LTC2627IDE [Linear]

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface; 16位/ 14位/ 12位双通道轨至轨DAC,带有I2C接口
LTC2627IDE
型号: LTC2627IDE
厂家: Linear    Linear
描述:

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
16位/ 14位/ 12位双通道轨至轨DAC,带有I2C接口

文件: 总20页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2607/LTC2617/LTC2627  
16-/14-/12-Bit Dual Rail-to-Rail  
DACs with I2C Interface  
U
FEATURES  
DESCRIPTIO  
The LTC®2607/LTC2617/LTC2627 are dual 16-, 14- and  
12-bit, 2.7V to 5.5V rail-to-rail voltage output DACs in a  
12-lead DFN package. They have built-in high perfor-  
mance output buffers and are guaranteed monotonic.  
Smallest Pin-Compatible Dual DACs:  
LTC2607: 16 Bits  
LTC2617: 14 Bits  
LTC2627: 12 Bits  
Guaranteed Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply,  
voltage-output DACs.  
Thepartsusea2-wire, I2Ccompatibleserialinterface. The  
LTC2607/LTC2617/LTC2627 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). An asynchronous DAC update pin (LDAC) is  
also included.  
27 Selectable Addresses  
400kHz I2CTM Interface  
Wide 2.7V to 5.5V Supply Range  
Low Power Operation: 260µA per DAC at 3V  
Power Down to 1µA, Max  
High Rail-to-Rail Output Drive (±15mA, Min)  
Ultralow Crosstalk (30µV)  
Double-Buffered Data Latches  
Asynchronous DAC Update Pin  
LTC2607/LTC2617/LTC2627: Power-On Reset to  
The LTC2607/LTC2617/LTC2627 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than10mVabovezeroscale;andafterpower-up, theystay  
at zero scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2607-1/LTC2617-1/  
LTC2627-1 to midscale. The voltage outputs stay at  
midscale until a valid write and update takes place.  
Zero Scale  
LTC2607-1/LTC2617-1/LTC2627-1: Power-On Reset  
to Midscale  
Tiny (3mm × 4mUm) 12-Lead DFN Package  
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents  
including 5396245 and 6891433. Patent Pending  
Mobile Communications  
Process Control and Industrial Automation  
Instrumentation  
Automatic Test Equipment  
W
BLOCK DIAGRA  
REFLO  
11  
GND  
10  
REF  
9
V
CC  
8
Differential Nonlinearity  
(LTC2607)  
1.0  
0.8  
V
OUTA  
V
OUTB  
12  
12-/14-/16-BIT DAC  
12-/14-/16-BIT DAC  
7
V
V
= 5V  
CC  
= 4.096V  
REF  
0.6  
0.4  
DAC REGISTER  
DAC REGISTER  
0.2  
0
INPUT REGISTER  
INPUT REGISTER  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
0
16384  
32768  
CODE  
49152  
65535  
2607 G02  
1
2
3
4
5
6
LDAC  
CA0  
CA1  
SCL  
SDA  
CA2  
2607 BD  
26071727f  
1
LTC2607/LTC2617/LTC2627  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC ........................................................ 6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
Operating Temperature Range:  
LTC2607C/LTC2617C/LTC2627C  
LTC2607C-1/LTC2617C-1/LTC2627C-1 ... 0°C to 70°C  
LTC2607I/LTC2617I/LTC2627I  
LTC2607I-1/LTC2617I-1/LTC2627I-1.. 40°C to 85°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
LTC2607CDE  
LTC2607IDE  
LTC2607CDE-1  
LTC2607IDE-1  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
CA0  
CA1  
1
2
3
4
5
6
12  
V
OUTA  
11 REFLO  
10 GND  
LTC2617CDE  
LTC2617IDE  
LTC2627CDE  
LTC2627IDE  
13  
LDAC  
SCL  
9
8
7
REF  
LTC2617CDE-1  
LTC2617IDE-1  
LTC2627CDE-1  
LTC2627IDE-1  
SDA  
CA2  
V
V
CC  
OUTB  
DE12 PART MARKING*  
DE12 PART MARKING*  
DE12 PART MARKING*  
DE12 PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
2607  
26071  
2617  
26171  
2626  
26271  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 13) IS GND  
MUST BE SOLDERED TO PCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF, Lead Free Tape and Reel: Add #TRPBF, Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS The  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. REF = 4.096V (V = 5V), REF = 2.048V (V = 2.7V), REFLO = 0V,  
A
CC  
CC  
V
OUT  
unloaded, unless otherwise noted.  
LTC2627/LTC2627-1 LTC2617/LTC2617-1 LTC2607/LTC2607-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
±0.5  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
± 1.5 ±4  
±5 ± 16  
± 19 ± 64  
V
= V = 5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.03 0.125  
0.1  
0.1  
0.5  
0.5  
0.35  
0.42  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Midscale  
OUT  
OUT  
REF  
I
I
CC  
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.8  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 6)  
1
9
1
9
1
9
mV  
mV  
V
±1  
±7  
±9  
±1  
±7  
±9  
±1  
±7  
±9  
OS  
V
Temperature  
µV/°C  
OS  
Coefficient  
GE  
Gain Error  
±0.15 ±0.7  
±4  
±0.15 ±0.7  
±4  
±0.15 ±0.7  
±4  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
26071727f  
2
LTC2607/LTC2617/LTC2627  
The  
denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at T = 25°C. REF = 4.096V (V = 5V), REF = 2.048V (V = 2.7V), REFLO = 0V,  
A
CC  
CC  
V
unloaded, unless otherwise noted.  
OUT  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
±10%  
80  
dB  
CC  
R
OUT  
DC Output Impedance  
= V = 5V, Midscale;  
REF CC  
–15mA I  
15mA  
0.032  
0.035  
0.15  
0.15  
OUT  
V
= V = 2.7V, Midscale;  
CC  
REF  
–7.5mA I  
7.5mA  
OUT  
DC Crosstalk (Note 4)  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per channel)  
±4  
±3  
±30  
µV  
µV/mA  
µV  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
36  
37  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.7V, V = 2.7V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
22  
30  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
44  
V
80  
V
kΩ  
pF  
CC  
Resistance  
Capacitance  
Normal Mode  
64  
30  
I
Reference Current, Power Down Mode  
DAC Powered Down  
For Specified Performance  
0.001  
1
µA  
REF  
Power Supply  
V
I
Positive Supply Voltage  
Supply Current  
2.7  
5.5  
V
CC  
V
V
= 5V (Note 3)  
= 3V (Note 3)  
0.66  
0.52  
0.4  
1.3  
1
1
1
mA  
mA  
µA  
CC  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
0.10  
µA  
Digital I/O (Note 11)  
V
V
V
Low Level Input Voltage (SDA and SCL)  
High Level Input Voltage (SDA and SCL)  
Low Level Input Voltage (LDAC)  
0.3V  
V
V
V
V
IL  
CC  
0.7V  
IH  
CC  
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
IL(LDAC)  
CC  
CC  
V
V
V
R
R
R
High Level Input Voltage (LDAC)  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
V
IH(LDAC)  
IL(CAn)  
IH(CAn)  
CC  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
High Level Input Voltage on CAn (n = 0, 1, 2)  
See Test Circuit 1  
0.15V  
CC  
See Test Circuit 1  
See Test Circuit 2  
0.85V  
V
kΩ  
CC  
Resistance from CAn (n = 0, 1, 2)  
10  
10  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
kΩ  
Resistance from CAn (n = 0, 1, 2)  
2
0
MΩ  
to V or GND to Set CAn = Float  
CC  
V
Low Level Output Voltage  
Output Fall Time  
0.4  
250  
V
ns  
t
V = V  
to V = V  
,
20 + 0.1C  
OF  
O
B
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 9)  
t
I
C
C
C
Pulse Width of Spikes Suppressed by Input Filter  
Input Leakage  
I/O Pin Capacitance  
Capacitive Load for Each Bus Line  
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
0
50  
1
10  
400  
10  
ns  
µA  
pF  
pF  
pF  
SP  
IN  
0.1V V 0.9V  
Note 12  
CC  
IN  
CC  
IN  
B
CAX  
26071727f  
3
LTC2607/LTC2617/LTC2627  
The  
denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at T = 25°C. REF = 4.096V (V = 5V), REF = 2.048V (V = 2.7V), REFLO = 0V,  
A
CC  
CC  
V
OUT  
unloaded, unless otherwise noted.  
LTC2627/LTC2627-1 LTC2617/LTC2617-1 LTC2607/LTC2607-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
UNITS  
t
Settling Time (Note 7)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 8)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.8  
1000  
12  
0.8  
1000  
12  
0.8  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
W U  
TI I G CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (See Figure 1) (Notes 10, 11)  
A
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
= 2.7V to 5.5V  
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 9)  
(Note 9)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
f
B
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte  
to LDAC High or Low Transition  
400  
1
t
LDAC Low Pulse Width  
20  
ns  
2
Note 1: Absolute maximum ratings are those values beyond which the life of  
Note 6: Inferred from measurement at code k (Note 2) and at full scale.  
L
a device may be impaired.  
Note 7: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale and  
CC  
REF  
Note 2: Linearity and monotonicity are defined from code k to code  
3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
L
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
rounded to the nearest whole code. For V = 4.096V and N = 16, k = 256  
L
L
REF  
L
Note 8: V = 5V, V = 4.096V. DAC is stepped ±1LSB between half scale  
CC  
REF  
REF  
and half scale – 1. Load is 2k in parallel with 200pF to GND.  
and linearity is defined from code 256 to code 65,535.  
Note 9: C = capacitance of one bus line in pF.  
B
Note 3: SDA, SCL and LDAC at 0V or V , CA0, CA1 and CA2 Floating.  
CC  
Note 10: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
Note 4: DC crosstalk is measured with V = 5V and V = 4.096V, with the  
CC  
REF  
Note 11: These specifications apply to LTC2607/LTC2607-1,  
LTC2617/LTC2617-1, LTC2627/LTC2627-1.  
Note 12: Guaranteed by design and not production tested.  
measured DAC at midscale, unless otherwise noted.  
Note 5: R = 2kto GND or V  
.
CC  
L
26071727f  
4
LTC2607/LTC2617/LTC2627  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2607  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
= 5V  
CC  
= 4.096V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
V
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2607 G02  
2607 G01  
2607 G03  
DNL vs Temperature  
INL vs V  
DNL vs V  
REF  
REF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
CC  
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2607 G04  
2607 G05  
2607 G06  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
12.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
2V/DIV  
2607 G08  
5µs/DIV  
2607 G07  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
SETTLING TO ±1LSB  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
V
= 5V, V  
= 4.096V  
CC  
REF  
CODE 512 TO 65535 STEP  
R
L
L
AVERAGE OF 2048 EVENTS  
AVERAGE OF 2048 EVENTS  
26071727f  
5
LTC2607/LTC2617/LTC2627  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2617  
Settling to ±1LSB  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100µV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2607 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
L
L
AVERAGE OF 2048 EVENTS  
2607 G09  
2607 G10  
LTC2627  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
Settling to ±1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2607 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
2607 G12  
2607 G13  
26071727f  
6
LTC2607/LTC2617/LTC2627  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2607/LTC2617/LTC2627  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
0.08  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
V
REF  
REF  
= V = 5V  
CC  
0.06  
0.6  
V
= V = 3V  
CC  
0.04  
0.4  
1
0.02  
0.2  
0
0
0
V
REF  
= V = 5V  
CC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
CC  
REF  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2607 G15  
2607 G16  
2607 G17  
Gain Error vs Temperature  
Zero-Scale Error vs Temperature  
Offset Error vs V  
CC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2607 G18  
2607 G19  
2607 G20  
Gain Error vs V  
I
Shutdown vs V  
CC  
CC  
CC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2607 G22  
2607 G21  
26071727f  
7
LTC2607/LTC2617/LTC2627  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2607/LTC2617/LTC2627  
Large-Signal Response  
Midscale Glitch Impulse  
Power-On Reset to Zeroscale  
V
OUT  
V
CC  
10mV/DIV  
V
1V/DIV  
OUT  
0.5V/DIV  
9TH CLOCK  
OF 3RD DATA  
BYTE  
4mV PEAK  
SCL  
2V/DIV  
V
= V = 5V  
CC  
REF  
V
OUT  
1/4-SCALE TO 3/4-SCALE  
10mV/DIV  
2606 G26  
2607 G25  
2.5µs/DIV  
2.5µs/DIV  
2607 G23  
250µs/DIV  
Headroom at Rails  
vs Output Current  
Power-On Reset to Midscale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
5V SOURCING  
3V SOURCING  
1V/DIV  
5V SINKING  
V
CC  
3V SINKING  
V
OUT  
2607 G27  
500µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2607 G26  
Supply Current vs Logic Voltage  
Supply Current vs Logic Voltage  
1300  
1200  
1100  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
V
= 5V  
CC  
SWEEP SCL AND  
V
= 5V  
CC  
SDA OV TO V  
AND V TO OV  
CC  
SWEEP LDAC  
CC  
OV TO V  
CC  
HYSTERSIS  
370mV  
900  
800  
700  
600  
500  
1
2
4
0
5
3
0
0.5  
1
1.5  
2
2.5  
5
3
3.5 4 4.5  
LOGIC VOLTAGE (V)  
LOGIC VOLTAGE (V)  
2607 G029  
2607 G28  
26071727f  
8
LTC2607/LTC2617/LTC2627  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2607/LTC2617/LTC2627  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10µV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
SECONDS  
CODE = FULL SCALE  
2607 G31  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2607 G30  
Short-Circuit Output Current vs  
(Sourcing)  
Short-Circuit Output Current vs  
OUT  
V
OUT  
V
(Sinking)  
50  
40  
30  
20  
0
–10  
–20  
–30  
V
= 5.5V  
= 5.6V  
V
REF  
= 5.5V  
= 5.6V  
CC  
REF  
CC  
V
V
CODE = 0  
V
CODE = FULL SCALE  
SWEPT V TO 0V  
SWEPT 0V TO V  
V
OUT  
OUT  
CC  
CC  
10  
0
–40  
–50  
0
2
3
4
5
6
1
0
2
3
4
5
6
1
1V/DIV  
1V/DIV  
2607 G32  
2607 G33  
26071727f  
9
LTC2607/LTC2617/LTC2627  
U
U
U
PIN FUNCTIONS  
CA0 (Pin 1): Chip Address Bit 0. Tie this pin to VCC, GND  
or leave it floating to select an I2C slave address for the  
part (Table 1).  
SDA (Pin 5): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in and an open-  
drainN-channeloutputduringacknowledgment.Requires  
a pull-up resistor or current source to VCC.  
CA1 (Pin 2): Chip Address Bit 1. Tie this pin to VCC, GND  
or leave it floating to select an I2C slave address for the  
part (Table 1).  
CA2 (Pin 6): Chip Address Bit 2. Tie this pin to VCC, GND  
or leave it floating to select an I2C slave address for the  
part (Table 1).  
LDAC (Pin 3): Asynchronous DAC Update. A falling edge  
of this input after four bytes have been written into the part  
immediately updates the DAC register with the contents of  
the input register. A low on this input without a complete  
32-bit (four bytes including the slave address) data write  
transfer to the part wakes up sleeping DACs without  
updating the DAC output. Software power-down is dis-  
abled when LDAC is low. LDAC is disabled when tied high.  
VOUTB (Pin 7): DAC Analog Voltage Output. The output  
range is VREFLO to VREF  
.
V
CC (Pin 8): Supply Voltage Input. 2.7V VCC 5.5V.  
REF (Pin 9): Reference Voltage Input. The input range  
is VREFLO VREF VCC.  
GND (Pin 10): Analog Ground.  
SCL (Pin 4): Serial Clock Input Pin. Data is shifted into the  
SDA pin at the rising edges of the clock. This high  
impedancepinrequiresapull-upresistororcurrentsource  
to VCC.  
REFLO (Pin 11): Reference Low. The voltage at this pin  
sets the zero scale (ZS) voltage of all DACs. The VREFLO pin  
can be used at voltages up to 1V for VCC = 5V, or 100mV  
for VCC = 3V.  
VOUTA (Pin 12): DAC Analog Voltage Output. The output  
range is VREFLO to VREF  
.
Exposed Pad (Pin 13): Ground. Must be soldered to  
PCB ground.  
26071727f  
10  
LTC2607/LTC2617/LTC2627  
W
BLOCK DIAGRA  
REFLO  
GND  
10  
REF  
9
V
CC  
11  
8
V
V
OUTB  
12-/14-/16-BIT DAC  
12-/14-/16-BIT DAC  
12  
OUTA  
7
DAC REGISTER  
DAC REGISTER  
INPUT REGISTER  
INPUT REGISTER  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
5
6
1
2
3
4
LDAC  
SDA  
CA2  
CA0  
CA1  
SCL  
2607 BD  
TEST CIRCUITS  
Test Circuit 1  
Test Circuit 2  
V
DD  
R /R /R  
INH INL INF  
100  
CAn  
CAn  
V
/V  
IH(CAn) IL(CAn)  
GND  
2607 TC  
26071727f  
11  
LTC2607/LTC2617/LTC2627  
W U  
W
TI I G DIAGRA S  
26071727f  
12  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
Power-On Reset  
The value of these pull-up resistors is dependent on the  
power supply and can be obtained from the I2C specifica-  
tions. For an I2C bus operating in the fast mode, an active  
pull-up will be necessary if the bus capacitance is greater  
than 200pF.  
The LTC2607/LTC2617/LTC2627 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2607-1/  
LTC2617-1/LTC2627-1setthevoltageoutputstomidscale  
when power is first applied.  
The LTC2607/LTC2617/LTC2627 are receive-only (slave)  
devices. The master can write to the LTC2607/LTC2617/  
LTC2627. The LTC2607/LTC2617/LTC2627 do not re-  
spond to a read from the master.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2607/  
LTC2617/LTC2627 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground(typ)duringpower-on.SeePower-OnResetGlitch  
in the Typical Performance Characteristics section.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition.  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
high to low while SCL is high.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generatedbytransitioningSDAfromlowtohighwhileSCL  
is high. The bus is then free for communication with  
another I2C device.  
Power Supply Sequencing  
The voltage at REF (Pin 9) should be kept within the range  
0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 8) is in transition.  
Acknowledge  
TheAcknowledgesignalisusedforhandshakingbetween  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the latest  
byte of information was received. The Acknowledge re-  
lated clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
bus line during the Acknowledge clock pulse so that it  
remainsastableLOWduringtheHIGHperiodofthisclock  
pulse. The LTC2607/LTC2617/LTC2627 respond to a  
write by a master in this manner. The LTC2607/LTC2617/  
LTC2627 do not acknowledge a read (retains SDA HIGH  
during the period of the Acknowledge clock pulse).  
Transfer Function  
The digital-to-analog transfer function is:  
k
VOUT(IDEAL)  
=
VREF VREFLO + V  
REFLO  
(
)
N
2
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and VREF is the voltage at  
REF (Pin 6).  
Serial Digital Interface  
TheLTC2607/LTC2617/LTC2627communicatewithahost  
using the standard 2-wire I2C interface. The Timing Dia-  
grams (Figures 1 and 2) show the timing relationship of  
the signals on the bus. The two bus lines, SDA and SCL,  
must be high when the bus is not in use. External pull-up  
resistors or current sources are required on these lines.  
Chip Address  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set to  
any one of three states: VCC, GND or float. This results in  
26071727f  
13  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
Table 1. Slave Address Map  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF, as these pins are driven  
during address detection to determine if they are floating.  
CA2  
GND  
CA1  
GND  
CA0  
GND  
SA6 SA5 SA4 SA3 SA2 SA1 SA0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
GND  
GND  
V
CC  
GND  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
FLOAT  
Write Word Protocol  
GND  
V
CC  
The master initiates communication with the LTC2607/  
LTC2617/LTC2627withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2607/  
LTC2617/LTC2627 acknowledges by pulling the SDA pin  
low at the 9th clock if the 7-bit slave address matches the  
addressoftheparts(setbyCA0,CA1andCA2)ortheglobal  
address.Themasterthentransmitsthreebytesofdata.The  
LTC2607/LTC2617/LTC2627 acknowledges each byte of  
databypullingtheSDAlinelowatthe9thclockofeachdata  
byte transmission. After receiving three complete bytes of  
data, the LTC2607/LTC2617/LTC2627 executes the com-  
mand specified in the 24-bit input word.  
GND  
V
V
V
GND  
CC  
CC  
CC  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2607/LTC2617/LTC2627 do  
not acknowledge the extra bytes of data (SDA is high  
during the 9th clock).  
V
V
V
V
V
V
V
V
V
GND  
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
FLOAT  
TheformatofthethreedatabytesisshowninFigure3.The  
first byte of the input word consists of the 4-bit command  
word C3-C0, and 4-bit DAC address A3-A0. The next two  
bytesconsistofthe16-bitdataword. The16-bitdataword  
consists of the 16-, 14- or 12-bit input code, MSB to LSB,  
followed by 0, 2 or 4 don’t care bits (LTC2607, LTC2617  
andLTC2627respectively).AtypicalLTC2607writetrans-  
action is shown in Figure 4.  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
GLOBAL ADDRESS  
27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 2. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register into  
the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DACifithadbeeninpower-downmode. Thedatapathand  
registers are shown in the Block Diagram.  
Inadditiontotheaddressselectedbytheaddresspins, the  
parts also respond to a global address. This address  
allows a common write to all LTC2607, LTC2617 and  
LTC2627 parts to be accomplished with one 3-byte write  
transaction on the I2C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
26071727f  
14  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
Write Word Protocol for LTC2607/LTC2617/LTC1627  
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
A
3RD DATA BYTE  
A
P
S
SLAVE ADDRESS  
INPUT WORD  
Input Word (LTC2607)  
C3  
C1  
A3 A2 A1  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
C2  
C0  
A0  
A0  
A0  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2617)  
C3  
C1  
A3 A2 A1  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
X
X
X
C2  
C0  
1ST DATA BYTE  
Input Word (LTC2627)  
C3  
C1  
A3 A2 A1  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
2607 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3  
Table 2  
COMMAND*  
C3 C2 C1 C0  
ignored. The supply and reference currents are reduced  
by approximately 50% for each DAC powered down; the  
effective resistance at REF (Pin 9) rises accordingly,  
becoming a high-impedance input (typically > 1G)  
when both DACs are powered down.  
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
1
1
0
1
Write to Input Register  
Update (Power Up) DAC Register  
Write to and Update (Power Up)  
Power Down  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 2  
or performing an asychronous update (LDAC) as  
describedinthenextsection.TheselectedDACispowered  
up as its voltage output is updated. When a DAC in  
powered-down state is powered up and updated, normal  
settling is delayed. If one of the two DACs is in a powered-  
down state prior to the update command, the power up  
delay is 5µs. If on the other hand, both DACs are powered  
down, the main bias generation circuit has been automati-  
cally shut down in addition to the DAC amplifiers and  
reference input and so the power up delay time is  
No Operation  
ADDRESS*  
A3 A2 A1 A0  
0
0
1
0
0
1
0
0
1
0
1
1
DAC A  
DAC B  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
Power-Down Mode  
Forpower-constrainedapplications,thepower-downmode  
can be used to reduce the supply current whenever one or  
both of the DAC outputs are not needed. When in power-  
down,thebufferamplifiers,biascircuitsandreferenceinput  
aredisabledanddrawessentiallyzerocurrent.TheDACout-  
putsareputintoahighimpedancestate,andtheoutputpins  
are passively pulled to VREFLO through 90k resistors.  
Input-registerandDAC-registercontentsarenotdisturbed  
during power-down.  
12µs (for VCC = 5V) or 30µs (for VCC = 3V)  
Asynchronous DAC Update Using LDAC  
In addition to the update commands shown in Table 2, the  
LDAC pin asynchronously updates the DAC registers with  
the contents of the input registers. Asynchronous update  
is disabled when the input word is being clocked into  
the part.  
Either or both DAC channels can be put into power-down  
mode by using command 0100b in combination with the  
appropriate DAC address. The 16-bit data word is  
26071727f  
15  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
If a complete input word has been written to the part, a low  
on the LDAC pin causes the DAC registers to be updated  
with the contents of the input registers.  
Board Layout  
The excellent load regulation performance is achieved in  
partbyseparatingthesignalandpowergroundsasREFLO  
and GND pins, respectively.  
If the input word is being written to the part, a low going  
pulseontheLDACpinbeforethecompletionofthreebytes  
ofdatapowersuptheDACsbutdoesnotcausetheoutputs  
to be updated. If LDAC remains low after a complete input  
word has been written to the part, then LDAC is recog-  
nized, the command specified in the 24-bit word just  
transferred is executed and the DAC outputs updated.  
The PC Board should have separate areas for the analog  
and digital sections of the circuit. This keeps the digital  
signals away from the sensitive analog signals and facili-  
tates the use of separate digital and analog ground planes  
that have minimal interaction with each other.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground. Ideally, the  
analog ground plane should be located on the component  
side of the board, and should be allowed to run under the  
part to shield it from noise. Analog ground should be a  
continuous and uninterrupted plane, except for necessary  
lead pads and vias, with signal traces on another layer.  
The DACs are powered up when LDAC is taken low,  
independent of any activity on the I2C bus.  
If LDAC is low at the falling edge of the 9th clock of the 3rd  
byte of data, it inhibits any software power-down  
command that was specified in the input word. LDAC is  
disabled when tied high.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground. Resistance from the GND pin to the analog power  
supply return should be as low as possible. Resistance  
here will add directly to the channel resistance of the  
output device when sinking load current. When a zero  
scaleDACoutputvoltageofzeroisrequired,theREFLOpin  
should be connected to system star ground. Any shared  
trace resistance between REFLO and GND pins is undesir-  
able since it adds to the effective DC output impedance  
Voltage Output  
Bothofthetworail-to-railamplifiershaveguaranteedload  
regulation when sourcing or sinking up to 15mA at 5V  
(7.5mA at 3V).  
Load regulation is a measure of the amplifiers’ ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is  
expressed in LSB/mA.  
(typically 0.035) of the part.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.035when driving a load well away from  
the rails.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Since the analog output of the device cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure 5b. Similarly, limiting can occur near full scale  
when the REF pin is tied to VCC. If VREF = VCC and the DAC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 5c. No full-scale  
limiting will occur if VREF is less than VCC – FSE.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30typical channel resistance of the output  
devices; e.g., when sinking 1mA, the minimum output  
voltage = 30• 1mA = 30mV. See the graph Headroom  
at Rails vs Output Current in the Typical Performance  
Characteristics section.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
The amplifiers are stable driving capacitive loads of up to  
1000pF.  
26071727f  
16  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
26071727f  
17  
LTC2607/LTC2617/LTC2627  
U
OPERATIO  
26071727f  
18  
LTC2607/LTC2617/LTC2627  
U
PACKAGE DESCRIPTIO  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.65 ±0.05  
3.50 ±0.05  
2.20 ±0.05 (2 SIDES)  
1.70 ±0.05  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.20  
TYP  
1.70 ± 0.10  
(2 SIDES)  
3.00 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1  
NOTCH  
(UE12) DFN 0603  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.50  
BSC  
3.30 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
26071727f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2607/LTC2617/LTC2627  
U
TYPICAL APPLICATIO  
Demo Circuit Schematic. Onboard 20-Bit ADC Measures Key Performance Parameters  
5V  
5V  
V
REF  
1V TO 5V  
0.1µF  
8
6
REF  
2
1
V
CC  
3
1
2
6
V
FS  
CC  
LDAC  
CA0  
CA1  
CA2  
SET  
100  
7.5k  
7
3
4
V
V
CH 1  
CH 0  
OUTB  
OUTA  
9
8
7
SCK  
SDO  
CS  
DAC  
OUTPUT B  
LTC2607  
SPI BUS  
LTC2422  
4
5
100Ω  
7.5k  
12  
2
SCL  
SDA  
I C BUS  
10  
F
O
ZS  
GND  
6
DAC  
OUTPUT A  
SET  
5
GND  
10, 13  
REFLO  
2607 TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1664  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
LTC1821  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
LTC2600/LTC2610/  
LTC2620  
OUT  
LTC2601/LTC2611/  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2604/LTC2614/  
LTC2624  
Quad 16-/14-/12-Bit V  
Octal 16-/14-/12-Bit V  
DACs in 16-Lead SSOP  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
OUT  
OUT  
Output, SPI Serial Interface  
2
LTC2605/LTC2615/  
LTC2625  
DACs with I C Interface  
250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
2
Output, I C Interface  
2
LTC2606/LTC2616/  
LTC2626  
16-/14-/12-Bit V  
DACs with I C Interface  
270µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
OUT  
2
Output, I C Interface  
2
LTC2609/LTC2619/  
LTC2629  
Quad 16-/14-/12-Bit V  
DACs with I C Interface  
250µA Range per DAC, 2.7V to 5.5V Supply Range,  
OUT  
Rail-to-Rail Output with Separate V Pins for Each DAC  
REF  
26071727f  
LT/LWI/TP 0705 500 • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC2627IDE#PBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2627IDE#TR

暂无描述
Linear

LTC2627IDE#TRPBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2627IDE-1

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2627IDE-1#PBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC2627_15

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2629

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGN

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGN-1

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGN-1#PBF

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2629CGN-1#TRPBF

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear