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow,SCKisenabledforshiftingdataonSDI  
into the register. When CS/LD is taken high, SCK is  
disabled and the specified command (see Table 1) is  
executed.  
GND (Pin 1): Analog Ground.  
REFLO(Pin2):ReferenceLow.Thevoltageatthispinsets  
the zero scale (ZS) voltage of all DACs. The voltage range  
is 0 REF LO VCC – 2.5V.  
REFA,REFB,REFC,REFD(Pins3,6,12,15):Reference  
Voltage Inputs for each DAC. REF x sets the full scale  
voltage of the DACs. 0V REF x VCC.  
SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL  
compatible.  
SDI (Pin 9): Serial Interface Data Input. Data is applied to  
SDIfortransfertothedeviceat therisingedgeofSCK. The  
LTC2604/LTC2614/LTC2624 accepts input word lengths  
VOUT A to VOUT D (Pins 4, 5, 13, 14): DAC Analog Voltage  
Outputs. The output range is from REF LO to REF x.  
of either 24 or 32 bits.  
2604f  
8
LTC2604/LTC2614/LTC2624  
U
U
U
PIN FUNCTIONS  
SDO (Pin 10): Serial Interface Data Output. The serial  
outputoftheshiftregisterappearsattheSDOpin.Thedata  
transferred to the device via the SDI pin is delayed 32 SCK  
rising edges before being output at the next falling edge.  
This pin is used for daisy-chain operation.  
CLR(Pin11):AsynchronousClearInput.Alogiclowatthis  
level-triggered input clears all registers and causes the  
DAC voltage outputs to drop to 0V. CMOS and TTL-  
compatible.  
VCC (Pin 16): Supply Voltage Input. 2.5V VCC 5.5V.  
W
BLOCK DIAGRA  
V
CC  
GND  
1
REF LO  
2
16  
REF D  
15  
REF A  
3
V
OUT D  
14  
DAC D  
DAC C  
V
OUTA  
4
DAC A  
DAC B  
V
OUT C  
13  
V
OUTB  
5
REF C  
12  
REF B  
6
CLR  
11  
CONTROL  
LOGIC  
SDO  
10  
CS/LD  
7
DECODE  
SCK  
8
SDI  
9
32-BIT SHIFT REGISTER  
2604 BD  
W U  
W
TI I G DIAGRA  
t
1
t
6
t
t
t
4
2
3
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
SDO  
t
8
2604 F01  
Figure 1  
2604f  
9
LTC2604/LTC2614/LTC2624  
U
OPERATIO  
Table 1.  
COMMAND*  
Power-On Reset  
TheLTC2604/LTC2614/LTC2624cleartheoutputstozero  
scalewhenpowerisfirstapplied,makingsysteminitializa-  
tion consistent and repeatable.  
C3 C2 C1 C0  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2604/  
LTC2614/LTC2624 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground(typ)duringpower-on.SeePower-OnResetGlitch  
in the Typical Performance Characteristics section.  
No Operation  
ADDRESS (n)*  
A3 A2 A1 A0  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
Power Supply Sequencing  
only be transferred to the device when the CS/LD signal is  
low.The rising edge of CS/LD ends the data transfer and  
causes the device to carry out the action specified in the  
24-bit input word. The complete sequence is shown in  
Figure 2a.  
The voltage at REF (Pins 3, 6, 12 and 15) should be kept  
within the range 0.3V REF xVCC + 0.3V (see Absolute  
Maximum Ratings). Particular care should be taken to  
observe these limits during power supply turn-on and  
turn-off sequences, when the voltage at VCC (Pin 16) is in  
transition.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register into  
the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the block diagram.  
Transfer Function  
The digital-to-analog transfer function is  
k
2N  
VOUT(IDEAL)  
=
[REFx –REFLO]+REFLO  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and REF x is the voltage at REF A,  
REF B, REF C and REF D (Pins 3, 6, 12 and 15).  
Serial Interface  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, powering-on the SDI  
andSCKbuffersandenablingtheinputshiftregister. Data  
(SDI input) is transferred at the next 24 rising SCK edges.  
The 4-bit command, C3-C0, is loaded first; then the 4-bit  
DAC address, A3-A0; and finally the 16-bit data word. The  
data word comprises the 16-, 14- or 12-bit input code,  
ordered MSB-to-LSB, followed by 0, 2 or 4 don’t-care bits  
(LTC2604, LTC2614andLTC2624respectively). Datacan  
While the minimum input word is 24 bits, it may optionally  
be extended to 32 bits. To use the 32-bit word width, 8  
don’t-care bits are transferred to the device first, followed  
by the 24-bit word as just described. Figure 2b shows the  
32-bit sequence. The 32-bit word is required for daisy-  
chain operation, and is also available to accommodate  
microprocessorswhichhaveaminimumwordwidthof16  
bits (2 bytes).  
2604f  
10  
LTC2604/LTC2614/LTC2624  
U
OPERATIO  
INPUT WORD (LTC2604)  
COMMAND  
ADDRESS  
DATA (16 BITS)  
A3 A2  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
C3  
C1  
A1  
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C2  
C0  
LSB  
2604 TBL01  
INPUT WORD (LTC2614)  
COMMAND  
ADDRESS  
DATA (14 BITS + 2 DON’T-CARE BITS)  
A3 A2  
A0  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D7  
C2  
C0  
MSB  
LSB  
2604 TBL02  
INPUT WORD (LTC2624)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DON’T-CARE BITS)  
A3 A2  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D11 D10 D9 D8  
MSB  
D7  
C2  
C0  
LSB  
2604 TBL03  
Daisy-Chain Operation  
Power-Down Mode  
The serial output of the shift register appears at the SDO  
pin. Data transferred to the device from the SDI input is  
delayed 32 SCK rising edges before being output at the  
next SCK falling edge.  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than four outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits and reference inputs are  
disabled, and draw essentially zero current. The DAC  
outputs are put into a high-impedance state, and the  
output pins are passively pulled to ground through indi-  
vidual 90k resistors. Input- and DAC-register contents are  
not disturbed during power-down.  
TheSDOoutputcanbeusedtofacilitatecontrolofmultiple  
serial devices from a single 3-wire serial port (i.e., SCK,  
SDI and CS/LD). Such a “daisy chain” series is configured  
by connecting SDO of each upstream device to SDI of the  
next device in the chain. The shift registers of the devices  
are thus connected in series, effectively forming a single  
inputshiftregisterwhichextendsthroughtheentirechain.  
Because of this, the devices can be addressed and con-  
trolled individually by simply concatenating their input  
words; the first instruction addresses the last device in the  
chain and so forth. The SCK and CS/LD signals are  
common to all devices in the series.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100bin combina-  
tionwiththeappropriateDACaddress, (n). The16-bitdata  
wordisignored. Thesupplycurrentisreducedbyapproxi-  
mately 1/4 for each DAC powered down. The effective  
resistance at REF x (pins 3, 6, 12 and 15) are at high-  
impedance input (typically > 1G) when the correspond-  
ing DACs are powered down.  
In use, CS/LD is first taken low. Then the concatenated  
input data is transferred to the chain, using SDI of the first  
device as the data input. When the data transfer is com-  
plete, CS/LD is taken high, completing the instruction  
sequence for all devices simultaneously. A single device  
can be controlled by using the no-operation command  
(1111) for the other devices in the chain.  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state is  
poweredupandupdated,normalsettlingisdelayed.Ifless  
than four DACs are in a powered-down state prior to the  
updatecommand,thepower-updelaytimeis5µs.Ifonthe  
2604f  
11  
LTC2604/LTC2614/LTC2624  
U
OPERATIO  
otherhand,allfourDACsarepowereddown,thenthemain  
bias generation circuit block has been automatically shut  
down in addition to the individual DAC amplifiers and  
reference inputs. In this case, the power up delay time is  
12µs (for VCC = 5V) or 30µs (for VCC = 3V).  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
Voltage Outputs  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
Each of the four rail-to-rail amplifiers contained in these  
parts has guaranteed load regulation when sourcing or  
sinking up to 15mA at 5V (7.5mA at 3V).  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is ex-  
pressed in LSB/mA.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. When a zero scale  
DAC output voltage of zero is desired, the REFLO pin  
(pin 2) should be connected to system star ground.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.025when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by the  
30typical channel resistance of the output devices; e.g.,  
when sinking 1mA, the minimum output voltage = 30•  
1mA = 25mV. See the graph Headroom at Rails vs Output  
Current in the Typical Performance Characteristics  
section.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown in  
Figure 3b. Similarly, limiting can occur near full scale  
when the REF pins are tied to VCC. If REF x = VCC and the  
DAC full-scale error (FSE) is positive, the output for the  
highest codes limits at VCC as shown in Figure 3c. No full-  
scale limiting can occur if REF x is less than VCC – FSE.  
The amplifiers are stable driving capacitive loads of up to  
1000pF.  
Board Layout  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
The excellent load regulation and DC crosstalk perfor-  
mance of these devices is achieved in part by keeping  
“signal” and “power” grounds separate.  
2604f  
12  
LTC2604/LTC2614/LTC2624  
U
OPERATIO  
2604f  
13  
LTC2604/LTC2614/LTC2624  
U
OPERATIO  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
2604 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect  
of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
2604f  
14  
LTC2604/LTC2614/LTC2624  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2604f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2604/LTC2614/LTC2624  
U
TYPICAL APPLICATIO  
5V  
5V  
1k  
1k  
10k  
10k  
0.1µF  
0.1µF  
10k  
20Ω  
10k  
49.9Ω  
0.01µF  
0.01µF  
70MHz IN  
OUT  
10pF  
20pF  
47pF  
ZC830  
49.9Ω  
49.9Ω  
ZC830  
DAC A  
DAC C  
DAC B  
DAC D  
OPTIONAL  
OPTIONAL  
20k  
20k  
CS/LD  
SCK  
SDI  
0.1µF  
0.1µF  
LTC2604  
5V  
5V  
LO  
2.74k  
1%  
2.74k  
1%  
100k  
100k  
2.74k  
1%  
2.74k  
1%  
90°  
I + Q  
MODULATOR  
Q INPUT  
I INPUT  
5V  
5V  
2.74k  
1%  
2.74k  
1%  
0°  
2.74k  
1%  
2.74k  
1%  
RF  
2604 F04  
*ZETEX  
(516) 543-7100  
Figure 4. Using DAC A and DAC B for Nearly Continuous Attenuation Control and DAC C and  
DAC D to Trim for Minimum LO Feedthrough in a Mixer.  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 8/10-Bit V  
DAC in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2µs for 10V Step  
250µA per DAC, 2.5V to 5.5V Supply Range  
300µA per DAC, 2.5V to 5.5V Supply Range  
LTC2600/LTC2610/LTC2620 Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP  
LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP  
2604f  
LT/TP 0304 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2624CGN#PBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2624CGN#TR

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2624CGN-1#PBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2624CGN-1#TRPBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2624IGN

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2624IGN-1#PBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2624IGN-1#TRPBF

LTC2624 - Quad 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2624_15

Quad 16-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625CGN

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2625CGN#PBF

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2625CGN#TR

LTC2625 - Octal 12-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear