LTC2635CMSE-HMX8#TRPBF [Linear]

D/A Converter, 1 Func, Serial Input Loading, 3.9us Settling Time, PDSO10;
LTC2635CMSE-HMX8#TRPBF
型号: LTC2635CMSE-HMX8#TRPBF
厂家: Linear    Linear
描述:

D/A Converter, 1 Func, Serial Input Loading, 3.9us Settling Time, PDSO10

光电二极管
文件: 总32页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2635  
2
Quad 12-/10-/8-Bit I C V  
OUT  
DACs with 10ppm/°C Reference  
Features  
Description  
The LTC®2635 is a family of quad 12-, 10-, and 8-bit  
voltage-output DACs with an integrated, high-accuracy,  
low-drift reference in a 16-pin QFN or a 10-lead MSOP  
package. It has rail-to-rail output buffers and is guaran-  
teed monotonic. The LTC2635-L has a full-scale output  
of 2.5V, and operates from a single 2.7V to 5.5V supply.  
The LTC2635-H has a full-scale output of 4.096V, and  
operates from a 4.5V to 5.5V supply. Each DAC can also  
operate with an external reference, which sets the full-  
scale output to the external reference voltage.  
n
Integrated Precision Reference  
2.5V Full-Scale 10ppm/°C (LTC2635-L)  
4.096V Full-Scale 10ppm/°C (LTC2635-H)  
n
Maximum INL Error: 2.5 LSꢀ (LTC2635-12)  
n
Power-On-Reset to Zero-Scale/Mid-Scale/Hi-Z  
n
Low Noise: 0.75mV 0.1Hz to 200kHz  
P-P  
n
Guaranteed Monotonic Over –40°C to 125°C  
Automotive Temperature Range  
n
Selectable Internal or External Reference  
n
2.7V to 5.5V Supply Range (LTC2635-L)  
n
Ultralow Crosstalk ꢀetween DACs (3nV•s)  
2
These DACs communicate via a 2-wire I C-compatible  
serialinterface.TheLTC2635operatesinboththestandard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). The LTC2635 incorporates a power-on reset  
circuit. Options are available for reset to zero-scale, reset  
tomid-scaleininternalreferencemode,resettomid-scale  
in external reference mode, or reset with all DAC outputs  
in a high-impedance state after power-up.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 5396245, 5859606, 6891433,  
6937178, 7414561.  
n
Low Power: 0.6mA at 3V  
Double-ꢀuffered Data Latches  
n
n
Small 16-Pin 3mm × 3mm QFN and 10-Lead MSOP  
Packages  
applications  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Power Supply Margining  
Portable Equipment  
Automotive  
n
n
Block Diagram  
Integral Nonlinerity  
2
REF  
INTERNAL  
REFERENCE  
GND  
V
= 3V  
CC  
INTERNAL REF.  
SWITCH  
V
REF  
V
(REFLO)  
CC  
1
0
V
OUTA  
V
OUTD  
DAC A  
DAC B  
DAC D  
DAC C  
V
V
REF  
REF  
V
V
OUTC  
OUTB  
–1  
–2  
(LDAC)  
DECODE  
POWER-ON  
RESET  
CA0  
0
1024  
2048  
3072  
4095  
2
CODE  
I C  
(CA1)  
(CA2)  
2635 TA01  
ADDRESS  
DECODE  
SCL  
SDA  
2
I C INTERFACE  
2635 BD  
( ) QFN PACKAGE ONLY  
2635fb  
LTC2635  
aBsolute maximum ratings  
(Notes 1, 2)  
Supply Voltage (V ) ................................... –0.3V to 6V  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CC  
SCL, SDA, REFLO, LDAC.............................. –0.3V to 6V  
V
, CA0, CA1, CA2...... –0.3V to Min (V + 0.3V, 6V)  
OUTA-D  
CC  
REF .................................... –0.3V to Min (V + 0.3V, 6V)  
MS Package...................................................... 300°C  
CC  
Operating Temperature Range  
LTC2635C ................................................ 0°C to 70°C  
LTC2635H (Note 3) ............................ –40°C to 125°C  
pin conFiguration  
TOP VIEW  
TOP VIEW  
16 15 14 13  
V
1
2
3
4
5
10 GND  
CC  
OUTA  
V
V
1
2
3
4
12  
11  
10  
9
V
V
OUTA  
OUTD  
V
V
9
8
7
6
V
V
OUTD  
OUTC  
11  
GND  
OUTB  
CA0  
SCL  
OUTB  
OUTC  
17  
GND  
REF  
LDAC  
REF  
CA1  
SDA  
CA0  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
5
6
7
8
T
= 150°C, θ = 35°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
T
= 150°C, θ = 68°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 17) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
2635fb  
LTC2635  
orDer inFormation  
LTC2635  
C
UD  
–L  
Z
12  
#TR  
PBF  
LEAD FREE DESIGNATOR  
PꢀF = Lead Free  
TAPE AND REEL  
TR = 2,500-Piece Tape and Reel  
RESOLUTION  
12 = 12-ꢀit  
10 = 10-ꢀit  
8 = 8-ꢀit  
POWER-0N RESET  
MI = Reset to Mid-Scale in Internal Reference Mode  
MX = Reset to Mid-Scale in External Reference Mode (LMX Only)  
MO = Reset to Mid-Scale in Internal Reference Mode, DAC Outputs Hi-Z (LMO Only)  
Z = Reset to Zero-Scale in Internal Reference Mode  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
UD = 16-Pin QFN  
MSE = 10-Lead MSOP  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
PRODUCT PART NUMBER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2635fb  
LTC2635  
proDuct selection guiDe  
PART MARKING*  
POWER-ON  
REFERENCE  
MODE  
VFS WITH INTERNAL  
POWER-ON  
RESET TO CODE  
MAXIMUM  
INL  
PART NUMBER  
QFN  
MSOP  
REFERENCE  
RESOLUTION  
V
CC  
LTC2635-LMI12  
LTC2635-LMI10  
LTC2635-LMI8  
LDZꢀ  
LDZJ  
LDZR  
LTDZY  
LTFꢀG  
LTFꢀP  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LMX12  
LTC2635-LMX10  
LTC2635-LMX8  
LDYZ  
LDZH  
LDZQ  
LTDZX  
LTFꢀF  
LTFꢀN  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
External  
External  
External  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LZ12  
LTC2635-LZ10  
LTC2635-LZ8  
LDYY  
LDZG  
LDZP  
LTDZW  
LTFꢀD  
LTFꢀM  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-LMO12**  
LTC2635-LMO10**  
LTC2635-LMO8**  
LFꢀT  
LFꢀV  
LFꢀW  
LTFꢀX  
LTFꢀY  
LTFꢀZ  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
High Impedance  
High Impedance  
High Impedance  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-HMI12  
LTC2635-HMI10  
LTC2635-HMI8  
LDZF  
LDZN  
LDZV  
LTFꢀC  
LTFꢀK  
LTFꢀS  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
LTC2635-HZ12  
LTC2635-HZ10  
LTC2635-HZ8  
LDZC  
LDZK  
LDZS  
LTDZZ  
LTFꢀH  
LTFꢀQ  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
12-ꢀit  
10-ꢀit  
8-ꢀit  
4.5V to 5.5V  
4.5V to 5.5V  
4.5V to 5.5V  
2.5LSꢀ  
1LSꢀ  
0.5LSꢀ  
*Above options are available in a 16-pin QFN package (LTC2635xUD) or 10-lead MSOP package (LTC2635xMSE).  
**Contact Linear Technology for other Hi-Z options.  
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
LTC2635-8  
LTC2635-10  
LTC2635-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN  
TYP MAX MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
ꢀits  
ꢀits  
Monotonicity  
V
V
V
V
V
V
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref., Code=0  
= 3V, Internal Ref. (Note 5)  
= 3V, Internal Ref.  
CC  
CC  
CC  
CC  
CC  
CC  
DNL  
INL  
Differential Nonlinearity  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
LSꢀ  
LSꢀ  
mV  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
0.05  
0.5  
0.5  
10  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
ZSE  
5
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
µV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 3V, Internal Ref.  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
= 3V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
CC  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
10  
10  
Load Regulation  
Internal Ref., Mid-Scale,  
= 3V 10%,  
l
l
0.009 0.016  
0.009 0.016  
0.035 0.064  
0.035 0.064  
0.14 0.256 LSꢀ/mA  
0.14 0.256 LSꢀ/mA  
V
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
DC Output Impedance  
Internal Ref., Mid-Scale,  
= 3V 10%,  
OUT  
l
l
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Ω
V
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
0 to V  
V
V
OUT  
REF  
0 to 2.5  
PSR  
Power Supply Rejection  
V
= 3V 10% or 5V 10%  
–80  
dꢀ  
CC  
I
Short Circuit Output Current (Note 6)  
V
= V = 5.5V  
CC  
SC  
FS  
l
l
Sinking  
Zero-Scale; V  
Shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
Sourcing  
Full-Scale; V  
Shorted to GND  
OUT  
DAC I  
DAC Output Current in High Impedance Mode MO Options Only  
SD  
l
l
Sinking  
0.05  
–0.001  
2
–0.1  
µA  
µA  
Sourcing  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
V
V
V
= 3V, V = 2.5V, External Reference  
0.5  
0.6  
0.6  
0.7  
0.7  
0.8  
0.8  
0.9  
mA  
mA  
mA  
mA  
CC  
CC  
CC  
CC  
REF  
= 3V, Internal Reference  
= 5V V = 2.5V, External Reference  
REF  
= 5V, Internal Reference  
l
l
I
SD  
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade  
= 5V, H-Grade  
1
1
20  
30  
µA  
µA  
CC  
CC  
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
CC  
120  
160  
14  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
1.5  
µA  
REF  
Reference Output  
Output Voltage  
1.24  
–0.5  
1.25  
10  
1.26  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
CC  
= 5.5V, REF Shorted to GND  
2.5  
mA  
Digital I/O  
l
l
l
l
l
l
l
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
(Note 11)  
0.7V  
CC  
IH  
Low Level Input Voltage on CAn  
(n = 0, 1,2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1,2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1,2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1,2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1,2)  
2
0
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20+0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
10  
IN  
Capacitive Load for Each ꢀus Line  
400  
10  
External Capacitive Load on Address  
Pin CAn (n = 0, 1,2)  
CAn  
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
Settling Time  
V
= 3V (Note 9)  
S
CC  
0.39% ( 1LSꢀ at 8 ꢀits)  
0.098% ( 1LSꢀ at 10 ꢀits)  
0.024% ( 1LSꢀ at 12 ꢀits)  
3.5  
4.1  
4.4  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1
V/µs  
pF  
500  
2.1  
2.6  
320  
At Mid-Scale Transition  
nV • s  
nV • s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying ꢀandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switched 0 to FS  
External Reference  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
200  
180  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
40  
680  
730  
µV  
P-P  
µV  
P-P  
µV  
P-P  
µV  
P-P  
C
= 0.1µF  
REF  
timing characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V. (See Figure 1) (Note 13)  
LTC2635-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8/-LMO12/-LMO10/-LM08 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
ns  
Rise Time of ꢀoth SDA and SCL Signals  
Fall Time of ꢀoth SDA and SCL Signals  
Set-Up Time for Stop Condition  
ꢀus Free Time ꢀetween a Stop and Start Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
ns  
f
µs  
SU(STO)  
ꢀUF  
1.3  
µs  
th  
rd  
Falling Edge of 9 Clock of the 3 Input ꢀyte to LDAC  
High or Low Transition  
400  
ns  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
LTC2635-8  
LTC2635-10  
TYP MAX MIN  
LTC2635-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
ꢀits  
ꢀits  
Monotonicity  
V
V
V
V
V
V
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref., Code=0  
= 5V, Internal Ref. (Note 5)  
= 5V, Internal Reference  
CC  
CC  
CC  
CC  
CC  
CC  
DNL  
INL  
Differential Nonlinearity  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
LSꢀ  
LSꢀ  
mV  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
0.05  
0.5  
0.5  
10  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
ZSE  
5
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
µV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 5V, Internal Reference  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
= 5V, Internal Ref. (Note 10)  
C-Grade  
H-Grade  
TC  
CC  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
10  
10  
l
l
Load Regulation  
DC Output  
Internal Reference, Mid-Scale,  
= 5V 10%,  
0.006 0.01  
0.022 0.04  
0.09 0.16 LSꢀ/mA  
V
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
Internal Reference, Mid-Scale,  
= 5V 10%,  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
OUT  
V
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to V  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
V
V
OUT  
REF  
0 to 4.096  
PSR  
Power Supply Rejection  
V
V
= 5V 10%  
–80  
dꢀ  
CC  
I
Short Circuit Output Current (Note 6)  
Sinking  
Sourcing  
= V = 5.5V  
CC  
SC  
FS  
l
l
Zero-Scale; V  
Shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
OUT  
CC  
Full-Scale; V  
Shorted to GND  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
4.5  
5.5  
V
CC  
l
l
I
CC  
V
V
= 3V, V = 4.096V, External Reference  
0.6  
0.7  
0.8  
0.9  
mA  
mA  
CC  
CC  
REF  
= 3V, Internal Reference  
l
l
I
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade  
= 5V, H-Grade  
1
1
20  
30  
µA  
µA  
SD  
CC  
CC  
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
CC  
120  
160  
14  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
1.5  
µA  
REF  
Reference Output  
Output Voltage  
2.032  
2.048  
10  
2.064  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
µF  
V
= 5.5V, REF Shorted to GND  
4
mA  
CC  
Digital I/O  
l
l
l
l
l
l
l
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
(Note 14)  
–0.5  
0.7V  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
(Note 11)  
IH  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1,2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1,2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1,2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1,2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1,2)  
2
0
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
O
to V = V  
,
20+0.1C  
250  
ns  
OF  
IH(MIN)  
O
IL(MAX)  
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
10  
IN  
Capacitive Load for Each ꢀus Line  
400  
10  
External Capacitive Load on Address  
Pin CAn (n=0, 1,2)  
CAn  
2635fb  
LTC2635  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
Settling Time  
V
= 5V (Note 9)  
S
CC  
0.39% ( 1LSꢀ at 8 ꢀits)  
0.098% ( 1LSꢀ at 10 ꢀits)  
0.024% ( 1LSꢀ at 12 ꢀits)  
3.9  
4.3  
5
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1
500  
3
V/µs  
pF  
At Mid-Scale Transition  
nV • s  
nV • s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying ꢀandwidth  
Output Voltage Noise Density  
1 DAC Held at FS, 1 DAC Switched 0 to FS  
External Reference  
3
320  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
250  
230  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
50  
680  
750  
µV  
P-P  
µV  
P-P  
µV  
P-P  
µV  
P-P  
C
= 0.1µF  
REF  
timing characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V. (See Figure 1) (Note 13)  
LTC2635-HMI12/-HMI10/-HMI8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
µs  
0
0.9  
µs  
Data Set-Up Time  
100  
20+0.1C  
20+0.1C  
0.6  
ns  
Rise Time of ꢀoth SDA and SCL Signals  
Fall Time of ꢀoth SDA and SCL Signals  
Set-Up Time for Stop Condition  
ꢀus Free Time ꢀetween a Stop and Start Condition  
(Note 12)  
(Note 12)  
300  
300  
ns  
ns  
f
µs  
SU(STO)  
ꢀUF  
1.3  
µs  
th  
rd  
Falling Edge of 9 Clock of the 3 Input ꢀyte to LDAC  
High or Low Transition  
400  
ns  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
2635fb  
ꢀ0  
LTC2635  
electrical characteristics  
Note 7. Digital inputs at 0V or V  
.
Note 1. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device reliability  
and lifetime.  
CC  
Note 8. Guaranteed by design and not production tested.  
Note 9. Internal Reference mode. DAC is stepped 1/4 scale to 3/4 scale and  
3/4 scale to 1/4 scale. Load is 2kΩ in parallel with 100pF to GND.  
Note 2. All voltages are with respect to GND.  
Note 10. Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 3. High temperatures degrade operating lifetimes. Operating lifetime  
is derated at temperatures greater than 105°C. Operating at temperatures  
above 90°C and with V > 4V requires V slew rates to be no greater than  
Note 11. Maximum V = V  
+ 0.5V.  
CC(MAX)  
CC  
CC  
IH  
73mV/ms.  
Note 12. C = capacitance of one bus line in pF.  
N
Note 4. Linearity and monotonicity are defined from code k to code 2 – 1,  
L
Note 13. All values refer to V = V  
and V = V  
levels.  
N
IH  
IH(MIN)  
IL  
IL(MAX)  
where N is the resolution and k is given by k = 0.016 • (2 / V ),  
L
L
FS  
rounded to the nearest whole code. For V = 2.5V and N = 12, k = 26  
FS  
L
Note 14. Minimum V exceeds the Absolute Maximum rating. This condition  
IL  
and linearity is defined from code 26 to code 4,095. For V = 4.096V and  
FS  
won’t damage the IC, but could degrade performance.  
N = 12, k = 16 and linearity is defined from code 16 to code 4,095.  
L
Note 5. Inferred from measurement at code 16 (LTC2635-12), code 4  
(LTC2635-10) or code 1 (LTC2635-8), and at full-scale.  
Note 6. This IC includes current limiting that is intended to protect the  
device during momentary overload conditions. Junction temperature can  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
2635fb  
ꢀꢀ  
LTC2635  
typical perFormance characteristics TA = 25°C, unless otherwise noted.  
LTC2635-L12 (Internal Reference, VFS = 2.5V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
= 3V  
V
= 3V  
CC  
CC  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2635 G01  
2635 G02  
Reference Output Voltage vs  
Temperature  
INL vs Temperature  
DNL vs Temperature  
1.0  
1.0  
0.5  
1.260  
1.255  
1.250  
1.245  
1.240  
V
CC  
= 3V  
V
= 3V  
V
= 3V  
CC  
CC  
0.5  
0
INL (POS)  
DNL (POS)  
DNL (NEG)  
0
–0.5  
–0.5  
INL (NEG)  
–1.0  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2635 G04  
2635 G03  
2635 G05  
Settling to 1 LSB Rising  
Settling to 1 LSB Falling  
9th CLOCK OF 3rd  
DATA BYTE  
3/4 SCALE TO 1/4 SCALE STEP  
= 3V, V = 2.5V  
SCL  
5V/DIV  
V
CC  
FS  
V
OUT  
R = 2k, C = 100pF  
L
L
1 LSB/DIV  
AVERAGE OF 256 EVENTS  
4.4µs  
3.3µs  
V
OUT  
1/4 SCALE TO 3/4 SCALE STEP  
= 3V, V = 2.5V  
9th CLOCK OF 3rd  
DATA BYTE  
1 LSB/DIV  
V
CC  
FS  
SCL  
5V/DIV  
R = 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2635 G06  
2635 G07  
2µs/DIV  
2µs/DIV  
2635fb  
ꢀꢁ  
LTC2635  
typical perFormance characteristics TA = 25°C, unless otherwise noted.  
LTC2635-H12 (Internal Reference, VFS = 4.096V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
V
= 5V  
V
= 5V  
CC  
CC  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2635 G08  
2635 G09  
Reference Output Voltage vs  
Temperature  
INL vs Temperature  
DNL vs Temperature  
1.0  
0.5  
1.0  
2.068  
2.058  
2.048  
2.038  
2.028  
V
= 5V  
V
CC  
= 5V  
CC  
V
= 5V  
CC  
INL (POS)  
0.5  
0
DNL (POS)  
DNL (NEG)  
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2635 G10  
2635 G11  
2635 G12  
Settling to 1 LSB Rising  
Settling to 1 LSB Falling  
3/4 SCALE TO  
9th CLOCK OF 3rd  
DATA BYTE  
1/4 SCALE STEP  
SCL  
5V/DIV  
V
= 5V, V = 4.095V  
CC  
FS  
V
R
L
= 2k, C = 100pF  
L
OUT  
1 LSB/DIV  
AVERAGE OF 256 EVENTS  
3.9µs  
5µs  
9th CLOCK OF 3rd  
DATA BYTE  
V
SCL  
5V/DIV  
OUT  
1/4 SCALE TO 3/4 SCALE STEP  
= 5V, V = 4.095V  
1 LSB/DIV  
V
CC  
FS  
R = 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2635 G13  
2635 G14  
2µs/DIV  
2µs/DIV  
2635fb  
ꢀꢂ  
LTC2635  
typical perFormance characteristics TA = 25°C, unless otherwise noted.  
LTC2635-10  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF  
INTERNAL REF  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
2635 G15  
2635 G16  
LTC2635-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.50  
0.25  
0
0.50  
0.25  
0
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF  
INTERNAL REF  
–0.25  
–0.50  
–0.25  
–0.50  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE  
CODE  
2635 G17  
2635 G18  
LTC2635  
Load Regulation  
Current Limiting  
Offset Error vs Temperature  
0.20  
0.15  
0.10  
0.05  
0
3
2
10  
V
CC  
V
CC  
V
CC  
= 5V (LTC2635-H)  
= 5V (LTC2635-L)  
= 3V (LTC2635-L)  
V
CC  
V
CC  
V
CC  
= 5V (LTC2635-H)  
= 5V (LTC2635-L)  
= 3V (LTC2635-L)  
8
6
4
1
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.01  
–0.15  
–0.20  
–1  
–2  
–3  
INTERNAL REF.  
CODE = MID-SCALE  
INTERNAL REF.  
CODE = MID-SCALE  
–30  
–20  
–10  
0
10 20 30  
–50 –25  
0
25 50 75 100 125 150  
–30  
–20  
–10  
0
10 20 30  
I
(mA)  
TEMPERATURE (°C)  
I
(mA)  
OUT  
OUT  
2635 G20  
2635 G21  
2635 G19  
2635fb  
ꢀꢃ  
LTC2635  
typical perFormance characteristics TA = 25°C, unless otherwise noted.  
LTC2635  
Large-Signal Response  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
LTC2635-L  
9th CLOCK OF 3rd  
DATA BYTE  
SCL  
5V/DIV  
V
CC  
2V/DIV  
V
OUT  
LTC2635-H12, V = 5V  
CC  
3nVs TYP  
0.5V/DIV  
ZERO SCALE  
V
V
OUT  
OUT  
5mV/DIV  
5mV/DIV  
LTC2635-L12, V = 3V  
CC  
2.1nVs TYP  
V
= V = 5V  
CC  
FS  
1/4 SCALE to 3/4 SCALE  
2635 G23  
2µs/DIV  
2µs/DIV  
200µs/DIV  
2635 G22  
2635 G24  
Headroom at Rails vs  
Output Current  
Exiting Power-Down to Mid-Scale  
Power-On Reset to Mid-Scale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
CC  
5V SOURCING  
INTERNAL  
REFERENCE  
V
CC  
2V/DIV  
SCL  
5V/DIV  
9th CLOCK OF 3rd  
DATA BYTE  
3V (LTC2635-L) SOURCING  
LTC2635-H  
DACs A-C IN  
POWER-DOWN  
MODE  
V
OUT  
0.5V/DIV  
5V SINKING  
3V (LTC2635-L) SINKING  
LTC2635-L  
V
OUT  
0.5V/DIV  
LTC2635-H  
2635 G26  
5µs/DIV  
200µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
2635 G27  
I
(mA)  
OUT  
2635 G25  
Exiting Power-Down for Hi-Z  
Option  
Supply Current vs Logic Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
SWEEP SDA, SCL  
BETWEEN  
9th CLOCK OF 3rd  
DATA BYTE  
0V AND V  
CC  
SCL  
5V/DIV  
DAC OUTPUT SET  
TO MID-SCALE  
HIGH-IMPEDANCE  
(POWER-DOWN) MODE  
V
= 5V  
CC  
V
OUT  
500mV/DIV  
V
= 3V  
CC  
(LTC2635-L)  
2635 G29  
2µs/DIV  
0
1
2
3
4
5
LTC2635-LMO, V = 3V  
CC  
LOGIC VOLTAGE (V)  
2635 G28  
DAC OUTPUT DRIVEN BY  
1V SOURCE THROUGH  
15k RESISTOR  
2635fb  
ꢀꢄ  
LTC2635  
typical perFormance characteristics TA = 25°C, unless otherwise noted.  
LTC2635  
Mulitplying Bandwidth  
Noise Voltage vs Frequency  
Gain Error vs Reference Input  
2
0
1.0  
0.8  
500  
400  
300  
200  
100  
0
V
= 5V  
CC  
V
= 5.5V  
CC  
CODE = MID-SCALE  
INTERNAL REF  
GAIN ERROR OF 4 CHANNELS  
–2  
0.6  
–4  
0.4  
–6  
0.2  
–8  
0
LTC2635-H  
–10  
–12  
–14  
–16  
–18  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
LTC2635-L  
V
V
V
= 5V  
REF(DC)  
REF(AC)  
CODE = FULL-SCALE  
CC  
= 2V  
= 0.2V  
P-P  
1k  
10k  
100k  
1M  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
REFERENCE VOLTAGE (V)  
FREQUENCY (Hz)  
2635 G31  
2635 G33  
2634 G32  
0.1Hz to 10Hz Voltage Noise  
DAC-to-DAC Crosstalk (Dynamic)  
Gain Error vs Temperature  
1.0  
0.5  
V
= 5V, V = 2.5V  
FS  
CC  
9th CLOCK OF 3rd  
DATA BYTE  
CODE = MID-SCALE  
INTERNAL REF  
SCL  
5V/DIV  
1 DAC  
SWITCH 0-FS  
2V/DIV  
10µV/DIV  
0
V
OUT  
–0.5  
2mV/DIV  
LTC2635-H12, V = 5V  
CC  
3nVs TYPICAL C =0.1µF  
REF  
–1.0  
2635 G35  
2µs/DIV  
1s/DIV  
–50 –25  
0
25 50 75 100 125 150  
2635 G34  
TEMPERATURE (°C)  
2635 G36  
2635fb  
ꢀꢅ  
LTC2635  
pin Functions (MSOP/QFN)  
V
(Pin 1/Pin 16): Supply Voltage Input. 2.7V ≤ V  
REF (Pin 7/Pin 10): Reference Voltage Input or Output.  
CC  
CC  
5.5V (LTC2635-L) or 4.5V ≤ V ≤ 5.5V (LTC2635-H).  
When External Reference mode is selected, REF is an  
CC  
ꢀypass to GND with a 0.1µF capacitor.  
input (1V ≤ V  
≤ V ) where the voltage supplied sets  
REF CC  
thefull-scaleDACoutputvoltage.WhenInternalReference  
is selected, the 10ppm/°C 1.25V (LTC2635-L) or 2.048V  
(LTC2635-H)internalreference(halffull-scale)isavailable  
at the pin. This output may be bypassed to GND with up  
to 10µF, and must be buffered when driving an external  
DC load current.  
V
to V  
(Pins 2, 3, 8, 9/Pins 1, 2, 11, 12): DAC  
OUTA  
OUTD  
Analog Voltage Outputs.  
LDAC (Pin 3, QFN Only): Asynchronous DAC Update. A  
falling edge on this input after four bytes (slave address  
byte plus three data bytes) have been written into the part  
immediately updates the DAC registers with the contents  
of the input registers (similar to a software update). A  
low on this input without a complete 32-bit (four bytes  
including the slave address) data write transfer to the part  
does not update the DAC output. A low on the LDAC pin  
powers up the DACs. A software power down command  
is ignored if LDAC is low.  
DNC (Pins 6, 15, QFN Only): Do Not Connect These  
Pins.  
CA2 (Pin 7, QFN Only): Chip Address ꢀit 2. Tie this pin to  
2
V , GND or leave it floating to select an I C slave address  
CC  
for the part (see Table 1).  
CA1 (Pin 9, QFN Only): Chip Address ꢀit 1. Tie this pin to  
2
CA0 (Pin 4/Pin 4): Chip Address ꢀit 0. Tie this pin to V ,  
V , GND or leave it floating to select an I C slave address  
CC  
CC  
2
GND or leave it floating to select an I C slave address for  
for the part (see Table 1).  
the part (see Tables 1 and 2).  
GND (Pin 10, Exposed Pad Pin 11/Pin 14, Exposed Pad  
Pin 17): Ground. Must be soldered to PCꢀ ground.  
SCL (Pin 5/Pin 5): Serial Clock Input Pin. Data is shifted  
into the SDA pin at the rising edges of the clock. This  
high-impedance pin requires a pull-up resistor or current  
REFLO (Pin 13, QFN Only): Reference Low Pin. The volt-  
age at this pin sets the zero-scale voltage of all DACs. This  
pin must be tied to GND.  
source to V .  
CC  
SDA (Pin 6/Pin 8): Serial Data ꢀidirectional Pin. Data is  
shifted into the SDA pin and acknowledged by the SDA  
pin. This pin is high impedance while data is shifted in.  
OpendrainN-channeloutputduringacknowledgment.SDA  
requires a pull-up resistor or current source to V .  
CC  
2635fb  
ꢀꢆ  
LTC2635  
Block Diagram  
REF  
INTERNAL  
REFERENCE  
GND  
SWITCH  
V
REF  
V
(REFLO)  
CC  
V
V
OUTA  
OUTD  
DAC A  
DAC B  
DAC D  
DAC C  
V
REF  
V
REF  
V
V
OUTC  
OUTB  
(LDAC)  
DECODE  
POWER-ON  
RESET  
CA0  
2
I C  
ADDRESS  
DECODE  
(CA1)  
(CA2)  
SCL  
SDA  
2
I C INTERFACE  
2635 BD  
( ) QFN PACKAGE ONLY  
2635fb  
ꢀꢇ  
LTC2635  
test circuits  
Test Circuits for I2C Digital I/O (See Electrical Characteristics)  
Test Circuit 1  
Test Circuit 2  
V
DD  
100Ω  
/V  
CAn  
R
/R /R  
INH INL INF  
CAn  
V
IH(CAn) IL(CAn)  
2635 TC01  
2635 TC02  
GND  
timing Diagrams  
SDA  
t
SU(DAT)  
t
BUF  
t
f
t
SP  
t
r
t
LOW  
t
t
t
r
HD(STA)  
r
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
S
HIGH  
Sr  
P
S
t
HD(DAT)  
2635 F01  
ALL VOLTAGE LEVELS REFER TO V  
AND V  
LEVELS  
IH(MIN)  
IL(MAX)  
Figure 1. I2C Timing  
2635fb  
ꢀꢈ  
LTC2635  
timing Diagrams  
SLAVE ADDRESS  
START  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
SDA  
SCL  
X
5
X
X
7
X
8
A6 A5 A4 A3 A2 A1 A0  
W
ACK C3 C2 C1 C0 A3 A2 A1 A0 ACK  
ACK  
9
ACK  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
6
t
1
t
2
LDAC  
2635 F02a  
Figure 2a. Typical LTC2635 Write Transaction  
9TH CLOCK  
OF 3RD  
DATA BYTE  
SCL  
t
1
LDAC  
2635 F02b  
Figure 2b. LTC2635 LDAC Timing (QFN Package Only)  
2635fb  
ꢁ0  
LTC2635  
operation  
The LTC2635 is a family of quad voltage output DACs in  
16-pin QFN and 10-lead MSOP packages. Each DAC can  
operate rail-to-rail using an external reference, or with its  
full-scale voltage set by an integrated reference. Eighteen  
combinations of accuracy (12-, 10-, and 8-bit), power-on  
reset value (zero-scale, mid-scale in internal reference  
mode, or mid-scale in external reference mode), DAC  
power-down output load (high impedance or 200kΩ),  
and full-scale voltage (2.5V or 4.096V) are available. The  
taken to observe these limits during power supply turn-  
on and turn-off sequences, when the voltage at V is in  
CC  
transition.  
Transfer Function  
The digital-to-analog transfer function is  
N   
k
VOUT(IDEAL)  
=
VREF VREFLO + V  
REFLO  
(
)
2
2
LTC2635 is controlled using a 2-wire I C interface.  
where k is the decimal equivalent of the binary DAC input  
Power-On Reset  
code,Nistheresolution,andV iseither2.5V(LTC2635-  
REF  
The LTC2635-HZ/-LZ clear the output to zero-scale when  
power is first applied, making system initialization con-  
sistent and repeatable.  
LMI/-LMX/-LMO/-LZ)or4.096V(LTC2635-HMI/-HZ)when  
in Internal Reference mode, and the voltage at REF when  
in External Reference mode.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2635  
contains circuitry to reduce the power-on glitch: the  
analog output typically rises less than 5mV above zero-  
scale during power on. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See “Power-On Reset Glitch” in the Typical Performance  
Characteristics section.  
2
I C Serial Interface  
The LTC2635 communicates with a host using the stan-  
dard 2-wire I C interface. The timing diagrams (Figures  
2
1 and 2) show the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines. The value of  
these pull-up resistors is dependent on the power supply  
andcanbeobtainedfromtheI Cspecifications. ForanI C  
bus operating in the fast mode, an active pull-up will be  
necessary if the bus capacitance is greater than 200pF.  
2
2
The LTC2635-HMI/-LMI/-LMX provide an alternative  
reset, setting the output to mid-scale when power is first  
applied. The LTC2635-LMI and LTC2635-HMI power  
up in internal reference mode, with the output set to a  
mid-scale voltage of 1.25V and 2.048V, respectively. The  
LTC2635-LMX power-up in external reference mode, with  
the output set to mid-scale of the external reference. The  
LTC2635-LMO powers up in internal reference mode with  
all the DAC channels placed in the high-impedance state  
(powered-down). Input and DAC registers are set to the  
mid-scalecode,andonlytheinternalreferenceispowered  
up, causing supply current to be typically 100µA upon  
power up. Default reference mode selection is described  
in the Reference Modes section.  
The LTC2635 is a receive-only (slave) device. The master  
can write to the LTC2635. The LTC2635 will not acknowl-  
edge (NAK) a read request from the master.  
START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition.  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
high to low while SCL is high.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
Power Supply Sequencing  
The voltage at REF (Pin 10 – QFN, Pin 7 – MSOP) must  
2
be kept within the range –0.3V ≤ V  
≤ V + 0.3V (see  
REF  
CC  
another I C device.  
Absolute Maximum Ratings). Particular care should be  
2635fb  
ꢁꢀ  
LTC2635  
operation  
Acknowledge  
Table 1. Slave Address Map (QFN Package)  
CA2  
CA1  
CA0  
A6  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A5  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A4  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
The Acknowledge (ACK) signal is used for handshaking  
between the master and the slave. An ACK (active LOW)  
generated by the slave lets the master know that the lat-  
est byte of information was properly received. The ACK  
related clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the ACK clock pulse.  
The slave-receiver must pull down the SDA bus line dur-  
ing the ACK clock pulse so that it remains a stable LOW  
during the HIGH period of this clock pulse. The LTC2635  
responds to a write by a master in this manner but does  
not acknowledge a read operation; in that case, SDA is  
retained HIGH during the period of the ACK clock pulse.  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND FLOAT  
GND  
V
CC  
FLOAT GND  
FLOAT FLOAT  
FLOAT  
V
CC  
V
CC  
GND  
V
FLOAT  
CC  
V
CC  
V
CC  
FLOAT GND  
GND  
FLOAT GND FLOAT  
FLOAT GND  
V
CC  
Chip Address  
FLOAT FLOAT GND  
FLOAT FLOAT FLOAT  
The state of pins CA0, CA1 and CA2 (CA1 and CA2 are  
only available on the QFN package) determines the slave  
address of the part. These pins can be each set to any  
FLOAT FLOAT  
V
CC  
FLOAT  
FLOAT  
FLOAT  
V
CC  
V
CC  
V
CC  
GND  
FLOAT  
one of three states: V , GND or float. This results in 27  
CC  
(QFNPackage)or3(MSOPPackage)selectableaddresses  
for the part. The slave address assignments are shown  
in Tables 1 and 2.  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
GND FLOAT  
GND  
GND  
V
CC  
In addition to the address selected by the address pins,  
the part also responds to a global address. This address  
allows a common write to all LTC2635 parts to be ac-  
complished using one 3-byte write transaction on the  
FLOAT GND  
FLOAT FLOAT  
FLOAT  
V
CC  
2
V
CC  
V
CC  
V
CC  
GND  
I C bus. The global address, listed at the end of Tables  
FLOAT  
1 and 2, is a 7-bit hardwired address not selectable by  
CA0, CA1 or CA2. If another address is required, please  
consult the factory.  
V
CC  
GLOꢀAL ADDRESS  
Themaximumcapacitiveloadallowedontheaddresspins  
(CA0,CA1andCA2)is10pF,asthesepinsaredrivenduring  
address detection to determine if they are floating.  
Table 2. Slave Address Map (MSOP Package)  
CA0  
GND  
A6  
0
A5  
0
A4  
1
A3  
0
A2  
A1  
A0  
0
0
0
0
0
0
0
1
1
FLOAT  
0
0
1
0
1
V
0
0
1
0
0
CC  
GLOꢀAL ADDRESS  
1
1
1
0
1
2635fb  
ꢁꢁ  
LTC2635  
operation  
Write Word Protocol  
Table 3. Command Codes  
COMMAND*  
The master initiates communication with the LTC2635  
with a START condition and a 7-bit slave address followed  
by the Write bit (W) = 0. The LTC2635 acknowledges by  
pulling the SDA pin low at the 9th clock if the 7-bit slave  
address matches the address of the part (set by CA0, CA1  
or CA2) or the global address. The master then transmits  
threebytesofdata. TheLTC2635acknowledgeseachbyte  
of data by pulling the SDA line low at the 9th clock of each  
data byte transmission. After receiving three complete  
bytes of data, the LTC2635 executes the command speci-  
fied in the 24-bit input word.  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All  
Write to and Update (Power Up) DAC Register n  
Power Down n  
Power Down Chip (All DAC’s and Reference)  
Select Internal Reference (Power Up Reference)  
Select External Reference (Power Down Internal  
Reference)  
1
1
1
1
No Operation  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2635 does not acknowledge  
(NAK) the extra bytes of data (SDA is high during the 9th  
clock).  
*Command codes not shown are reserved and should not be used.  
Table 4. Address Codes  
ADDRESS (n)*  
TheformatofthethreedatabytesisshowninFigure3.The  
firstbyteoftheinputwordconsistsofthe4-bitcommand,  
followed by the 4-bit DAC address. The next two bytes  
contain the 16-bit data word, which consists of the 12-,  
10- or 8-bit input code, MSꢀ to LSꢀ, followed by 4, 6 or 8  
don’t-care bits (LTC2635-12, -10 and -8, respectively). A  
typical LTC2635 write transaction is shown in Figure 4.  
A3 A2 A1 A0  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC ꢀ  
DAC C  
DAC D  
ALL DACs  
* Address codes not shown are reserved and should not be used.  
The command bit assignments (C3-C0) and address (A3-  
A0) assignments are shown in Tables 3 and 4. The first  
four commands in the table consist of write and update  
operations. A write operation loads a 16-bit data word  
from the 32-bit shift register into the input register. In an  
update operation, the data word is copied from the input  
register to the DAC register. Once copied into the DAC  
register, the data word becomes the active 12-, 10-, or  
8-bit input code, and is converted to an analog voltage at  
the DAC output. Write to and Update combines the first  
two commands. The Update operation also powers up the  
DAC if it had been in power-down mode. The data path  
and registers are shown in the ꢀlock Diagram.  
Reference Modes  
For applications where an accurate external reference is  
either not available, or not desirable due to limited space,  
the LTC2635 has a user-selectable, integrated reference.  
The integrated reference voltage is internally amplified by  
2x to provide the full-scale DAC output voltage range. The  
LTC2635-LMI/-LMX/-LMO/-LZprovidesafull-scaleoutput  
of2.5V.TheLTC2635-HMI/-HZprovidesafull-scaleoutput  
of 4.096V. The internal reference can be useful in applica-  
tionswherethesupplyvoltageispoorlyregulated.Internal  
Referencemodecanbeselectedbyusingcommand0110b,  
and is the power-on default for LTC2635-HZ/-LZ, as well  
as for LTC2635-HMI/-LMI/-LMO.  
2635fb  
ꢁꢂ  
LTC2635  
operation  
Write Word Protocol for LTC2635  
S
W
ACK  
A1  
1STDATABYTE  
ACK  
2NDDATABYTE  
INPUT WORD  
ACK  
D5  
3RDDATABYTE  
ACK  
D1  
X
P
SLAVE ADDRESS  
Input Word (LTC2635-12)  
C3  
A3  
A2  
A0  
A0  
A0  
D8  
C1  
C1  
C1  
D7  
D6  
D4  
D2  
D4  
D11 D10 D9  
D3  
D1  
X
D2  
D0  
X
D0  
X
X
X
X
X
X
X
X
X
C2  
C0  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2635-10)  
X
X
A3  
C0  
A2  
A2  
D6  
C3  
C2  
A1  
A1  
D5  
D3  
D1  
D2  
D0  
D9  
D7  
D8  
D6  
D7  
D5  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2635-8)  
A3  
C0  
D4  
X
X
X
X
C3  
C2  
D3  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
2635 F03  
Figure 3. Command and Data Input Format  
The10ppm/°C,1.25V(LTC2635-LMI/-LMX/-LMO/-LZ)or  
2.048V(LTC2635-HMI/-HZ)internalreferenceisavailable  
at the REF pin. Adding bypass capacitance to the REF pin  
will improve noise performance; and up to 10µF can be  
driven without oscillation. This output must be buffered  
when driving an external DC load current.  
Power-Down Mode  
Forpower-constrainedapplications,power-downmodecan  
be used to reduce the supply current whenever less than  
four DAC outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits, and integrated reference  
circuits are disabled, and draw essentially zero current.  
The DAC amplifier outputs are put into a high-impedance  
state, and the output pins are passively pulled to ground  
through individual 200k resistors (LTC2635-LMI/-LMX/  
-LZ/-HMI/-HZ). For the LTC2635-LMO options, the out-  
put pins are not passively pulled to ground, but are also  
placed in a high-impedance state (open-circuited state)  
during power-down, typically drawing less than 0.1µA.  
TheLTC2635-LMOoptionspower-upwithallDACoutputs  
in this high-impedance state. They remain that way until  
given a software or hardware update command. For all  
LTC2635 options, input- and DAC-register contents are  
not disturbed during power-down.  
Alternatively, the DAC can operate in External Reference  
modeusingcommand0111b.Inthismode,aninputvoltage  
supplied externally to the REF pin provides the reference  
(1V ≤ V ≤ V ) and the supply current is reduced. The  
REF  
CC  
externalreferencevoltagesuppliedsetsthefull-scaleDAC  
output voltage. External Reference mode is the power-on  
default for LTC2635-LMX.  
ThereferencemodeofLTC2635-HZ/-LZ/-HMI/-LMI/-LMO  
(Internal Reference power-on default), can be changed by  
software command after power up. The same is true for  
LTC2635-LMX (External Reference power-on default).  
2635fb  
ꢁꢃ  
LTC2635  
operation  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in combi-  
nation with the appropriate DAC address, (n). The supply  
current is reduced approximately 20% for each DAC  
powered down. The integrated reference is automatically  
powered down when external reference is selected using  
command 0111b. In addition, all the DAC channels and the  
integrated reference together can be put into power-down  
modeusingPowerDownChipcommand0101b. Whenthe  
integrated reference is in power-down mode, the REF pin  
becomeshighimpedance (typically > 1GΩ). Forall power-  
down commands the 16-bit data word is ignored.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change  
in units from LSꢀ/mA to Ω. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 50Ω typical channel resistance of the output devices  
(e.g., when sinking 1mA, the minimum output voltage is  
50Ω • 1mA, or 50mV). See the graph Headroom at Rails  
vs. Output Current in the Typical Performance Charac-  
teristics section.  
Normal operation resumes after executing any command  
that includes a DAC update, (as shown in Table 1) or pull-  
ing the asynchronous LDAC pin low (QFN package only).  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state  
is powered up and updated, normal settling is delayed. If  
less than four DACs are in a powered-down state prior to  
the update command, the power-up delay time is 10µs.  
However, if all four DACs and the integrated reference are  
powereddown,thenthemainbiasgenerationcircuitblock  
has been automatically shut down in addition to the DAC  
amplifiersandreferencebuffers.Inthiscase,thepowerup  
delay time is 12µs. The power-up of the integrated refer-  
ence depends on the command that powered it down. If  
the reference is powered down using the Select External  
Reference Command (0111b), then it can only be powered  
backupusingSelectInternalReferenceCommand(0110b).  
However, if the reference was powered down using Power  
Down Chip Command (0101b), then in addition to Select  
Internal Reference Command (0110b), any command (in  
software or using the LDAC pin) that powers up the DACs  
will also power up the integrated reference.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is lim-  
ited to voltages within the supply range.  
SincetheanalogoutputoftheDACcannotgobelowground,  
it may limit for the lowest codes as shown in Figure 5b.  
Similarly, limiting can occur near full-scale when the REF  
. If V = V and the DAC full-scale error  
pin is tied to V  
CC  
REF  
CC  
(FSE) is positive, the output for the highest codes limits  
at V , as shown in Figure 5c. No full-scale limiting can  
CC  
occur if V  
is less than V – FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Board Layout  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane. The resistance from  
the LTC2635 GND pin to the ground plane should be as  
low as possible. Resistance here will add directly to the  
effective DC output impedance of the device (typically  
0.1Ω). Note that the LTC2635 is no more susceptible to  
Voltage Output  
The LTC2635’s integrated rail-to-rail amplifier has guar-  
anteed load regulation when sourcing or sinking up to  
10mA at 5V, and 5mA at 3V.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSꢀ/mA.  
2635fb  
ꢁꢄ  
LTC2635  
operation  
this effect than any other parts of this type; on the con-  
trary, it allows layout-based performance improvements  
to shine rather than limiting attainable performance with  
excessive internal resistance.  
analog ground, digital ground, and power ground. When  
the LTC2635 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion  
of the plane. When doing this, make the gap in the plane  
only as long as it needs to be to serve its purpose and  
ensure that no traces cross over the gap.  
SLAVE ADDRESS  
COMMAND/ADDRESS  
MS DATA  
LS DATA  
A6 A5 A4 A3 A2 A1 A0  
W
C3 C2 C1 C0 A3 A2 A1 A0  
D11 D10 D9 D8 D7 D6 D5 D4  
D3 D2 D1 D0  
X
X
6
X
7
X
8
STOP  
START  
SDA  
SCL  
A6 A5 A4 A3 A2 A1 A0  
W
ACK C3 C2 C1 C0 A3 A2 A1 A0 ACK  
ACK  
9
ACK  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
FULL-SCALE  
VOLTAGE  
V
OUT  
ZERO-SCALE  
VOLTAGE  
X = DONT CARE  
2635 F04  
Figure 4. Typical LTC2635 Input Waveform—Programming DAC Output for Full-Scale  
2635fb  
ꢁꢅ  
LTC2635  
operation  
POSITIVE  
FSE  
V
REF  
= V  
CC  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2635 F05  
OUTPUT  
VOLTAGE  
(c)  
0V  
0
2,048  
4,095  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
Figure 5. Effects of Rail-to-Rail On a DAC Transfer Curve (Shown for 12 Bits).  
(a) Overall Transfer Function  
(b) Effect of Negative Offset for Codes Near Zero  
(c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
2635fb  
ꢁꢆ  
LTC2635  
application inFormation  
Voltage Margining Application with LTC3850 (1.2V 5%) –LTC2635– LMO Option Only  
V
IN  
6.5V TO 14V  
0.1µF  
4.7µF  
2.2Ω  
100k  
0.1µF  
INTV  
PGOOD  
V
CC  
IN  
I
TG1  
LIM  
0.1µF  
10k  
BOOST1  
SW1  
FREQ  
2.2µH  
0.008Ω  
V
OUT  
1.2V 5ꢀ  
LTC3850EUF  
3.32k  
1nF  
BG1  
PGND  
10Ω  
10Ω  
I
TH1  
+
SENSE  
RUN1  
1nF  
500kHz  
MODE/PLLIN  
TK/SS1  
1nF  
100pF  
SENSE  
10k  
10nF  
V
FB1  
SGND  
15pF  
63.4k  
5V  
2635 TA02  
20k  
DAC D  
OUTPUT DAC CODE  
1
9
7
REF  
V
CC  
V
OUT  
0.1µF  
LTC2635CMSE-LMOI2  
1.26V  
1.2V  
1.14V  
0.5V  
0.8V  
1.1V  
819  
1311  
1802  
10k  
15k  
0.22µF  
2
3
DAC A  
DAC B  
DAC D  
DAC C  
8
10  
4
5
6
CAO  
SCL  
SDA  
GND  
2
TO I C  
BUS  
2635 TA02  
2635fb  
ꢁꢇ  
LTC2635  
package Description  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2635fb  
ꢁꢈ  
LTC2635  
package Description  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev D)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 p 0.102  
(.074 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.23  
(.206)  
MIN  
1.68 p 0.102 3.20 – 3.45  
(.066 p .004) (.126 – .136)  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0210 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
2635fb  
ꢂ0  
LTC2635  
revision history  
REV  
DATE  
12/09 Revise QFN pin names  
Minor text edit in Operations section  
DESCRIPTION  
PAGE NUMBER  
A
2, 17  
21, 24  
11  
06/10 Revised Note 3 in the Electrical Characteristics section  
Added Typical Application drawing and revised Related Parts List  
32  
2635fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
tionthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
ꢂꢀ  
LTC2635  
typical application  
Voltage Margining Application with LTC3850 (1.2V 5%) –LTC2635– LMO Option Only  
V
IN  
6.5V TO 14V  
0.1µF  
4.7µF  
2.2Ω  
100k  
0.1µF  
INTV  
PGOOD  
V
CC  
TG1  
IN  
I
LIM  
0.1µF  
10k  
FREQ  
BOOST1  
SW1  
2.2µH  
0.008Ω  
V
OUT  
1.2V 5ꢀ  
3.32k  
1nF  
BG1  
LTC3850EUF  
PGND  
10Ω  
10Ω  
+
SENSE  
I
TH1  
RUN1  
1nF  
1nF  
10k  
SENSE  
500kHz  
MODE/PLLIN  
TK/SS1  
100pF  
V
FB1  
SGND  
10nF  
15pF  
63.4k  
5V  
1
9
7
REF  
V
CC  
LTC2635CMSE-LMOI2  
0.1µF  
2635 TA02  
20k  
10k  
15k  
0.22µF  
DAC D  
OUTPUT DAC CODE  
2
3
DAC A  
DAC B  
DAC D  
DAC C  
V
OUT  
1.26V  
1.2V  
1.14V  
0.5V  
0.8V  
1.1V  
819  
1311  
1802  
8
10  
4
5
6
CAO  
SCL  
SDA  
GND  
2
TO I C  
BUS  
2635 TA03  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
2
LTC2654/LTC2655 Quad 16-/12 ꢀit, SPI/I C V  
Maximum Reference  
DACs with 10ppm/°C  
4LSꢀ INL Maximum at 16 ꢀits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 4mm QFN and 16-Lead Narrow SSOP Packages  
OUT  
2
LTC2609/LTC2619/ Quad 16-/14-/12-ꢀit V  
LTC2629  
DACs with I C Interface  
250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output with  
OUT  
Separate V Pins for Each DAC  
REF  
LTC2604/LTC2614/ Quad 16-/14-/12-ꢀit, SPI V  
DACs with External  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 16-Lead  
SSOP Package  
OUT  
LTC2624  
LTC2634  
Reference  
Quad 12-/10-/8-ꢀit SPI V  
Reference  
DACs with 10ppm/°C  
125µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, 16-Pin 3mm × 3mm QFN and 10-Lead MSOP  
Packages  
OUT  
2
LTC2656/LTC2657 Octal 16-/12 ꢀit, SPI/I C V  
DACs with 10ppm/°C  
4LSꢀ INL Maximum at 16 ꢀits and 2mV Offset Error, Rail-to-Rail Output,  
20-Lead 4mm × 5mm QFN and 16-Lead TSSOP Packages  
125µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, 14-Lead 4mm × 3mm DFN and 16-Lead  
MSOP Packages  
OUT  
Maximum Reference  
2
LTC2636/LTC2637 Octal 12-/10-/8-ꢀit, SPI/I C V  
10ppm/°C Reference  
DACs with  
OUT  
2
LTC2630/LTC2631 Single 12-/10-/8-ꢀit, SPI/ I C V  
10ppm/°C Reference  
DACs with  
180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output, SC70 (LTC2630)/ThinSOT™ (LTC2631) Packages  
OUT  
LTC2640  
Single 12-/10-/8-ꢀit, SPI V  
Reference  
DACs with 10ppm/°C 180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference, External  
REF Mode, Rail-to-Rail Output, ThinSOT Package  
OUT  
LTC1664  
Quad 10-ꢀit, Serial V  
DAC  
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output, 16-Pin Narrow SSOP  
CC  
OUT  
2635fb  
LT 0610 REV B • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
ꢂꢁ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY