LTC2636CDE-H8#TRPBF [Linear]

IC 8-BIT DAC, PDSO14, 4 X 3 MM, LEAD FREE, PLASTIC, MO-229WGED-3, DFN-14, Digital to Analog Converter;
LTC2636CDE-H8#TRPBF
型号: LTC2636CDE-H8#TRPBF
厂家: Linear    Linear
描述:

IC 8-BIT DAC, PDSO14, 4 X 3 MM, LEAD FREE, PLASTIC, MO-229WGED-3, DFN-14, Digital to Analog Converter

光电二极管
文件: 总24页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2636  
Octal 12-/10-/8-Bit SPI V  
OUT  
DACs with10ppm/°C Reference  
FEATURES  
DESCRIPTION  
The LTC®2636 is a family of octal 12-, 10-, and 8-bit  
voltage-output DACs with an integrated, high-accuracy,  
low-drift 10ppm/°C reference in 14-lead DFN and 16-lead  
MSOP packages. It has a rail-to-rail output buffer and is  
guaranteed monotonic. The LTC2636-L has a full-scale  
output of 2.5V, and operates from a single 2.7V to 5.5V  
supply. The LTC2636-H has a full-scale output of 4.096V,  
and operates from a 4.5V to 5.5V supply. Each DAC can  
alsooperatewithanexternalreference,whichsetstheDAC  
full-scale output to the external reference voltage.  
n
Integrated Precision Reference  
2.5V Full-Scale 10ppm/°C (LTC2636-L)  
4.096V Full-Scale 10ppm/°C (LTC2636-H)  
n
Maximum INL Error: 2.5LSB (LTC2636-12)  
n
Low Noise: 0.75mV 0.1Hz to 200KHz  
P-P  
n
Guaranteed Monotonic Over –40°C to 125°C  
Temperature Range  
n
n
n
n
n
n
n
Selectable Internal or External Reference  
2.7V to 5.5V Supply Range (LTC2636-L)  
Ultralow Crosstalk Between DACs (<2.4nV•s)  
Low Power: 0.9mA at 3V (LTC2636-L)  
Power-On-Reset to Zero-Scale/Mid-Scale  
Double-Buffered Data Latches  
TheseDACscommunicateviaanSPI/MICROWIRE™-com-  
patible3-wireserialinterfacewhichoperatesatclockrates  
up to 50MHz. Hardware clear (CLR) and asynchronous  
DAC update (LDAC) pins are available in the MSOP pack-  
age. The LTC2636 incorporates a power-on reset circuit.  
Options are available for reset to zero-scale or reset to  
mid-scaleininternalreferencemode,orresettomid-scale  
in external reference mode after power-up.  
Tiny 14-Lead 4mm × 3mm DFN and 16-Lead MSOP  
Packages  
APPLICATIONS  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
SPI/MICROWIRE is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 5396245, 5859606,  
6891433, 6937178, 7414561.  
Automatic Test Equipment  
n
Portable Equipment  
n
Automotive  
n
Optical Networking  
BLOCK DIAGRAM  
SWITCH  
REF  
INTERNAL REFERENCE  
V
REF  
GND  
V
V
CC  
12-Bit Integral Nonlinearity  
(LTC2636-LZ12)  
V
DAC A  
DAC B  
DAC C  
DAC H  
DAC G  
DAC F  
DAC E  
OUTA  
OUTH  
2
1
V
= 3V  
CC  
INTERNAL REF.  
V
V
V
V
REF  
REF  
REF  
REF  
V
OUTB  
OUTC  
V
OUTG  
V
0
V
V
V
OUTF  
V
OUTE  
–1  
–2  
V
REF  
REF  
DAC D  
OUTD  
0
1024  
2048  
3072  
4095  
CODE  
2636 TA01  
CS/LD  
SDI  
CONTROL LOGIC  
DECODE  
SCK  
(CLR)  
(LDAC)  
32-BIT SHIFT REGISTER  
POWER-ON RESET  
2636 BD  
( ) MSOP PACKAGE ONLY  
2636f  
1
LTC2636  
(Notes 1, 2)  
ABSOLUTE MAXIMUM RATINGS  
Maximum Junction Temperature........................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
Supply Voltage (V ) ................................... –0.3V to 6V  
CC  
CS/LD, SCK, SDI, LDAC, CLR....................... –0.3V to 6V  
V
A–V  
H ..................–0.3V to Min(V + 0.3V, 6V)  
OUT  
OUT CC  
MS16-Lead Package......................................... 300°C  
REF ....................................–0.3V to Min(V + 0.3V, 6V)  
CC  
Operating Temperature Range  
LTC2636C ................................................ 0°C to 70°C  
LTC2636I..............................................–40°C to 85°C  
LTC2636H (Note 3) ............................–40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
V
1
2
3
4
5
6
7
14 GND  
TOP VIEW  
CC  
A
V
V
V
13  
12  
11  
10  
9
V
V
V
V
H
G
F
1
2
3
4
5
6
7
8
V
16 GND  
OUT  
OUT  
OUT  
OUT  
CC  
A
OUT  
OUT  
OUT  
OUT  
V
V
V
V
15  
14  
13  
12  
V
V
V
V
H
G
F
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
B
C
D
B
C
D
E
OUT  
V
E
LDAC  
CS/LD  
SCK  
11 REF  
CS/LD  
REF  
SDI  
10 CLR  
9
SDI  
SCK  
8
MS PACKAGE  
16-LEAD (4mm × 5mm) PLASTIC MSOP  
DE PACKAGE  
14-LEAD (4mm × 3mm) PLASTIC DFN  
= 150°C, θ = 37°C/W  
T
JMAX  
= 150°C, θ = 110°C/W  
JA  
T
JMAX  
JA  
EXPOSED PAD (PIN 15) IS GND, MUST BE SOLDERED TO PCB  
2636f  
2
LTC2636  
ORDER INFORMATION  
LTC2636  
C
DE –L  
Z
12  
#TR  
PBF  
LEAD FREE DESIGNATOR  
TAPE AND REEL  
TR = 2500-Piece Tape and Reel  
RESOLUTION  
12 = 12-Bit  
10 = 10-Bit  
8 = 8-Bit  
POWER-ON RESET  
MI = Reset to Mid-Scale in Internal Reference Mode  
MX = Reset to Mid-Scale in External Reference Mode  
Z = Reset to Zero-Scale in Internal Reference Mode  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
DE = 14-Lead DFN  
MS = 16-Lead MSOP  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
PRODUCT PART NUMBER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2636f  
3
LTC2636  
PRODUCT SELECTION GUIDE  
POWER-ON  
REFERENCE  
MODE  
PART MARKING*  
V
WITH INTERNAL  
POWER-ON  
MAXIMUM  
INL  
FS  
DFN  
MSOP  
PART NUMBER  
LTC2636-LMI12  
LTC2636-LMI10  
LTC2636-LMI8  
LTC2636-LMX12  
LTC2636-LMX10  
LTC2636-LMX8  
LTC2636-LZ12  
LTC2636-LZ10  
LTC2636-LZ8  
REFERENCE  
RESET TO CODE  
RESOLUTION  
12-Bit  
10-Bit  
8-Bit  
V
CC  
LMI12  
LMI10  
6LMI8  
6LMI12 2.5V•(4095/4096)  
6LMI10 2.5V•(1023/1024)  
36LMI8 2.5V•(255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero-Scale  
Zero-Scale  
Zero-Scale  
Internal  
Internal  
Internal  
External  
External  
External  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
External  
External  
External  
Internal  
Internal  
Internal  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
2.7V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
2.5LSB  
1LSB  
0.5LSB  
2.5LSB  
1LSB  
LMX12 6LMX12 2.5V•(4095/4096)  
LMX10 6LMX10 2.5V•(1023/1024)  
6LMX8 36LMX8 2.5V•(255/256)  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
2.5LSB  
1LSB  
6LZ12  
6LZ10  
36LZ8  
36LZ12 2.5V•(4095/4096)  
36LZ10 2.5V•(1023/1024)  
636LZ8 2.5V•(255/256)  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
2.5LSB  
1LSB  
LTC2636-HMI12  
LTC2636-HMI10  
LTC2636-HMI8  
LTC2636-HMX12  
LTC2636-HMX10  
LTC2636-HMX8  
LTC2636-HZ12  
LTC2636-HZ10  
LTC2636-HZ8  
HMI12 6HMI12 4.096V•(4095/4096)  
HMI10 6HMI10 4.096V•(1023/1024)  
6HMI8 36HMI8 4.096V•(255/256)  
HMX12 6HMX12 4.096V•(4095/4096)  
HMX10 6HMX10 4.096V•(1023/1024)  
6HMX8 36HMX8 4.096V•(255/256)  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
2.5LSB  
1LSB  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
2.5LSB  
1LSB  
6HZ12  
6HZ10  
36HZ8  
36HZ12 4.096V•(4095/4096)  
36HZ10 4.096V•(1023/1024)  
636HZ8 4.096V•(255/256)  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
*Above options are available in a 14-lead DFN package (LTC2636-DE) or 16-lead MSOP package (LTC2636-MS).  
2636f  
4
LTC2636  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8 (VFS = 2.5V)  
LTC2636-8  
LTC2636-10  
LTC2636-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
Bits  
Bits  
Monotonicity  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V, Internal Reference (Note 4)  
= 3V, Internal Reference (Note 4)  
= 3V, Internal Reference (Note 4)  
= 3V, Internal Reference, Code = 0  
= 3V, Internal Reference (Note 5)  
=3V, Internal Reference  
DNL  
INL  
Differential Nonlinearity  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
LSB  
LSB  
mV  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
0.05  
0.5  
0.5  
10  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
ZSE  
5
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
μV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 3V, Internal Reference  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
Gain Temperature  
Coefficient  
= 3V, Internal Reference (Note 10)  
TC  
CC  
C-Grade  
I-Grade  
H-Grade  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
Load Regulation  
Internal Reference, Mid-Scale,  
= 3V 10%,  
V
l
l
0.009 0.016  
0.009 0.016  
0.035 0.064  
0.035 0.064  
0.14 0.256 LSB/mA  
0.14 0.256 LSB/mA  
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%, (Note 11)  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
DC Output Impedance  
Internal Reference, Mid-Scale,  
= 3V 10%,  
OUT  
V
l
l
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Ω
CC  
–5mA ≤ I  
≤ 5mA  
OUT  
V
= 5V 10%, (Note 11)  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
0 to V  
V
V
OUT  
REF  
0 to 2.5  
PSR  
Power Supply Rejection  
V
V
= 3V 10% or 5V 10%  
–80  
dB  
CC  
I
Short Circuit Output Current (Note 6)  
= V = 5.5V  
SC  
FS  
CC  
l
Sinking  
Sourcing  
Zero-Scale; V  
shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
l
Full-Scale; V  
shorted to GND  
OUT  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V, V =2.5V, External Reference  
0.8  
0.9  
0.9  
1
1.1  
1.3  
1.3  
1.5  
mA  
mA  
mA  
mA  
REF  
= 3V, Internal Reference  
= 5V, V =2.5V, External Reference  
REF  
= 5V, Internal Reference  
l
l
I
SD  
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade, I-Grade  
= 5V, H-Grade  
0.5  
0.5  
1.8  
5
μA  
μA  
CC  
CC  
2636f  
5
LTC2636  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
V
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
REF  
CC  
120  
160  
12  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
0.1  
μA  
REF  
Reference Output  
Output Voltage  
1.24  
1.25  
10  
1.26  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
μF  
V
CC  
= 5.5V; REF Shorted to GND  
2.5  
mA  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 3.6V to 5.5V  
= 2.7V to 3.6V  
l
l
2.4  
2.0  
V
V
IH  
CC  
CC  
V
IL  
V
CC  
V
CC  
= 4.5V to 5.5V  
= 2.7V to 4.5V  
l
l
0.8  
0.6  
V
V
l
l
I
Digital Input Leakage  
V
= GND to V  
CC  
1
μA  
pF  
LK  
IN  
C
Digital Input Capacitance  
(Note 8)  
2.5  
IN  
AC Performance  
t
S
Settling Time  
V
= 3V (Note 9)  
CC  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.4  
4.0  
4.4  
μs  
μs  
μs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
2.1  
V/μs  
pF  
At Mid-Scale Transition  
nV•s  
nV•s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Output Voltage Noise Density  
1 DAC held at FS, 1 DAC Switch 0-FS  
External Reference  
2.1  
320  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
200  
180  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
40  
680  
730  
μV  
μV  
μV  
μV  
P-P  
P-P  
P-P  
P-P  
C
= 0.1μF  
REF  
2636f  
6
LTC2636  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-LMI12/-LMI10/-LMI8/-LMX12/-LMX10/-LMX8/-LZ12/-LZ10/-LZ8 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
4
ns  
9
ns  
SCK Low Time  
9
ns  
CS/LD Pulse Width  
10  
7
ns  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
CLR Pulse Width  
ns  
7
ns  
20  
15  
7
ns  
LDAC Pulse Width  
ns  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
50% Duty Cycle  
50  
MHz  
ns  
t11  
CS/LD High to LDAC High or Low Transition  
200  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-HMI12/-HMI10/-HMI8/-HMX12/-HMX10/-HMX8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
LTC2636-8  
LTC2636-10  
LTC2636-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
8
8
10  
10  
12  
12  
Bits  
Bits  
LSB  
Monotonicity  
V
V
= 5V, Internal Reference (Note 4)  
= 5V, Internal Reference (Note 4)  
CC  
CC  
DNL  
Differential  
Nonlinearity  
0.5  
0.5  
1
l
l
l
INL  
Integral Nonlinearity  
Zero-Scale Error  
Offset Error  
V
V
V
V
= 5V, Internal Reference (Note 4)  
= 5V, Internal Reference, Code = 0  
= 5V, Internal Reference (Note 5)  
= 5V, Internal Reference  
0.05  
0.5  
0.5  
10  
0.5  
5
0.2  
0.5  
0.5  
10  
1
5
1
0.5  
0.5  
10  
2.5  
5
LSB  
mV  
CC  
CC  
CC  
CC  
ZSE  
V
V
5
5
5
mV  
OS  
V
Temperature  
OS  
μV/°C  
OSTC  
Coefficient  
l
GE  
GE  
Gain Error  
V
V
= 5V, Internal Reference  
0.2  
0.8  
0.2  
0.8  
0.2  
0.8  
%FSR  
CC  
CC  
Gain Temperature  
Coefficient  
= 5V, Internal Reference (Note 10)  
TC  
C-Grade  
I-Grade  
H-Grade  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
Load  
V
= 5V 10%, (Note 11)  
l
l
0.006 0.01  
0.022 0.04  
0.09 0.16 LSB/mA  
CC  
Regulation  
Internal Reference, Mid-Scale,  
–10mA ≤ I  
≤ 10mA  
OUT  
R
OUT  
DC Output  
Impedance  
V
= 5V 10%, (Note 11)  
CC  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Internal Reference, Mid-Scale,  
–10mA ≤ I ≤ 10mA  
OUT  
2636f  
7
LTC2636  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-HMI12/-HMI10/-HMI8/-HMX12/-HMX10/-HMX8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to V  
MAX  
UNITS  
V
DAC Output Span  
External Reference  
Internal Reference  
V
V
OUT  
REF  
0 to 4.096  
PSR  
Power Supply Rejection  
V
V
= 5V 10%  
–80  
dB  
CC  
I
SC  
Short Circuit Output Current (Note 6)  
= V = 5.5V  
FS  
CC  
l
l
Sinking  
Sourcing  
Zero-Scale; V  
Shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
OUT  
CC  
Full-Scale; V  
Shorted to GND  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
4.5  
5.5  
V
CC  
l
l
I
CC  
V
CC  
V
CC  
= 5V, V = 4.096V, External Reference  
1.0  
1.1  
1.3  
1.5  
mA  
mA  
REF  
= 5V, Internal Reference  
l
l
I
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade, I-Grade  
= 5V, H-Grade  
0.5  
0.5  
1.8  
5
μA  
μA  
SD  
CC  
CC  
Reference Input  
l
l
V
REF  
Input Voltage Range  
Resistance  
1
V
V
kΩ  
pF  
CC  
120  
160  
12  
200  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
0.1  
μA  
REF  
Reference Output  
Output Voltage  
2.032  
2.048  
10  
2.064  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short Circuit Current  
μF  
V
V
= 5.5V; REF Shorted to GND  
4
mA  
CC  
Digital I/O  
l
l
l
l
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Leakage  
2.4  
V
V
IH  
IL  
0.8  
1
I
= GND to V  
μA  
pF  
LK  
IN  
CC  
C
Digital Input Capacitance  
(Note 8)  
2.5  
IN  
AC Performance  
t
S
Settling Time  
V
= 5V (Note 9)  
CC  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.8  
4.3  
4.8  
μs  
μs  
μs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
3.0  
2.4  
320  
V/μs  
pF  
At Mid-Scale Transition  
nV•s  
nV•s  
kHz  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
1 DAC held at FS, 1 DAC Switch 0-FS  
External Reference  
2636f  
8
LTC2636  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-HMI12/-HMI10/-HMI8/-HMX12/-HMX10/-HMX8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
e
n
Output Voltage Noise Density  
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
180  
160  
250  
230  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference  
35  
50  
680  
750  
μV  
P-P  
μV  
P-P  
μV  
P-P  
μV  
P-P  
C
= 0.1μF  
REF  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2636-HMI12/-HMI10/-HMI8/-HMX12/-HMX10/-HMX8/-HZ12/-HZ10/-HZ8 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
4
ns  
9
ns  
SCK Low Time  
9
ns  
CS/LD Pulse Width  
10  
7
ns  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
CLR Pulse Width  
ns  
7
ns  
20  
15  
7
ns  
LDAC Pulse Width  
ns  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
50% Duty Cycle  
50  
MHz  
ns  
t11  
CS/LD High to LDAC High or Low Transition  
200  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltages are with respect to GND.  
Note 3: High temperatures degrade operating lifetimes. Operating lifetime  
Note 5: Inferred from measurement at code 16 (LTC2636-12), code 4  
(LTC2636-10) or code 1 (LTC2636-8), and at full-scale.  
Note 6: This IC includes current limiting that is intended to protect the  
device during momentary overload conditions. Junction temperature can  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
is derated at temperatures greater than 105°C.  
Note 4: Linearity and monotonicity are defined from code k to code 2 –1,  
N
Note 7: Digital inputs at 0V or V  
.
CC  
L
N
where N is the resolution and k is given by k = 0.016•(2 / V ), rounded  
Note 8: Guaranteed by design and not production tested.  
L
L
FS  
to the nearest whole code. For V = 2.5V and N = 12, k = 26 and linearity  
FS  
L
Note 9: Internal Reference mode. DAC is stepped 1/4 scale to 3/4 scale  
and 3/4 scale to 1/4 scale. Load is 2kΩ in parallel with 100pF to GND.  
Note 10: Temperature coefficient is calculated by dividing the maximum  
is defined from code 26 to code 4,095. For V = 4.096V and N = 12, k =  
FS  
L
16 and linearity is defined from code 16 to code 4,095.  
change in output voltage by the specified temperature range.  
Note 11: Thermal resistance of MSOP package limits I  
to  
OUT  
–5mA ≤ I  
≤ 5mA for H-grade MSOP parts and V = 5V 10%.  
OUT  
CC  
2636f  
9
LTC2636  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. LTC2636-L12 (Internal Reference, VFS = 2.5V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
= 3V  
V
= 3V  
CC  
CC  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2636 G01  
2636 G02  
Reference Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
1.0  
0.5  
1.0  
1.260  
V
= 3V  
V
= 3V  
V
= 3V  
CC  
CC  
CC  
INL (POS)  
INL (NEG)  
0.5  
0
1.255  
1.250  
1.245  
1.240  
DNL (POS)  
0
DNL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2636 G03  
2636 G04  
2636 G05  
Settling to 1LSB Rising  
Settling to 1LSB Falling  
3/4 SCALE TO  
1/4 SCALE STEP  
CS/LD  
5V/DIV  
V
= 3V, V = 2.5V  
CC FS  
R = 2k, C = 100pF  
L L  
V
OUT  
AVERAGE OF 256 EVENTS  
1LSB/DIV  
3.6μs  
4.4μs  
V
1/4 SCALE TO  
OUT  
CS/LD  
5V/DIV  
1LSB/DIV  
3/4 SCALE STEP  
V
= 3V, V = 2.5V  
CC  
L
FS  
R
= 2k, C = 100pF  
L
AVERAGE OF 256 EVENTS  
2μs/DIV  
2μs/DIV  
2636 G07  
2636 G06  
2636f  
10  
LTC2636  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. LTC2636-H12 (Internal Reference, VFS = 4.096V)  
Integral Nonlinearity (INL) Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
= 5V  
V
= 5V  
CC  
CC  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2636 G08  
2636 G09  
Reference Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
2.068  
1.0  
0.5  
1.0  
V
= 5V  
V
= 5V  
V
= 5V  
CC  
CC  
CC  
INL (POS)  
2.058  
2.048  
2.038  
2.028  
0.5  
0
DNL (POS)  
DNL (NEG)  
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2636 G12  
2636 G10  
2636 G11  
Settling to 1LSB Rising  
Settling to 1LSB Falling  
1/4 SCALE TO  
3/4 SCALE STEP  
V
= 5V, V = 4.095V  
L
CS/LD  
CC  
FS  
R
= 2k, C = 100pF  
L
5V/DIV  
V
OUT  
AVERAGE OF 256 EVENTS  
1LSB/DIV  
4.0μs  
4.8μs  
V
OUT  
1/4 SCALE TO  
1LSB/DIV  
3/4 SCALE STEP  
CS/LD  
5V/DIV  
V
= 5V, V = 4.095V  
CC  
R
FS  
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2μs/DIV  
2μs/DIV  
2636 G13  
2636 G14  
2636f  
11  
LTC2636  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2636-10  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF.  
INTERNAL REF.  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
2636 G15  
2636 G16  
LTC2636-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.50  
0.25  
0
0.50  
0.25  
0
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF.  
INTERNAL REF.  
–0.25  
–0.50  
–0.25  
–0.50  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE  
CODE  
2636 G17  
2636 G18  
LTC2636  
Load Regulation  
Current Limiting  
Offset Error vs Temperature  
10  
8
0.20  
3
2
V
CC  
V
CC  
V
CC  
= 5V (LTC2636-H)  
= 5V (LTC2636-L)  
= 3V (LTC2636-L)  
V
CC  
V
CC  
V
CC  
= 5V (LTC2636-H)  
= 5V (LTC2636-L)  
= 3V (LTC2636-L)  
0.15  
0.10  
0.05  
0
6
4
1
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.01  
–0.15  
–0.20  
–1  
–2  
–3  
INTERNAL REF.  
INTERNAL REF.  
CODE = MIDSCALE  
CODE = MIDSCALE  
–30  
–20  
–10  
0
10  
20  
30  
–30  
–20  
–10  
0
10  
20  
30  
–50 –25  
0
25 50 75 100 125 150  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2636 G19  
2636 G20  
2636 G21  
2636f  
12  
LTC2636  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2636  
Large-Signal Response  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
LTC2636-L  
CS/LD  
5V/DIV  
V
CC  
2V/DIV  
V
OUT  
LTC2636-H12, V = 5V  
CC  
3.0nV•s TYP  
0.5V/DIV  
ZERO-SCALE  
V
V
OUT  
5mV/DIV  
OUT  
5mV/DIV  
LTC2636-L12, V = 3V  
CC  
2.1nV•s TYP  
V
= V = 5V  
CC  
FS  
1/4 SCALE to 3/4 SCALE  
2μs/DIV  
2μs/DIV  
200μs/DIV  
2636 G22  
2636 G23  
2636 G24  
Headroom at Rails  
vs Output Current  
Exiting Power-Down to Mid-Scale  
Power-On Reset to Mid-Scale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LTC2636-H  
V
= 5V  
5V SOURCING  
CC  
INTERNAL REF.  
V
CC  
2V/DIV  
CS/LD  
3V (LTC2636-L) SOURCING  
LTC2636-H  
2V/DIV  
DACs A-G IN  
POWER-DOWN MODE  
V
OUT  
V
OUT  
0.5V/DIV  
0.5V/DIV  
5V SINKING  
3V (LTC2636-L) SINKING  
LTC2636-L  
200μs/DIV  
5μs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
2636 G27  
2636 G26  
I
(mA)  
OUT  
2636 G25  
Supply Current vs Logic Voltage  
Hardware CLR  
Hardware CLR to Mid-Scale  
1.5  
1.4  
1.2  
1.0  
0.8  
0.6  
V
V
= 5V  
REF  
CODE = FULL-SCALE  
SWEEP SCK, SDI, CS/LD  
BETWEEN 0V AND V  
V
V
= 5V  
REF  
CODE = FULL-SCALE  
CC  
CC  
= 4.096V  
= 4.096V  
CC  
V
OUT  
1V/DIV  
V
OUT  
1V/DIV  
V
= 5V  
CC  
V
= 3V  
CC  
CLR  
5V/DIV  
CLR  
5V/DIV  
(LTC2636-L)  
1μs/DIV  
1μs/DIV  
0
1
2
3
4
5
2636 G29  
2636 G30  
LOGIC VOLTAGE (V)  
2636 G28  
2636f  
13  
LTC2636  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2636  
Multiplying Bandwidth  
Noise Voltage vs Frequency  
2
0
500  
400  
300  
200  
100  
0
V
= 5V  
CC  
CODE = MID-SCALE  
INTERNAL REF.  
–2  
–4  
–6  
–8  
LTC2636-H  
–10  
–12  
–14  
–16  
–18  
LTC2636-L  
V
V
V
= 5V  
REF(DC)  
REF(AC)  
CODE = FULL-SCALE  
CC  
= 2V  
= 0.2V  
P-P  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
2636 G31  
2636 G32  
Gain Error vs Reference Input  
0.1Hz to 10Hz Voltage Noise  
1.0  
0.8  
V
= 5V, V = 2.5V  
FS  
V
= 5.5V  
CC  
CC  
CODE = MIDSCALE  
INTERNAL REF.  
GAIN ERROR OF 8 CHANNELS  
0.6  
0.4  
0.2  
10μV/DIV  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1s/DIV  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2636 G34  
REFERENCE VOLTAGE (V)  
2636 G33  
DAC to DAC Crosstalk (Dynamic)  
Gain Error vs Temperature  
1.0  
0.5  
CS/LD  
5V/DIV  
1 DAC  
SWITCH 0-FS  
2V/DIV  
0
V
OUT  
–0.5  
1mV/DIV  
LTC2636-H12, V = 5V  
CC  
2.4nV•s TYP  
C
REF  
= 0.1μF  
–1.0  
2μs/DIV  
–50 –25  
0
25 50 75 100 125 150  
2636 G35  
TEMPERATURE (°C)  
2636 G36  
2636f  
14  
LTC2636  
PIN FUNCTIONS (DFN/MSOP)  
V
(Pin 1/1): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V  
GND (Pin 14/16): Ground.  
CC  
CC  
(LTC2636-L) or 4.5V ≤ V ≤ 5.5V (LTC2636-H). Bypass  
CC  
LDAC (Pin 6, MSOP only): Asynchronous DAC Update  
Pin. If CS/LD is high, a falling edge on LDAC immediately  
updates the DAC registers with the contents of the input  
registers (similar to a software update). If CS/LD is low  
when LDAC goes low, the DAC registers are updated after  
CS/LD returns high. A low on the LDAC pin powers up  
the DACs. A software power down command is ignored if  
LDAC is low. If the LDAC functionality is not being used,  
the LDAC pin should be tied high.  
to GND with a 0.1μF capacitor.  
V
A to V  
H (Pins 2-5, 10-13/2-5, 12-15): DAC  
OUT  
OUT  
Analog Voltage Outputs.  
CS/LD (Pin 6/7): Serial Interface Chip Select/Load Input.  
When CS/LD is low, SCK is enabled for shifting data on  
SDI into the register. When CS/LD is taken high, SCK  
is disabled and the specified command (see Table 1) is  
executed.  
CLR (Pin 10, MSOP only): Asynchronous Clear Input.  
A logic low at this level-triggered input clears all regis-  
ters and causes the DAC voltage output to reset to Zero  
(LTC2636-Z) or Mid-scale (LTC2636-MI/-MX). CMOS and  
TTL compatible.  
SCK (Pin 7/8): Serial Interface Clock Input. CMOS and  
TTL compatible.  
SDI (Pin 8/9): Serial Interface Data Input. Data on SDI is  
clockedintotheDAContherisingedgeofSCK.TheLTC2636  
accepts input word lengths of either 24 or 32 bits.  
Exposed Pad (Pin 15, DFN Only): Ground. Must be sol-  
dered to PCB Ground.  
REF (Pin 9/11): Reference Voltage Input or Output. When  
External Reference mode is selected, REF is an input  
(1V ≤ V  
≤ V ) where the voltage supplied sets the  
REF  
CC  
full-scale DAC output voltage. When Internal Reference  
is selected, the 10ppm/°C 1.25V (LTC2636-L) or 2.048V  
(LTC2636-H) internal reference (half full-scale) is avail-  
able at REF. This output may be bypassed to GND with  
up to 10μF, and must be buffered when driving external  
DC load current.  
2636f  
15  
LTC2636  
BLOCK DIAGRAM  
SWITCH  
REF  
INTERNAL REFERENCE  
V
REF  
GND  
V
V
CC  
V
DAC A  
DAC B  
DAC C  
DAC H  
DAC G  
DAC F  
DAC E  
OUTA  
OUTH  
V
V
V
V
REF  
REF  
V
V
V
OUTB  
OUTC  
V
OUTG  
V
REF  
REF  
V
V
OUTF  
OUTE  
V
REF  
REF  
DAC D  
OUTD  
CS/LD  
SDI  
CONTROL LOGIC  
DECODE  
SCK  
(CLR)  
(LDAC)  
32-BIT SHIFT REGISTER  
POWER-ON RESET  
2636 BD  
( ) MSOP PACKAGE ONLY  
TIMING DIAGRAMS  
t
1
t
t
2
t
t
4
6
3
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
t
t
9
11  
LDAC  
2636 F01a  
Figure 1a  
CS/LD  
t
11  
LDAC  
2636 F01b  
Figure 1b  
2636f  
16  
LTC2636  
OPERATION  
The LTC2636 is a family of octal voltage output DACs  
in 14-lead DFN and 16-lead MSOP packages. Each DAC  
can operate rail-to-rail using an external reference, or  
with its full-scale voltage set by an integrated reference.  
Eighteen combinations of accuracy (12-, 10-, and 8-bit),  
power-on reset value (zero-scale, mid-scale in internal  
referencemode, ormid-scaleinexternalreferencemode),  
and full-scale voltage (2.5V or 4.096V) are available. The  
LTC2636 is controlled using a 3-wire SPI/MICROWIRE  
compatible interface.  
Transfer Function  
The digital-to-analog transfer function is  
k
VOUT(IDEAL) ⎜  
=
V
n REF  
2
where k is the decimal equivalent of the binary DAC input  
code,nistheresolution,andV iseither2.5V(LTC2636-  
REF  
LMI/-LMX/-LZ)or4.096V(LTC2636-HMI/-HMX/-HZ)when  
in Internal Reference mode, and the voltage at REF when  
in External Reference mode.  
Power-On Reset  
Table 1. Command Codes  
COMMAND*  
The LTC2636-HZ/-LZ clear the output to zero-scale when  
power is first applied, making system initialization con-  
sistent and repeatable.  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power-Up) DAC Register n  
Write to Input Register n, Update (Power-Up) All  
Write to and Update (Power-Up) DAC Register n  
Power-Down DAC n  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2636  
contains circuitry to reduce the power-on glitch: the  
analog output typically rises less than 5mV above zero-  
scale during power on. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See “Power-On Reset Glitch” in the Typical Performance  
Characteristics section.  
Power-Down Chip (All DAC’s and Reference)  
Select Internal Reference (Power-Up Reference)  
Select External Reference (Power-Down Internal  
Reference)  
1
1
1
1
No Operation  
*Command codes not shown are reserved and should not be used.  
The LTC2636-HMI/-HMX/-LMI/-LMX provide an alterna-  
tive reset, setting the output to mid-scale when power is  
first applied. The LTC2636-LMI and LTC2636-HMI power  
up in internal reference mode, with the output set to a  
mid-scale voltage of 1.25V and 2.048V respectively. The  
LTC2636-LMX and LTC2636-HMX power-up in external  
reference mode, with the output set to mid-scale of the  
external reference. Default reference mode selection is  
described in the Reference Modes section.  
Table 2. Address Codes  
ADDRESS (n)*  
A3 A2 A1 A0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
Power Supply Sequencing  
The voltage at REF (Pin 9-DFN, Pin 11-MSOP) must be  
kept within the range –0.3V ≤ V  
≤ V + 0.3V (see  
REF  
CC  
Absolute Maximum Ratings). Particular care should be  
* Address codes not shown are reserved and should not be used.  
taken to observe these limits during power supply turn-  
on and turn-off sequences, when the voltage at V is in  
CC  
transition.  
2636f  
17  
LTC2636  
OPERATION  
INPUT WORD (LTC2636-12)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DON'T-CARE BITS)  
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
X
X
X
MSB  
LSB  
INPUT WORD (LTC2636-10)  
COMMAND  
ADDRESS  
DATA (10 BITS + 6 DON'T-CARE BITS)  
C3 C2 C1 C0 A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
INPUT WORD (LTC2636-8)  
COMMAND  
ADDRESS  
DATA (8 BITS + 8 DON'T-CARE BITS)  
C3 C2 C1 C0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
X
X
X
2636 F02  
Figure 2. Command and Data Input Format  
Serial Interface  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, enabling the SDI and  
SCK buffers and the input shift register. Data (SDI input)  
is transferred into the LTC2636 on the next 24 rising SCK  
edges. The 4-bit command, C3-C0, is loaded first; then  
the 4-bit DAC address, A3-A0; and finally the 16-bit data  
word. The data word comprises the 12-, 10- or 8-bit  
input code, ordered MSB-to-LSB, followed by 4, 6 or  
8 don’t-care bits (LTC2636-12, -10 and -8 respectively;  
see Figure 2). Data can only be transferred to the device  
when the CS/LD signal is low, beginning on the first rising  
edge of SCK. SCK may be high or low at the falling edge  
of CS/LD. The rising edge of CS/LD ends the data transfer  
and causes the device to execute the command specified  
in the 24-bit input sequence. The complete sequence is  
shown in Figure 3a.  
While the minimum input sequence is 24 bits, it may  
optionally be extended to 32 bits to accommodate micro-  
processors that have a minimum word width of 16 bits  
(2 bytes). To use the 32-bit width, 8 don’t-care bits  
must be transferred to the device first, followed by the  
24-bit sequence described. Figure 3b shows the 32-bit  
sequence.  
The 16-bit data word is ignored for all commands that do  
not include a Write operation.  
Reference Modes  
For applications where an accurate external reference is  
either not available, or not desirable due to limited space,  
the LTC2636 has a user-selectable, integrated reference.  
The integrated reference voltage is internally amplified  
by 2x to provide the full-scale DAC output voltage range.  
The LTC2636-LMI/-LMX/-LZ provides a full-scale DAC  
output of 2.5V. The LTC2636-HMI/-HMX/-HZ provides a  
full-scale DAC output of 4.096V. The internal reference  
can be useful in applications where the supply voltage is  
poorlyregulated. InternalReferencemodecanbeselected  
by using command 0110b, and is the power-on default for  
LTC2636-HZ/-LZ, as well as for LTC2636-HMI/-LMI.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Tables 1 and 2. The first four commands in  
Table 1 consist of write and update operations. A Write  
operation loads a 16-bit data word from the 24-bit shift  
register into the input register of the selected DAC, n. An  
Update operation copies the data word from the input  
register to the DAC register. Once copied into the DAC  
register, the data word becomes the active 12-, 10-, or  
8-bit input code, and is converted to an analog voltage at  
the DAC output. Write to and Update combines the first  
two commands. The Update operation also powers up the  
The10ppm/°C,1.25V(LTC2636-LMI/-LMX/-LZ)or2.048V  
(LTC2636-HMI/-HMX/-HZ) internal reference is available  
2636f  
18  
LTC2636  
OPERATION  
2636f  
19  
LTC2636  
OPERATION  
up as its voltage output is updated. When a DAC which  
is in a powered-down state is powered up and updated,  
normal settling is delayed. If less than eight DACs are in  
a powered-down state prior to the update command, the  
power-up delay time is 10μs. However, if all eight DACs  
and the integrated reference are powered down, then the  
main bias generation circuit block has been automatically  
shut down in addition to the DAC amplifiers and reference  
buffers. In this case, the power up delay time is 12μs.  
The power-up of the integrated reference depends on  
the command that powered it down. If the reference is  
powered down using the Select External Reference Com-  
mand (0111b), then it can only be powered back up using  
Select Internal Reference Command (0110b). However, if  
the reference was powered down using Power Down Chip  
Command (0101b), then in addition to Select Internal  
Reference Command (0110b), any command (in software  
or using the LDAC pin) that powers up the DACs will also  
power up the integrated reference.  
at the REF pin. Adding bypass capacitance to the REF pin  
will improve noise performance; and up to 10μF can be  
drivenwithoutoscillation.TheREFoutputmustbebuffered  
when driving an external DC load current.  
Alternatively, the DAC can operate in External Reference  
modeusingcommand0111b.Inthismode,aninputvoltage  
supplied externally to the REF pin provides the reference  
(1V ≤ V ≤ V ) and the supply current is reduced. The  
REF  
CC  
external reference voltage supplied sets the full-scale DAC  
output voltage. External Reference mode is the power-on  
default for LTC2636-HMX/-LMX.  
The reference mode of LTC2636-HZ/-LZ/-HMI/-LMI  
(Internal Reference power-on default), can be changed  
by software command after power-up. The same is true  
for LTC2636-HMX/-LMX (External Reference power-on  
default).  
Power-Down Mode  
Forpower-constrainedapplications,power-downmodecan  
be used to reduce the supply current whenever less than  
eight DAC outputs are needed. When in power-down, the  
buffer amplifiers, bias circuits, and integrated reference  
circuitsaredisabled,anddrawessentiallyzerocurrent.The  
DAC outputs are put into a high-impedance state, and the  
output pins are passively pulled to ground through indi-  
vidual 200kΩ resistors. Input- and DAC-register contents  
are not disturbed during power-down.  
Voltage Outputs  
The LTC2636’s integrated rail-to-rail amplifiers have guar-  
anteed load regulation when sourcing or sinking up to  
10mA at 5V, and 5mA at 3V.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSB/mA.  
Any DAC channel or combination of channels can be put  
into power-down mode by using command 0100b in  
combination with the appropriate DAC address, (n). The  
supplycurrentisreducedapproximately10%foreachDAC  
powered down. The integrated reference is automatically  
powered down when external reference is selected using  
command 0111b. In addition, all the DAC channels and  
the integrated reference together can be put into power-  
down mode using Power Down Chip command 0101b.  
When the integrated reference and all DAC channels are  
in power-down mode, the REF pin becomes high imped-  
ance (typically > 1GΩ). For all power-down commands  
the 16-bit data word is ignored.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to ohms. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 50Ω typical channel resistance of the output devices  
(e.g., when sinking 1mA, the minimum output voltage is  
50Ω • 1mA, or 50mV). See the graph “Headroom at Rails  
vs. Output Current” in the Typical Performance Charac-  
teristics section.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
Normal operation resumes after executing any command  
that includes a DAC update, (as shown in Table 1) or using  
theasynchronousLDACpin. TheselectedDACispowered  
2636f  
20  
LTC2636  
OPERATION  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2636 F04  
(c)  
OUTPUT  
VOLTAGE  
0V  
0
2,048  
4,095  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
Figure 4. Effects of Rail-to-Rail Operation On a DAC Transfer Curve (Shown for 12 Bits).  
(a) Overall Transfer Function  
(b) Effect of Negative Offset for Codes Near Zero  
(c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
Rail-to-Rail Output Considerations  
the LTC2636 GND pin to the ground plane should be as  
low as possible. Resistance here will add directly to the  
effective DC output impedance of the device (typically  
0.1Ω). Note that the LTC2636 is no more susceptible to  
this effect than any other parts of this type; on the con-  
trary, it allows layout-based performance improvements  
to shine rather than limiting attainable performance with  
excessive internal resistance.  
In any rail-to-rail voltage output device, the output is lim-  
ited to voltages within the supply range.  
SincetheanalogoutputoftheDACcannotgobelowground,  
it may limit for the lowest codes as shown in Figure 4b.  
Similarly, limiting can occur near full-scale when the REF  
pin is tied to V . If V = V and the DAC full-scale error  
CC  
REF  
CC  
(FSE) is positive, the output for the highest codes limits  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
analog ground, digital ground, and power ground. When  
the LTC2636 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
at V , as shown in Figure 4c. No full-scale limiting can  
CC  
occur if V is less than V –FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Board Layout  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane. The resistance from  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion of  
the plane. When doing this, make the gap in the plane only  
as long as it needs to be to serve its purpose and ensure  
that no traces cross over the gap.  
2636f  
21  
LTC2636  
PACKAGE DESCRIPTION  
DE Package  
14-Lead (4mm × 3mm) Plastic DFN  
(Reference LTC DWG # 05-08-1708 Rev B)  
0.70 0.05  
3.30 0.05  
1.70 0.05  
3.60 0.05  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
3.00 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
0.40 0.10  
4.00 0.10  
(2 SIDES)  
8
14  
R = 0.05  
TYP  
3.30 0.10  
3.00 0.10  
(2 SIDES)  
1.70 0.10  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DE14) DFN 0806 REV B  
7
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
3.00 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2636f  
22  
LTC2636  
PACKAGE DESCRIPTION  
MS Package  
16-Lead (4mm × 5mm) Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 ± 0.102  
(.159 ± .004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
0.280 ± 0.076  
(.011 ± .003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ± 0.152  
(.193 ± .006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.50  
(.0197)  
BSC  
MSOP (MS16) 1107 REV Ø  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2636f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2636  
TYPICAL APPLICATION  
LTC2636 DACs Adjust LTC2755-16 Offsets, Amplified with LT1991 PGA to 5V  
5V  
15  
V
DD  
LTC2755-16  
15V  
15V  
R
0.1μF  
R
R
5V  
61  
64  
FBA 60  
OFSA  
IN1  
0.1μF  
0.1μF  
0.1μF  
I
I
59 2 –  
0.1μF  
OUT1A  
OUT2A  
5
6
2k  
1k  
8
8
+
R
63  
COM1  
15V  
1
7
DAC A  
1/2 LT1469  
+
OUTA  
1/2 LT1469  
3
2
0.1μF  
4
9
1
4
8
9
10  
7
M9  
M3  
M1  
REF  
V
CC  
V
CC  
0.1μF  
0.1μF  
R
0.1μF  
62  
VOSA  
REFA  
LTC2636DE-LMI12  
58  
6
–15V  
–15V  
LT1991  
REF  
V
= 5V  
OUT  
OUT  
2
3
4
5
13  
1
2
3
+
P1  
P3  
P9  
DAC A  
DAC H  
DAC G  
DAC F  
DAC E  
V
EE  
OUTD  
5
DAC D  
4
12  
11  
0.1μF  
DAC B  
DAC C  
DAC D  
30k  
–15V  
30k  
–15V  
+
30k  
–15V  
–15V  
+
OUTC  
DAC C  
OUTB  
DAC B  
10  
14  
30k  
–15V  
19  
6
7
8
GND  
CS/LD  
SCK  
SDI  
SERIAL  
BUS  
GND  
2636 TA02  
RELATED PARTS  
PART NUMBER  
LTC1660/LTC1665  
LTC1664  
DESCRIPTION  
COMMENTS  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
OUT  
LTC2600/LTC2610/ Octal 16-/14-/12-Bit V  
LTC2620  
DACs in 16-Lead Narrow SSOP  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2601/LTC2611/ Single 16-/14-/12-Bit V  
LTC2621  
DACs in 10-Lead DFN  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2602/LTC2612/ Dual 16-/14-/12-Bit V  
LTC2622  
DACs in 8-Lead MSOP  
DACs in 16-Lead SSOP  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2604/LTC2614/ Quad 16-/14-/12-Bit V  
LTC2624  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
2
LTC2605/LTC2615/ Octal 16-/14-/12-Bit V  
LTC2625  
DACs with I C Interface  
250μA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output,  
OUT  
2
I C Interface  
2
LTC2606/LTC2616/ Single 16-/14-/12-Bit V  
LTC2626  
DACs with I C Interface  
270μA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output,  
OUT  
2
I C Interface  
2
LTC2609/LTC2619/ Quad 16-/14-/12-Bit V  
LTC2629  
DACs with I C Interface  
250μA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail Output  
OUT  
with Separate V Pins for Each DAC  
REF  
LTC2630  
LTC2631  
LTC2640  
Single 12-/10-/8-Bit V  
Reference in SC70  
DACs with 10ppm/°C  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output, SPI Interface  
OUT  
2
Single 12-/10-/8-Bit I C V  
Reference in ThinSOT  
DACs with 10ppm/°C  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
OUT  
2
Selectable External Ref. Mode, Rail-to-Rail Output, I C Interface  
Single 12-/10-/8-Bit V  
Reference in ThinSOT  
DACs with 10ppm/°C  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Selectable External Ref. Mode, Rail-to-Rail Output, SPI Interface  
OUT  
2636f  
LT 1108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY