LTC2641CDD-14#PBF [Linear]

LTC2641 - 16-/14-/12-Bit VOUT DACs in 3mm x 3mm DFN; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C;
LTC2641CDD-14#PBF
型号: LTC2641CDD-14#PBF
厂家: Linear    Linear
描述:

LTC2641 - 16-/14-/12-Bit VOUT DACs in 3mm x 3mm DFN; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总24页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2641/LTC2642  
16-/14-/12-Bit V DACs in  
OUT  
3mm × 3mm DFN  
FEATURES  
DESCRIPTION  
The LTC®2641/LTC2642 are families of 16-, 14- and 12-bit  
unbufferedvoltageoutputDACs.TheseDACsoperatefrom  
a single 2.7V to 5.5V supply and are guaranteed mono-  
tonic over temperature. The LTC2641A-16/LTC2642A-16  
provide 16-bit performance ( 1LSB INL and 1LSB DNL)  
over temperature. Unbuffered DAC outputs result in low  
supply current of 120µA and a low offset error of 1LSB.  
n
Tiny 3mm × 3mm 8-Pin DFN Package  
n
Maximum 16-Bit INL Error: 1LSB over Temperature  
n
Low 120µA Supply Current  
n
Guaranteed Monotonic over Temperature  
n
Low 0.5nV•sec Glitch Impulse  
n
2.7V to 5.5V Single Supply Operation  
n
Fast 1µs Settling Time to 16 Bits  
n
Unbuffered Voltage Output Directly Drives 60k Loads  
Both the LTC2641 and LTC2642 feature a reference input  
n
50MHz SPI/QSPI/MICROWIRE Compatible  
range of 2V to V . V  
swings from 0V to V . For  
DD OUT  
REF  
Serial Interface  
bipolar operation, the LTC2642 includes matched scaling  
n
Power-On Reset Clears DAC Output to Zero Scale  
resistors for use with an external precision op amp (such  
(LTC2641) or Midscale (LTC2642)  
as the LT1678), generating a V output swing at R .  
REF  
FB  
n
Schmitt-Trigger Inputs for Direct Optocoupler  
The LTC2641/LTC2642 use a simple SPI/MICROWIRE  
compatible 3-wire serial interface which can be operated  
at clock rates up to 50MHz and can interface directly  
with optocouplers for applications requiring isolation. A  
power-on reset circuit clears the LTC2641’s DAC output  
to zero scale and the LTC2642’s DAC output to midscale  
when power is initially applied. A logic low on the CLR pin  
asynchronously clears the DAC to zero scale (LTC2641)  
or midscale (LTC2642). These DACs are all specified over  
the commercial and industrial ranges.  
Interface  
Asynchronous CLR Pin  
n
n
8-Lead MSOP and 3mm × 3mm DFN Packages  
(LTC2641)  
n
10-Lead MSOP and 3mm × 3mm DFN Packages  
(LTC2642)  
APPLICATIONS  
n
High Resolution Offset and Gain Adjustment  
n
Process Control and Industrial Automation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
n
Automatic Test Equipment  
Data Acquisition Systems  
n
TYPICAL APPLICATION  
Bipolar 16-Bit DAC  
LTC2642-16 Integral Nonlinearity  
V
REF  
2.7V TO 5.5V  
2V TO V  
DD  
0.1µF  
1µF  
0.1µF  
1.0  
V
V
= 5V  
DD  
REF  
2.5V RANꢀE  
0.8  
0.6  
= 2.5V  
R
FB  
REF  
V
DD  
LTC2642  
5pF  
INV  
0.4  
0.2  
BIPOLAR V  
REF  
OUT  
TO V  
1/2 LT1678  
+
–V  
REF  
V
OUT  
0
16-BIT DAC  
POWER-ON  
RESET  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
INL 25°C  
INL 90°C  
INL –45°C  
CS  
16-BIT DATA LATCH  
SCLK  
DIN  
CLR  
CONTROL  
LOGIC  
0
32768  
CODE  
49152  
16-BIT SHIFT REGISTER  
16384  
65535  
GND  
26412 TA01a  
26412 TA01b  
26412fd  
1
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Operating Temperature Range  
V
to GND.................................................. –0.3V to 6V  
DD  
LTC2641C/LTC2642C............................... 0°C to 70°C  
LTC2641I/LTC2642I .............................–40°C to 85°C  
Maximum Junction Temperature (Note 2) ............ 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
CS, SCLK, DIN,  
CLR to GND.........................–0.3V to (V + 0.3V) or 6V  
DD  
REF, V , INV to GND........–0.3V to (V + 0.3V) or 6V  
OUT  
DD  
R
R
to INV....................................................... –6V to 6V  
to GND ..................................................... –6V to 6V  
FB  
FB  
GND to GND (S8 Package) OBSOLETE .... –0.3V to 0.3V  
PIN CONFIGURATION  
LTC2641  
LTC2641  
LTC2641  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
8
7
6
5
V
DD  
OUT  
TOP VIEW  
REF  
CS  
1
2
3
4
8
7
6
5
GND  
GND  
REF  
CS  
GND  
DIN  
REF  
CS  
SCLK  
DIN  
1
2
3
4
8 GND  
V
V
DD  
7 V  
6 V  
OUT  
9
DD  
SCLK  
DIN  
OUT  
5 CLR  
SCLK  
CLR  
MS8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C (NOTE 2), θ = 120°C/W  
JMAX  
JA  
T
= 125°C, θ = 110°C/W  
JA  
JMAX  
T
= 125°C (NOTE 2), θ = 43°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
LTC2642  
LTC2642  
TOP VIEW  
TOP VIEW  
10 GND  
REF  
CS  
1
2
3
4
5
10 GND  
REF  
CS  
SCLK  
DIN  
CLR  
1
2
3
4
5
9
8
7
6
V
DD  
9
8
7
6
V
DD  
11  
SCLK  
DIN  
R
FB  
R
FB  
INV  
INV  
OUT  
V
CLR  
V
OUT  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
= 125°C (NOTE 2), θ = 120°C/W  
JA  
T
= 125°C (NOTE 2), θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
26412fd  
2
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LCZP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2641ACDD-16#PBF  
LTC2641CDD-16#PBF  
LTC2641CDD-14#PBF  
LTC2641CDD-12#PBF  
LTC2641AIDD-16#PBF  
LTC2641IDD-16#PBF  
LTC2641IDD-14#PBF  
LTC2641IDD-12#PBF  
LTC2641ACMS8-16#PBF  
LTC2641CMS8-16#PBF  
LTC2641CMS8-14#PBF  
LTC2641CMS8-12#PBF  
LTC2641AIMS8-16#PBF  
LTC2641IMS8-16#PBF  
LTC2641IMS8-14#PBF  
LTC2641IMS8-12#PBF  
LTC2642ACDD-16#PBF  
LTC2642CDD-16#PBF  
LTC2642CDD-14#PBF  
LTC2642CDD-12#PBF  
LTC2642AIDD-16#PBF  
LTC2642IDD-16#PBF  
LTC2642IDD-14#PBF  
LTC2642IDD-12#PBF  
LTC2642ACMS-16#PBF  
LTC2642CMS-16#PBF  
LTC2642CMS-14#PBF  
LTC2642CMS-12#PBF  
LTC2642AIMS-16#PBF  
LTC2642IMS-16#PBF  
LTC2642IMS-14#PBF  
LTC2642IMS-12#PBF  
LTC2641ACDD-16#TRPBF  
LTC2641CDD-16#TRPBF  
LTC2641CDD-14#TRPBF  
LTC2641CDD-12#TRPBF  
LTC2641AIDD-16#TRPBF  
LTC2641IDD-16#TRPBF  
LTC2641IDD-14#TRPBF  
LTC2641IDD-12#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
LCZP  
0°C to 70°C  
LCZN  
0°C to 70°C  
LCZM  
0°C to 70°C  
LCZP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LCZP  
LCZN  
LCZM  
LTC2641ACMS8-16#TRPBF LTCZS  
LTC2641CMS8-16#TRPBF LTCZS  
LTC2641CMS8-14#TRPBF LTCZR  
LTC2641CMS8-12#TRPBF LTCZQ  
LTC2641AIMS8-16#TRPBF LTCZS  
8-Lead Plastic MSOP  
0°C to 70°C  
8-Lead Plastic MSOP  
0°C to 70°C  
8-Lead Plastic MSOP  
0°C to 70°C  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LTC2641IMS8-16#TRPBF  
LTC2641IMS8-14#TRPBF  
LTC2641IMS8-12#TRPBF  
LTC2642ACDD-16#TRPBF  
LTC2642CDD-16#TRPBF  
LTC2642CDD-14#TRPBF  
LTC2642CDD-12#TRPBF  
LTC2642AIDD-16#TRPBF  
LTC2642IDD-16#TRPBF  
LTC2642IDD-14#TRPBF  
LTC2642IDD-12#TRPBF  
LTCZS  
LTCZR  
LTCZQ  
LCZW  
LCZW  
LCZV  
LCZT  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
LCZW  
LCZW  
LCZV  
LCZT  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LTC2642ACMS-16#TRPBF LTCZZ  
LTC2642CMS-16#TRPBF  
LTC2642CMS-14#TRPBF  
LTC2642CMS-12#TRPBF  
LTC2642AIMS-16#TRPBF  
LTC2642IMS-16#TRPBF  
LTC2642IMS-14#TRPBF  
LTC2642IMS-12#TRPBF  
LTCZZ  
LTCZY  
LTCZX  
LTCZZ  
LTCZZ  
LTCZY  
LTCZX  
10-Lead Plastic MSOP  
0°C to 70°C  
10-Lead Plastic MSOP  
0°C to 70°C  
10-Lead Plastic MSOP  
0°C to 70°C  
10-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
OBSOLETE  
LTC2641CS8-16#PBF  
LTC2641IS8-16#PBF  
LTC2641CS8-16#TRPBF  
LTC2641IS8-16#TRPBF  
264116  
264116  
8-Lead Plastic SO  
8-Lead Plastic SO  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
26412fd  
3
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VDD = 3V or 5V, VREF = 2.5V, CL = 10pF, GND = 0, RL = ∞ unless  
otherwise specified.  
LTC2641-12  
LTC2642-12  
LTC2641-14  
LTC2642-14  
LTC2641-16  
LTC2642-16  
LTC2641A-16  
LTC2642A-16  
SYMBOL PARAMETER  
Static Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
l
N
Resolution  
12  
12  
14  
14  
16  
16  
16  
16  
Bits  
Bits  
Monotonicity  
DNL  
INL  
Differential Nonlinearity  
Integral Nonlinearity  
Zero Code Offset Error  
Zero Code Tempco  
Gain Error  
(Note 3)  
(Note 3)  
Code = 0  
0.5  
0.5  
1
0.5  
0.5  
1
1
0.5  
0.5  
1
2
0.5  
0.5  
1
1
LSB  
LSB  
ZSE  
2
2
2
LSB  
ZS  
0.05  
0.5  
0.1  
6.2  
1
0.05  
1
0.05  
2
0.05  
2
ppm/°C  
LSB  
TC  
l
GE  
GE  
2
4
5
5
Gain Error Tempco  
DAC Output Resistance  
0.1  
6.2  
1
0.1  
6.2  
1
0.1  
6.2  
1
ppm/°C  
kΩ  
TC  
R
(Note 4)  
OUT  
Bipolar Resistor Matching (LTC2642) R /R  
FB INV  
l
l
Ratio Error (Note 7)  
(LTC2642)  
0.1  
2
0.03  
4
0.015  
5
0.015  
5
%
LSB  
BZE  
BZS  
Bipolar Zero Offset Error  
Bipolar Zero Tempco  
0.5  
0.1  
0.5  
0.1  
2
2
(LTC2642)  
0.1  
0.1  
ppm/°C  
LSB  
TC  
l
PSR  
Power Supply Rejection  
ΔV  
=
10%  
0.5  
0.5  
1
1
DD  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VDD = 3V or 5V, VREF = 2.5V, CL = 10pF, GND = 0, RL = ∞ unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
V
REF  
Reference Input Range  
2.0  
V
V
DD  
l
l
R
Reference Input Resistance (Note 5)  
Unipolar Mode (LTC2641)  
Bipolar Mode (LTC2642)  
11  
8.5  
14.8  
11.4  
kΩ  
kΩ  
REF  
Dynamic Performance—V  
OUT  
SR  
Voltage Output Slew Rate  
Output Settling Time  
DAC Glitch Impulse  
Digital Feedthrough  
Measured from 10% to 90%  
To 0.5LSB of FS  
15  
1
V/µs  
µs  
Major Carry Transition  
0.5  
0.2  
nV•s  
nV•s  
Code = 0000hex; NCS = V  
;
DD  
SCLK, DIN 0V to V Levels  
DD  
Output Voltage Noise Density  
10  
nV/√Hz  
Dynamic Performance—Reference Input  
BW  
Reference –3dB Bandwidth  
Code = FFFFhex  
1.3  
1
MHz  
Reference Feedthrough  
Signal-to-Noise Ratio  
Code = 0000hex, V = 1V at 100kHz  
mV  
P-P  
REF  
P-P  
SNR  
92  
dB  
C
Reference Input Capacitance  
Code = 0000hex  
Code = FFFFhex  
75  
120  
pF  
pF  
IN(REF)  
Digital Inputs  
l
l
V
Digital Input High Voltage  
V
CC  
V
CC  
= 3.6V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
26412fd  
4
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VDD = 3V or 5V, VREF = 2.5V, CL = 10pF, GND = 0, RL = ∞ unless  
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
IL  
Digital Input Low Voltage  
V
CC  
V
CC  
= 4.5V to 5.5V  
= 2.7V to 4.5V  
0.8  
0.6  
V
V
l
l
I
Digital Input Current  
Digital Input Capacitance  
Hysteresis Voltage  
V
= GND to V  
DD  
1
µA  
pF  
V
IN  
IN  
C
V
(Note 6)  
3
10  
IN  
0.15  
H
Power Supply  
l
l
V
Supply Voltage  
2.7  
5.5  
V
DD  
D
I
Supply Current, V  
Digital Inputs = 0V or V  
DD  
120  
200  
µA  
DD  
DD  
P
Power Dissipation  
Digital Inputs = 0V or V , V = 5V  
0.60  
0.36  
mW  
mW  
DD DD  
Digital Inputs = 0V or V , V = 3V  
DD DD  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V or 5V, VREF = 2.5V, CL = 10pF, GND = 0, RL = ∞ unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
0
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
f
DIN Valid to SCLK Setup Time  
DIN Valid to SCLK Hold Time  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Pulse High Width  
1
ns  
2
9
ns  
3
9
ns  
4
10  
8
ns  
5
LSB SCLK High to CS High  
CS Low to SCLK High  
CS High to SCLK Positive Edge  
CLR Pulse Width Low  
SCLK Frequency  
ns  
6
8
ns  
7
8
ns  
8
15  
ns  
9
50% Duty Cycle  
50  
MHz  
µs  
SCLK  
V
DD  
High to CS Low (Power-Up Delay)  
30  
Note 4: R  
tolerance is typically 20%.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
OUT  
Note 5: Reference input resistance is code dependent. Minimum is at  
871Chex (34,588) in unipolar mode and at 671Chex (26, 396) in bipolar  
mode.  
Note 2: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Guaranteed by gain error and offset error testing, not production  
Note 3: LTC2641-16/LTC2642-16 1LSB = 0.0015% = 15.3ppm of full  
scale. LTC2641-14/LTC2642-14 1LSB = 0.006% = 61ppm of full scale.  
LTC2641-12/LTC2642-12 1LSB = 0.024% = 244ppm of full scale.  
tested.  
26412fd  
5
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Integral Nonlinearity (INL)  
INL vs VREF  
vs Supply (VDD  
)
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
= 2.5V  
V
DD  
= 5.5V  
REF  
LTC2642-16  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.6  
0.6  
0.6  
+INL  
+INL  
–INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
–INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4
6
0
16384  
32768  
CODE  
49152  
65535  
2
3
5
2
3
4
5
6
V
(V)  
V
(V)  
DD  
REF  
26412 G02  
26412 G01  
26412 G03  
Differential Nonlinearity (DNL)  
vs Supply (VDD  
)
Differential Nonlinearity (DNL)  
DNL vs VREF  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
REF  
= 2.5V  
V
DD  
= 5.5V  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
+DNL  
–DNL  
+DNL  
–DNL  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4
6
2
3
4
6
0
16384  
32768  
CODE  
49152  
65535  
2
3
5
5
V
(V)  
V
(V)  
REF  
DD  
26412 G05  
26412 G06  
26412 G04  
INL vs Temperature  
DNL vs Temperature  
Bipolar Zero Error vs Temperature  
5
4
1.0  
0.8  
1.0  
0.8  
V
V
= 2.5V  
REF  
= 5V  
DD  
V
V
= 2.5V  
REF  
= 5V  
DD  
V = 2.5V  
REF  
V = 5V  
DD  
3
0.6  
0.6  
+INL  
–INL  
2
0.4  
0.4  
1
0.2  
0.2  
+DNL  
–DNL  
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
TEMPERATURE (°C)  
35  
60  
85  
–40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
26412 G09  
26412 G07  
26412 G08  
26412fd  
6
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unbuffered Zero Scale Error vs  
Temperature (LTC2641-16)  
Unbuffered Full-Scale Error vs  
Temperature (LTC2641-16)  
1.0  
Bipolar Gain Error vs Temperature  
5
4
1.0  
0.8  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.8  
0.6  
0.4  
0.2  
0
3
0.6  
2
0.4  
1
0.2  
0
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
26412 G10  
26412 G11  
26412 G12  
14-Bit Integral Nonlinearity (INL)  
(LTC2642-14)  
14-Bit Differential Nonlinearity  
(DNL) (LTC2642-14)  
IREF vs Code (Unipolar LTC2641)  
1.0  
0.8  
1.0  
0.8  
250  
200  
150  
100  
50  
LTC2642-14  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
8192  
16383  
0
4096  
8192  
16384  
32768  
CODE  
49152  
0
4096  
12288  
12288  
16383  
0
65535  
CODE  
CODE  
26412 G15  
26412 G13  
26412 G14  
12-Bit Integral Nonlinearity (INL)  
(LTC2642-12)  
12-Bit Differential Nonlinearity  
(DNL) (LTC2642-12)  
IREF vs Code (Bipolar LTC2642)  
1.0  
0.8  
1.0  
0.8  
250  
200  
150  
100  
50  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32768  
CODE  
49152  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
0
16384  
65535  
CODE  
CODE  
26412 G18  
26412 G16  
26412 G17  
26412fd  
7
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current (IDD) vs  
Temperature  
Supply Current (IDD) vs Supply  
Voltage (VDD  
Supply Current (IDD) vs Digital  
Input Voltage  
)
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
150  
125  
150  
125  
100  
75  
V
= 2.5V  
V
REF  
= 2.5V  
REF  
V
V
= 5V  
= 3V  
DD  
DD  
V
= 5V  
DD  
100  
75  
50  
25  
0
50  
V
= 3V  
DD  
25  
0
–40  
–15  
10  
35  
60  
85  
2.5  
3.5  
4
4.5  
5
5.5  
3
0
0.5  
1
1.5  
2
2.5  
5
3
3.5 4 4.5  
TEMPERATURE (°C)  
V
(V)  
DIGITAL INPUT VOLTAGE (V)  
DD  
26412 G19  
26412 G20  
26412 G21  
Supply Current (IDD) vs VREF  
VDD = 5V  
,
Supply Current (IDD) vs VREF  
VDD = 3V  
,
Midscale Glitch Impulse  
150  
125  
100  
75  
150  
125  
100  
75  
CS  
V
= 5V  
V
DD  
= 3V  
DD  
5V/DIV  
CODE  
32767  
CODE  
32768  
CODE  
32767  
V
OUT  
20mV/DIV  
50  
50  
25  
25  
26412 G24  
LTC2641-16  
500ns/DIV  
UNBUFFERED  
C
= 10pF  
L
0
0
3.5  
4
2.5  
1
1.5  
2
2.5  
3
4.5  
5
1
1.5  
2
3
V
(V)  
V
(V)  
REF  
REF  
26412 G22  
26412 G23  
V
OUT vs VDD = 0V to 5.5V  
Full-Scale Transition  
Full-Scale Settling (Zoomed In)  
(POR Function) LTC2641  
CS  
CS  
5V/DIV  
V
= V  
REF  
DD  
5V/DIV  
0V TO 5.5V  
2V/DIV  
SETTLE  
RESIDUE  
250µV/DIV  
V
OUT  
V
OUT  
1V/DIV  
10mV/DIV  
26412 G25  
26412 G26  
26412 G27  
LTC2641-16  
= 2.5V  
CONSULT FACTORY FOR  
MEASUREMENT CIRCUIT  
500ns/DIV  
LTC2641-16  
500ns/DIV  
LTC2641-16  
50ms/DIV  
V
UNBUFFERED  
REF  
UNBUFFERED  
C
V
V
= 10pF  
C
= 10pF  
L
L
= 2.5V  
REF  
= 5V  
DD  
26412fd  
8
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
PIN FUNCTIONS  
LTC2641 – MSOP, DFN Packages  
GND (Pin 7): Circuit Ground Pin. Must be connected to  
Pin 2 (GND).  
REF (Pin 1): Reference Voltage Input. Apply an external  
reference at REF between 2V and V .  
V
DD  
(Pin 8): Supply Voltage. Set between 2.7V and 5.5V.  
DD  
CS (Pin 2): Serial Interface Chip Select/Load Input. When  
CS is low, SCLK is enabled for shifting in data on DIN.  
When CS is taken high, SCLK is disabled, the 16-bit input  
word is latched and the DAC is updated.  
LTC2642 – MSOP, DFN Packages  
REF (Pin 1): Reference Voltage Input. Apply an external  
reference at REF between 2V and V .  
DD  
CS (Pin 2): Serial Interface Chip Select/Load Input. When  
CS is low, SCLK is enabled for shifting in data on DIN.  
When CS is taken high, SCLK is disabled, the 16-bit input  
word is latched and the DAC is updated.  
SCLK (Pin 3): Serial Interface Clock Input. CMOS and  
TTL compatible.  
DIN (Pin 4): Serial Interface Data Input. Data is applied to  
DIN for transfer to the device at the rising edge of SCLK.  
SCLK (Pin 3): Serial Interface Clock Input. CMOS and  
TTL compatible.  
CLR (Pin 5): Asynchronous Clear Input. A logic low clears  
the DAC to code 0.  
DIN (Pin 4): Serial Interface Data Input. Data is applied to  
DIN for transfer to the device at the rising edge of SCLK.  
V
(Pin 6): DAC Output Voltage. The output range is  
REF  
OUT  
0V to V  
.
CLR (Pin 5): Asynchronous Clear Input. A logic low clears  
the DAC to midscale.  
V
DD  
(Pin 7): Supply Voltage. Set between 2.7V and 5.5V.  
GND (Pin 8): Circuit Ground.  
V
(Pin 6): DAC Output Voltage. The output range is  
REF  
OUT  
0V to V  
.
Exposed Pad (DFN Pin 9): Circuit Ground. Must be sol-  
dered to PCB ground.  
INV (Pin 7): Center Tap of Internal Scaling Resistors.  
Connect to an external amplifier’s inverting input in bi-  
polar mode.  
LTC2641 – SO Package OBSOLETE  
V
(Pin 1): DAC Output Voltage. The output range is  
REF  
OUT  
0V to V  
R
(Pin 8): Feedback Resistor. Connect to an external  
FB  
.
amplifier’s output in bipolar mode. The bipolar output  
GND (Pin 2): Circuit Ground.  
range is –V to V  
.
REF  
REF  
REF (Pin 3): Reference Voltage Input. Apply an external  
V
(Pin 9): Supply Voltage. Set between 2.7V and 5.5V.  
DD  
reference at REF between 2V and V .  
DD  
GND (Pin 10): Circuit Ground.  
CS (Pin 4): Serial Interface Chip Select/Load Input. When  
CS is low, SCLK is enabled for shifting in data on DIN.  
When CS is taken high, SCLK is disabled, the 16-bit input  
word is latched and the DAC is updated.  
Exposed Pad (DFN Pin 11): Circuit Ground. Must be  
soldered to PCB ground.  
SCLK (Pin 5): Serial Interface Clock Input. CMOS and  
TTL compatible.  
DIN (Pin 6): Serial Interface Data Input. Data is applied to  
DIN for transfer to the device at the rising edge of SCLK.  
26412fd  
9
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
BLOCK DIAGRAMS  
LTC2641 - MSOP, DFN  
LTC2641 - SO  
OBSOLETE PACKAGE  
7
1
8
3
REF  
V
REF  
V
DD  
DD  
LTC2641-16  
LTC2641-14  
LTC2641-12  
LTC2641-16  
V
V
POWER-ON  
RESET  
OUT  
POWER-ON  
RESET  
OUT  
16-/14-/12-BIT DAC  
6
16-/14-/12-BIT DAC  
1
CS  
CS  
2
3
4
5
4
5
6
7
SCLK  
DIN  
CLR  
SCLK  
DIN  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
16-BIT DATA LATCH  
16-BIT DATA LATCH  
GND  
16-BIT SHIFT REGISTER  
16-BIT SHIFT REGISTER  
GND  
8
GND  
2
2641 BD01a  
2641 BD01b  
LTC2642  
9
1
REF  
V
DD  
R
FB  
8
7
LTC2642-16  
LTC2642-14  
LTC2642-12  
INV  
OUT  
V
POWER-ON  
RESET  
16-/14-/12-BIT DAC  
6
CS  
2
3
4
5
SCLK  
DIN  
CLR  
CONTROL  
LOGIC  
16-BIT DATA LATCH  
16-BIT SHIFT REGISTER  
GND  
10  
2642 BD  
26412fd  
10  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
TIMING DIAGRAM  
t
1
t
t
3
t
4
t
6
2
1
2
3
15  
16  
SCK  
SDI  
t
8
t
t
7
5
26412 TD  
CS/LD  
OPERATION  
General Description  
The digital-to-analog transfer function at the V  
pin is:  
OUT  
N  
The LTC2641/LTC2642 family of 16-/14-/12-bit voltage  
output DACs offer full 16-bit performance with less than  
1LSB integral linearity error and less than 1LSB differ-  
ential linearity error, guaranteeing monotonic operation.  
They operate from a single supply ranging from 2.7V to  
5.5V, consuming 120µA (typical). An external voltage  
k
VOUT(IDEAL)  
=
V
REF  
2
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution, and V is between 2.0V and  
REF  
V
(see Tables 1a, 1b and 1c).  
DD  
reference of 2V to V determines the DAC’s full-scale  
DD  
The LTC2642 includes matched resistors that are tied  
to an external amplifier to provide bipolar output swing  
(Figure 2). The bipolar transfer function at the RFB pin is:  
outputvoltage.A3-wireserialinterfaceallowstheLTC2641/  
LTC2642 to fit into a small 8-/10-pin MSOP or DFN 3mm  
× 3mm package.  
k
N–1  
V
OUT_BIPOLAR(IDEAL) = VREF  
– 1  
Digital-to-Analog Architecture  
2
The DAC architecture is a voltage switching mode resis-  
tor ladder using precision thin-film resistors and CMOS  
switches.TheLTC2641/LTC2642DACresistorladdersare  
composed of a proprietary arrangement of matched DAC  
sections. The four MSBs are decoded to drive 15 equally  
weighted segments, and the remaining lower bits drive  
successively lower weighted sections. Major carry glitch  
(see Tables 2a, 2b and 2c).  
Serial Interface  
The LTC2641/LTC2642 communicates via a standard  
3-wire SPI/QSPI/MICROWIRE compatible interface. The  
chip select input (CS) controls and frames the loading of  
serial data from the data input (DIN). Following a CS high-  
to-low transition, the data on DIN is loaded, MSB first, into  
the shift register on each rising edge of the serial clock  
impulse is very low at 500pV•sec, C = 10pF, ten times  
L
lower than previous DACs of this type.  
26412fd  
11  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
OPERATION  
input (SCLK). After 16 data bits have been loaded into the  
serial input register, a low-to-high transition on CS trans-  
fers the data to the 16-bit DAC latch, updating the DAC  
output (see Figures 1a, 1b, 1c). While CS remains high,  
the serial input shift register is disabled. If there are less  
than16low-to-hightransitionsonSCLKwhileCSremains  
low, the data will be corrupted, and must be reloaded.  
Also, if there are more than 16 low-to-high transitions  
on SCLK while CS remains low, only the last 16 data bits  
loaded from DIN will be transferred to the DAC latch. For  
the 14-bit DACs, (LTC2641-14/LTC2642-14), the MSB  
remains in the same (left-justified) position in the input  
16-bit data word. Therefore, two “don’t-care” bits must  
be loaded after the LSB, to make up the required 16 data  
bits (Figure 1b). Similarly, for the 12-bit family members  
(LTC2641-12/LTC2642-12) four “don’t-care” bits must  
follow the LSB (Figure 1c).  
Power-On Reset  
The LTC2641/LTC2642 include a power-on reset circuit  
to ensure that the DAC output comes up in a known  
state. When V is first applied, the power-on reset cir-  
DD  
cuit sets the output of the LTC2641 to zero-scale (code  
0). The LTC2642 powers up to midscale (bipolar zero).  
Depending on the DAC number of bits, the midscale code  
is: 32,768 (LTC2642-16); 8,192 (LTC2642-14); or 2,048  
(LTC2642-12).  
Clearing the DAC  
A low pulse meeting the t (minimum) specification on  
9
the CLR pin asynchronously clears the DAC latch to code  
zero (LTC2641) or to midscale (LTC2642).  
CS  
DAC  
UPDATED  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
26412 F01a  
DATA (16 BITS)  
Figure 1a. 16-Bit Timing Diagram (LTC2641-16/LTC2642-16)  
CS  
DAC  
UPDATED  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
26412 F01b  
MSB  
LSB  
DATA (14 BITS + 2 DONT-CARE BITS)  
Figure 1b. 14-Bit Timing Diagram (LTC2641-14/LTC2642-14)  
CS  
SCLK  
DIN  
DAC  
UPDATED  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
X
X
26412 F01c  
DATA (12 BITS + 4 DONT-CARE BITS)  
Figure 1c. 12-Bit Timing Diagram (LTC2641-12/LTC2642-12)  
26412fd  
12  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Unipolar Configuration  
The external amplifier provides a unity-gain buffer. The  
LTC2642 can also be used in unipolar configuration by  
Figure 2 shows a typical unipolar DAC application for  
the LTC2641. Tables 1a, 1b and 1c show the unipolar  
binary code tables for 16-bit, 14-bit and 12-bit operation.  
tying R and INV to REF. This provides power-up and  
FB  
clear to midscale.  
V
REF  
2.5V  
OUT  
LT®1019CS8-2.5  
IN  
5V  
0.1µF  
4.7µF  
Table 1a. 16-Bit Unipolar Binary Code Table  
(LTC2641-16)  
5V/3V  
7
GND  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
0.1µF  
ANALOG OUTPUT  
(V  
5V/3V  
0.1µF  
1
REF  
)
OUT  
V
DD  
MSB  
LSB  
LTC2641-16  
1111 1111 1111 1111 V (65,535/65,536)  
UNIPOLAR V  
REF  
OUT  
1/2 LTC6078  
0V TO 2.5V  
V
6
OUT  
+
1000 0000 0000 0000 V (32,768/65,536) = V /2  
REF  
REF  
2
3
4
5
16-BIT DAC  
CS  
0000 0000 0000 0001 V (1/65,536)  
REF  
SCLK  
DIN  
0000 0000 0000 0000 0V  
CLR  
GND  
8
26412 F02  
Figure 2. 16-Bit Unipolar Output (LTC2641-16) Unipolar VOUT = 0V to VREF  
Table 1b. 14-Bit Unipolar Binary Code Table  
(LTC2641-14)  
Table 1c. 12-Bit Unipolar Binary Code Table  
(LTC2641-12)  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
)
)
OUT  
OUT  
MSB  
LSB  
MSB  
LSB  
1111 1111 1111 11xx V (16,383/16,384)  
1111 1111 1111 xxxx  
1000 0000 0000 xxxx  
0000 0000 0001 xxxx  
V
REF  
V
REF  
V
REF  
(4,095/4,096)  
REF  
1000 0000 0000 00xx V (8,192/16,384) = V /2  
(2,048/4,096) = V /2  
REF  
REF  
REF  
0000 0000 0000 01xx V (1/16,384)  
(1/4,096)  
REF  
0000 0000 0000 00xx 0V  
0000 0000 0000 xxxx 0V  
26412fd  
13  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Bipolar Configuration  
The amplifier circuit provides a gain of +2 from the V  
OUT  
pin, and gain of –1 from V . Tables 2a, 2b and 2c show  
REF  
Figure 3 shows a typical bipolar DAC application for the  
the bipolar offset binary code tables for 16-bit, 14-bit and  
12-bit operation.  
LTC2642. The on-chip bipolar offset/gain resistors, R  
FB  
andR ,areconnectedtoanexternalamplifiertoproduce  
INV  
a bipolar output swing from –V to V at the R pin.  
REF  
REF  
FB  
V
REF  
2.5V  
5V/3V  
OUT  
LT1019CS8-2.5  
GND  
IN  
5V  
0.1µF  
4.7µF  
0.1µF  
9
1
REF  
V
DD  
R
FB  
8
5V  
0.1µF  
0.1µF  
LTC2642-16  
C1  
10pF  
INV  
OUT  
7
6
BIPOLAR V  
OUT  
1/2 LT1678  
–2.5V TO 2.5V  
V
+
2
3
4
5
16-BIT DAC  
CS  
SCLK  
DIN  
–5V  
CLR  
GND  
10  
26412 F02  
Figure 3. 16-Bit Bipolar Output (LTC2642-16) VOUT = –VREF to VREF  
Table 2a. 16-Bit Bipolar Offset Binary  
Code Table (LTC2642-16)  
Table 2b. 14-Bit Bipolar Offset Binary  
Code Table (LTC2642-14)  
Table 2c. 12-Bit Bipolar Offset Binary  
Code Table (LTC2642-12)  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
)
)
)
OUT  
OUT  
OUT  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
1111 1111 1111 1111 V (32,767/32,768)  
1111 1111 1111 11xx V (8,191/8,192)  
1111 1111 1111 xxxx  
1000 0000 0001 xxxx  
V
V
(2,047/2,048)  
(1/2,048)  
REF  
REF  
REF  
1000 0000 0000 0001 V (1/32,768)  
1000 0000 0000 01xx V (1/8,192)  
REF  
REF  
REF  
1000 0000 0000 0000 0V  
1000 0000 0000 00xx 0V  
1000 0000 0000 xxxx 0V  
0111 1111 1111 xxxx –V (1/2048)  
0111 1111 1111 1111 –V (1/32,768)  
0111 1111 1111 11xx –V (1/8,192)  
REF  
REF  
REF  
0000 0000 0000 0000 –V  
0000 0000 0000 00xx –V  
0000 0000 0000 xxxx –V  
REF  
REF  
REF  
26412fd  
14  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Unbuffered Operation and V  
Loading  
Unbuffered V  
Settling Time  
OUT  
OUT  
The DAC output is available directly at the V  
pin, which  
The settling time at the V  
pin can be closely approxi-  
OUT  
OUT  
swings from GND to V . Unbuffered operation provides  
mated by a single-pole response where:  
REF  
the lowest possible offset, full-scale and linearity errors,  
thefastestsettlingtimeandminimumpowerconsumption.  
t = R • (C + C )  
OUT  
OUT  
L
(Figure 4). Settling to 1/2LSB at 16-bits requires about  
12 time constants (ln(2 • 65,536)). The typical settling  
time of 1µs corresponds to a time constant of 83ns, and  
However, unbuffered operation requires that appropriate  
loading be maintained on the V  
pin. The LTC2641/  
OUT  
LTC2642 V  
can be modeled as an ideal voltage source  
OUT  
a total (C  
+ C ) of about 83ns/6.2k = 13pF. The internal  
OUT  
L
OUT  
in series with a source resistance of R , typically 6.2k  
OUT  
capacitance, C  
3pF corresponds to 1µs settling to 1/2LSB.  
is typically 10pF, so an external C of  
L
(Figure 4). The DAC’s linear output impedance allows it to  
drive medium loads (R > 60k) without degrading INL or  
L
DNL; only the gain error is increased. The gain error (GE)  
V
REF  
caused by a load resistance, R , (relative to full scale) is:  
L
REF  
R
LTC2641  
LTC2642  
–1  
V
OUT  
OUT  
GE =  
V
OUT  
+
0V TO V  
REF  
R
OUT   
CODE  
C
OUT  
R
L
C
I
L
1+  
V
L
REF  
(
N
)
2
RL  
26412 F04  
GND  
In 16-bit LSBs:  
–65536  
Figure 4. VOUT Pin Equivalent Circuit  
GE =  
LSB  
R
1+  
OUT   
Op Amp Selection  
RL  
The optimal choice for an external buffer op amp depends  
on whether the DAC is used in the unipolar or bipolar  
mode of operation, and also depends on the accuracy,  
speed, power dissipation and board area requirements of  
the application. The LTC2641/LTC2642’s combination of  
tiny package size, rail-to-rail single supply operation, low  
power dissipation, fast settling and nearly ideal accuracy  
specifications makes it impractical for one op amp type  
to fit every application.  
R
has a low tempco (typically < 50ppm/°C), and is  
OUT  
independent of DAC code. The variation of R , part-to-  
OUT  
part, is typically less than 20%.  
Note on LSB units:  
For the following error descriptions, “LSB” means 16-bit  
LSB and 65,536 is rounded to 66k.  
To convert to 14-bit LSBs (LTC2641-14/LTC2642-14)  
divide by 4.  
In bipolar mode (LTC2642 only), the amplifier operates  
with the internal resistors to provide bipolar offset and  
scaling. In this case, a precision amplifier operating from  
dual power supplies, such as the the LT1678 provides the  
To convert to 12-bit LSBs (LTC2641-12/LTC2642-12)  
divide by 16.  
Aconstantcurrent,I ,loadingV willproduceanoffsetof:  
L
OUT  
V
output range (Figure 3).  
REF  
V
= –I • R  
L OUT  
OFFSET  
In unipolar mode, the output amplifier operates as a unity  
gain voltage follower. For unipolar, single supply applica-  
tions a precision, rail-to-rail input, single supply op amp  
For V  
38µV. Since R  
= 2.5V, a 16-bit LSB equals 2.5V/65,536, or  
REF  
is 6.2k, an I of 6nA produces an offset  
OUT  
L
of 1LSB. Therefore, to avoid degrading DAC performance,  
it is critical to protect the V  
leakage current.  
pin from any sources of  
OUT  
26412fd  
15  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
such as the LTC6078 is suitable, if the application does  
notrequirelinearoperationveryneartoGND, orzeroscale  
(Figure 2). The LTC6078 typically swings to within 1mV of  
GND if it is not required to sink any load current. For an  
LSB size of 38µV, 1mV represents 26 missing codes near  
zero scale. Linearity will be degraded over a somewhat  
larger range of codes above GND. It is also unavoidable  
that settling time and transient performance will degrade  
whenever a single supply amplifier is operated very close  
to GND, or to the positive supply rail.  
voltage temperature coefficient (referenced to 25°C) of  
0.6μV/°C will add 1LSB of zero-scale error. Also, I and  
BIAS  
the V  
error it causes, will typically show significant  
OFFSET  
relative variation over temperature.  
Op amp open-loop gain, A , contributes to DAC gain  
VOL  
error (GE):  
66k  
AVOL  
GE =  
LSB  
[
]
Op amp input common mode rejection ratio (CMRR) is an  
input-referred error that corresponds to a combination of  
gain error (GE) and INL, depending on the op amp archi-  
tecture and operating conditions. A conservative estimate  
of total CMRR error is:  
The small LSB size of a 16-bit DAC, coupled with the tight  
accuracyspecifications on theLTC2641/LTC2642, means  
that the accuracy and input specifications for the external  
op amp are critical for overall DAC performance.  
Op Amp Specifications and Unipolar DAC Accuracy  
CMRR  
20  
  
VCMRR_RANGE  
Error = 10  
• 66k LSB  
   
Most op amp accuracy specifications convert easily to  
DAC accuracy.  
VREF  
Op amp input bias current on the noninverting (+) input is  
equivalent to an I loading the DAC V  
pin and therefore  
where V  
is the voltage range that CMRR (in  
L
OUT  
CMRR_RANGE  
produces a DAC zero-scale error (ZSE) (see Unbuffered  
dB) is specified over. Op amp Typical Performance Char-  
acteristicsgraphsareusefultopredicttheimpactofCMRR  
errors on DAC performance. Typically, a precision op amp  
will exhibit a fairly linear CMRR behavior (corresponding  
to DAC gain error only) over most of the common mode  
input range (CMR), and become nonlinear and produce  
significant errors near the edge of the CMR.  
Operation):  
ZSE = –I (IN+) • R  
[Volts]  
B
OUT  
In 16-bit LSBs:  
66k  
ZSE = –I IN+ • 6.2k •  
LSB  
B
(
)
V
REF  
Rail-to-rail input op amps are a special case, because they  
have 2 distinct input stages, one with CMR to GND and  
the other with CMR to V . This results in a “crossover”  
CM input region where operation switches between the  
two input stages.  
Op amp input impedance, R , is equivalent to an R  
IN  
L
+
loading the LTC2641/LTC2642 V  
a gain error of:  
pin, and produces  
OUT  
–66k  
GE =  
LSB  
The LTC6078 rail-to-rail input op amp typically exhibits  
remarkably low crossover linearity error, as shown in the  
6.2k  
1+  
R
IN  
V
vs V Typical Performance Characteristics graphs  
OS  
CM  
(see the LTC6078 data sheet). Crossover occurs at CM  
Op amp offset voltage, V , corresponds directly to DAC  
+
OS  
inputs about 1V below V , and an LTC6078 operating as  
zero code offset error, ZSE:  
+
a unipolar DAC buffer with V = 2.5V and V = 5V will  
REF  
typically add only about 1LSB of GE and almost no INL  
66k  
VREF  
ZSE = VOS  
LSB  
[
]
error due to CMRR. Even in a full rail-to-rail application,  
+
with V = V = 5V, a typical LTC6078 will add only about  
REF  
Temperature effects also must be considered. Over the  
–40°C to 85°C industrial temperature range, an offset  
1LSB of INL at 16-bits.  
26412fd  
16  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Op Amp Specifications and Bipolar DAC Accuracy  
will introduce a feedback loop pole with a time constant  
of (C • 28k/2). A small feedback capacitor, C1, should be  
P
TheopampcontributionstounipolarDACerrordiscussed  
above apply equally to bipolar operation. The bipolar ap-  
plication circuit gains up the DAC span, and all errors, by  
a factor of 2. Since the LSB size also doubles, the errors  
in LSBs are identical in unipolar and bipolar modes.  
included, to introduce a zero that will partially cancel this  
pole. C1 should nominally be <C , typically in the range  
P
of 5pF to 10pF. This will restore the phase margin and  
improve coarse settling time, but a pole-zero doublet will  
unavoidably leave a slower settling tail, with a time con-  
One added error in bipolar mode comes from I (IN ),  
stant of roughly (C + C1) • 28k/2, which will limit 16-bit  
B
P
which flows through R to generate an offset. The full  
settling time to be greater than 2µs.  
FB  
bias current offset error becomes:  
Reference and GND Input  
+
V
= (I (IN ) • R – I (IN ) • R • 2) [Volts]  
OUT  
OFFSET  
B
FB  
B
TheLTC2641/LTC2642operateswithexternalvoltagerefer-  
So:  
ences from 2V to V , and linearity, offset and gain errors  
DD  
33k  
are virtually unchanged vs V . Full 16-bit performance  
VOFFSET = I (IN)28k I (IN+)12.4k •  
[LSB]  
VREF  
REF  
(
)
B
B
can be maintained if appropriate guidelines are followed  
when selecting and applying the reference. The LTC2641/  
LTC2642’s very low gain error tempco of 0.1ppm/°C, typ-  
ical, corresponds to less than 0.5LSB variation over the  
–40°C to 85°C temperature range. In practice, this means  
thattheoverallgainerrortempcowillbedeterminedalmost  
entirely by the external reference tempco.  
Settling Time with Op Amp Buffer  
When using an external op amp, the output settling time  
will still include the single pole settling on the LTC2641/  
LTC2642 V  
L
node, with time constant R  
• (C  
+
OUT  
OUT  
OUT  
C ) (see Unbuffered V  
Settling Time). C will include  
OUT  
L
The DAC voltage-switching mode “inverted” resistor lad-  
der architecture used in the LTC2641/LTC2642 exhibits a  
the buffer input capacitance and PC board interconnect  
capacitance.  
reference input resistance (R ) that is code dependent  
REF  
Theexternalbufferamplifieraddsanotherpoletotheoutput  
(see the Typical Performance curves I vs Input Code).  
REF  
response, with a time constant equal to (fbandwidth/2π).  
In unipolar mode, the minimum R  
is 14.8k (at code  
For example, assume that C is maintained at the same  
REF  
L
871Chex, 34,588 decimal) and the the maximum R is  
value as above, so that the V  
node time constant is  
REF  
OUT  
300k at code 0000hex (zero scale). The maximum change  
83ns = 1μs/12. The output amplifier pole will also have a  
time constant of 83ns if the closed-loop bandwidth equals  
(1/2π • 83ns) = 1.9MHz. The effective time constant of  
two cascaded single-pole sections is approximately the  
root square sum of the individual time constants, or √2  
• 83ns = 117ns, and 1/2 LSB settling time will be ~12 •  
117ns = 1.4μs. This represents an ideal case, with no slew  
limiting and ideal op amp phase margin. In practice, it  
will take a considerably faster amplifier, as well as careful  
attention to maintaining good phase margin, to approach  
the unbuffered settling time of 1μs.  
in I for a 2.5V reference is 160µA. Since the maximum  
REF  
occursnearmidscale, theINLerrorisaboutonehalfofthe  
change on V , so maintaining an INL error of <0.1LSB  
REF  
requiresareferenceloadregulationof(1.53ppm2/160µA)  
=19[ppm/mA].Thisimpliesareferenceoutputimpedance  
of 48mΩ, including series wiring resistance.  
To prevent output glitches from occurring when resistor  
ladder branches switch from GND to V , the reference  
REF  
inputmustmaintainlowimpedanceathigherfrequencies.  
A 0.1μF ceramic capacitor with short leads between REF  
and GND provides high frequency bypassing. A surface  
mount ceramic chip capacitor is preferred because it has  
the lowest inductance. An additional 1μF between REF  
and GND provides low frequency bypassing. The circuit  
The output settling time for bipolar applications (Fig-  
ure 3) will be somewhat increased due to the feedback  
resistor network R and R (each 28k nominal). The  
FB  
INV  
parasitic capacitance, C , on the op amp (–) input node  
P
26412fd  
17  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
will benefit from even higher bypass capacitance, as long  
as the external reference remains stable with the added  
capacitive loading.  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane.  
Digital Inputs and Interface Logic  
All of the digital inputs include Schmitt-trigger buffers to  
accept slow transition interfaces. This means that opto-  
cuplers can interface directly to the LTC2641/LTC2642  
without additional external logic. Digital input hysteresis  
is typically 150mV.  
A “star ground” area should be established by attaching  
the LTC2641/LTC2642 GND pin, V  
GND and the DAC  
REF  
V
OUT  
GND reference terminal to the same area on the  
GND plane. Care should be taken to ensure that no large  
GND return current paths flow through the “star GND”  
area. In particular, the resistance from the LTC2641 GND  
The digital inputs are compatible with TTL/CMOS-logic  
levels. However, rail-to-rail (CMOS) logic swings are  
preferred, because operating the logic inputs away from  
pin to the point where the V input source connects to  
REF  
the ground plane should be as low as possible. Excessive  
resistance here will be multiplied by the code dependent  
the supply rails generates additional I and GND current,  
DD  
I
current to produce an INL error similar to the error  
REF  
(see Typical Performance Characteristic graph Supply  
produced by V source resistance. For the LTC2641 in  
REF  
Current vs Logic Input Voltage).  
the S8 package both GND pins, Pin 2 and Pin 7 should  
be tied to the same GND plane.  
Digital feedthrough is only 0.2nV•s typical, but it is always  
preferredtokeepalllogicinputsstaticexceptwhenloading  
a new code into the DAC.  
Sourcesofgroundreturncurrentintheanalogareainclude  
op amp power supply bypass capacitors and the GND  
connection for single supply amps. A useful technique  
for minimizing errors is to use a separate board layer for  
powergroundreturnconnections,andreserveoneground  
plane layer for low current “signal” GND connections.  
The “signal”, or “star” GND plane must connected to the  
“power” GND plane at a single point, which should be  
located near the LTC2641/LTC2642 GND pin.  
Board Layout for Precision  
Even a small amount of board leakage can degrade  
accuracy. The 6nA leakage current into V  
needed to  
OUT  
generate1LSBoffseterrorcorrespondsto833MΩleakage  
resistance from a 5V supply.  
The V  
node is relatively sensitive to capacitive noise  
OUT  
coupling, so minimum trace length, appropriate shielding  
and clean board layout are imperative here.  
Ifseparateanaloganddigitalgroundareasexistitisneces-  
sary to connect them at a single location, which should be  
fairly close to the DAC for digital signal integrity. In some  
systems, large GND return currents can flow between the  
digital and analog GNDs, especially if different PC boards  
are involved. In such cases the digital and analog ground  
connection point should not be made right at the “star”  
GND area, so the highly sensitive analog signals are not  
corrupted.Ifforcedtochoose,alwaysplaceanalogground  
quality ahead of digital signal ground. (A few mV of noise  
Temperature differences at the DAC, op amp or reference  
pins can easily generate tens of microvolts of thermocou-  
ple voltages. Analog signal traces should be short, close  
together and away from heat dissipating components. Air  
currentsacrosstheboardcanalsogeneratethermocouples.  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
26412fd  
18  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
on the digital inputs is imperceptible, thanks to the digital  
input hysteresis)  
Caution: if a GND plane gap is improperly placed, so that  
it interrupts a significant GND return path, or if a signal  
traces crosses over the gap, then adding the gap may  
greatly degrade performance! In this case, the GND and  
signal return currents are forced to flow the long way  
around the gap, and then are typically channeled directly  
into the most sensitive area of the analog GND plane.  
Just by maintaining separate areas on the GND plane  
where analog and digital return currents naturally flow,  
good results are generally achieved. Only after this has  
been done, it is sometimes useful to interrupt the ground  
planewithstrategicallyplacedslots”,topreventthedigital  
ground currents from fringing into the analog portion of  
the plane. When doing this, the gap in the plane should  
be only as long as it needs to be to serve its purpose.  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10 1.65 ±0.10  
(4 SIDES) (2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.10  
2.38 ±0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
26412fd  
19  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
26412fd  
20  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
OBSOLETE PACKAGE  
26412fd  
21  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ0 Rev G)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 ꢀ 5  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
0.889 0.127  
(.035 .005)  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
5.10  
3.20 – 3.45  
(.201)  
0.53 0.152  
(.021 .00ꢀ)  
(.12ꢀ – .13ꢀ)  
MIN  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
0.ꢀ5  
(.025ꢀ)  
BSC  
(.007)  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ1 Rev F)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.497 0.07ꢀ  
(.019ꢀ .003)  
REF  
10 9  
8
7 ꢀ  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
0.889 0.127  
(.035 .005)  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4 5  
5.10  
(.201)  
MIN  
0.53 0.152  
(.021 .00ꢀ)  
3.20 – 3.45  
(.12ꢀ – .13ꢀ)  
0.8ꢀ  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
0.50  
(.0197)  
BSC  
0.305 0.038  
(.0120 .0015)  
TYP  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.101ꢀ 0.0508  
(.004 .002)  
RECOMMENDED SOLDER PAD LAYOUT  
0.50  
(.0197)  
BSC  
NOTE:  
MSOP (MS) 0213 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
26412fd  
22  
For more information www.linear.com/LTC2641  
LTC2641/LTC2642  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
12/13 Marked S8 package as Obsolete  
2, 3, 9, 10, 18, 21  
D
10/14 Added output voltage noise density specifications  
Updated text under Clearing the DAC section  
4
12  
26412fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
cr on  
that the interconnectio its rc it s d ibed ert i ring existing patent rights.  
23  
n of ci u s a es h ein will no nf e  
LTC2641/LTC2642  
TYPICAL APPLICATION  
Wide Range Current Load Sinks 0A to 2.5A  
V
REF  
2.5V  
OUT  
LT1019CS8-2.5  
IN  
5V  
5V  
0.1µF  
0.1µF  
4.7µF  
GND  
7
1
REF  
V
DD  
10V  
0.1µF  
LTC2641-16  
I
SINK  
0A TO 2.5A  
V
OUT  
6
+
2
3
4
5
16-BIT DAC  
CS  
1k  
SCLK  
DIN  
IRLZ44  
LTC2054HV  
CLR  
0.033µF  
10k  
GND  
8
1Ω  
10W  
26412 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
DACs  
LTC1588/LTC1589 12-/14-/16-Bit SoftSpanTM Current Output DACs  
LTC1592  
Software Programmable Output Ranges up to 10V  
LTC1595/LTC1596 Serial 16-Bit Current Output DACs  
Low Glitch, 1LSB Maximum INL, DNL  
1LSB Max INL, DNL, 10V Output  
LTC1591/LTC1597 Parallel 14-/16-Bit Current Output DACs  
LTC1599  
LTC1650  
16-Bit Current Output DAC  
16-Bit Voltage Output DAC  
1LSB Max INL, DNL, 10V Output  
2nV•s Glitch Impulse, 30nV/√Hz Noise  
Single DACs, Single Supply, 0V to 5V Outputs in DFN10  
LTC2621/LTC2611 12-/14-/16-Bit Serial Voltage Output DACs  
LTC2601  
LTC2704-12  
LTC2704-14  
LTC2704-16  
12-/14-/16-Bit Quad Voltage Output DACs  
Software Programmable Output Ranges up to 10V, Serial I/O  
Op Amps  
LT®1678  
LTC2054  
LT6010  
Dual Low Noise Rail-to-Rail Precision Op Amp  
Micropower Zero Drift Op Amp  
3.9nV/√Hz at 1MHz  
3µV Maximum Offset  
150µA 8nV/√Hz Rail-to-Rail Output Precision Op Amp  
Dual CMOS Rail-to-Rail Input/Output Amplifier  
Micropower  
LTC6078  
References  
LT1019  
54µA per Amp, 16nV/√Hz Input Noise Voltage  
Precision Bandgap Reference  
0.005% Max, 5ppm/°C Max  
26412fd  
LT 1014 REV D • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2007  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2641  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY