LTC2641IDD-12PBF [Linear]

16-/14-/12-Bit VOUT DACs in 3mm 】 3mm DFN; 采用3mm 16位/ 14位/ 12位DAC的VOUT 】 3mm DFN封装
LTC2641IDD-12PBF
型号: LTC2641IDD-12PBF
厂家: Linear    Linear
描述:

16-/14-/12-Bit VOUT DACs in 3mm 】 3mm DFN
采用3mm 16位/ 14位/ 12位DAC的VOUT 】 3mm DFN封装

文件: 总20页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2641/LTC2642  
16-/14-/12-Bit V DACs in  
OUT  
3mm × 3mm DFN  
FEATURES  
DESCRIPTION  
The LTC®2641/LTC2642 are families of 16-, 14- and 12-bit  
unbufferedvoltageoutputDACs.TheseDACsoperatefrom  
asingle2.7Vto5.5Vsupplyandareguaranteedmonotonic  
over temperature. The LTC2641-16/LTC2642-16 provide  
16-bit performance ( 2LꢀS ꢁIL and 1LꢀS DILN over  
temperature. UnbufferedDACoutputsresultinlowsupply  
current of 120μA and a low offset error of 1LꢀS.  
Tiny 3mm × 3mm 8-Pin DFN Package  
Maximum 16-Bit INL Error: ±±LꢀB oꢁer Temperature  
Low 1±0μA ꢀupply Current  
Guaranteed Monotonic oꢁer Temperature  
Low 0.5nV•sec Glitch Impulse  
2.7V to 5.5V ꢀingle ꢀupply Operation  
Fast 1μs ꢀettling Time to 16 Sits  
Unbuffered Voltage Output Directly Drives 60k Loads  
Soth the LTC2641 and LTC2642 feature a reference input  
50MHz ꢀPꢁTM/QꢀPꢁTM/MꢁCROWꢁRETM Compatible  
range of 2V to V . V  
swings from 0V to V . For  
DD OUT  
REF  
ꢀerial ꢁnterface  
bipolar operation, the LTC2642 includes matched scaling  
Power-On Reset Clears DAC Output to Zero ꢀcale  
resistors for use with an external precision op amp (such  
(LTC2641N or Midscale (LTC2642N  
as the LT1678N, generating a V output swing at R .  
REF  
FS  
ꢀchmitt-Trigger ꢁnputs for Direct Optocoupler  
The LTC2641/LTC2642 use a simple ꢀPꢁ/MꢁCROWꢁRE  
compatible 3-wire serial interface which can be operated  
at clock rates up to 50MHz and can interface directly  
with optocouplers for applications requiring isolation. A  
power-on reset circuit clears the LTC2641’s DAC output  
to zero scale and the LTC2642’s DAC output to midscale  
when power is initially applied. A logic low on the CLR pin  
asynchronously clears the DAC to zero scale (LTC2641N  
or midscale (LTC2642N. These DACs are all specified over  
the commercial and industrial ranges.  
ꢁnterface  
Asynchronous CLR Pin  
8-Lead MꢀOP and 3mm × 3mm DFI Packages  
(LTC2641N  
10-Lead MꢀOP and 3mm × 3mm DFI Packages  
(LTC2642N  
APPLICATIONS  
High Resolution Offset and Gain Adjustment  
Process Control and ꢁndustrial Automation  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Automatic Test Equipment  
Data Aquisition ꢀystems  
TYPICAL APPLICATION  
Bipolar 16-Bit DAC  
LTC±64±-16 Integral Nonlinearity  
V
REF  
2.7V TO 5.5V  
2V TO V  
DD  
0.1μF  
1μF  
0.1μF  
1.0  
V
V
= 5V  
REF  
DD  
0.8  
0.6  
= 2.5V  
R
REF  
V
FB  
DD  
LTC2642  
2.5V RANGE  
5pF  
0.4  
INV  
0.2  
BIPOLAR V  
OUT  
REF  
1/2 LT1678  
+
–V  
TO V  
REF  
V
0
OUT  
16-BIT DAC  
POWER-ON  
RESET  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
INL 25°C  
INL 90°C  
INL –45°C  
CS  
16-BIT DATA LATCH  
SCLK  
DIN  
CLR  
CONTROL  
LOGIC  
0
32768  
CODE  
49152  
16384  
65535  
16-BIT SHIFT REGISTER  
GND  
26412 TA01a  
LT1372 • G10  
26412f  
1
LTC2641/LTC2642  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Operating Temperature Range  
V
to GID.................................................. –0.3V to 6V  
DD  
LTC2641C/LTC2642C............................... 0°C to 70°C  
LTC2641ꢁ/LTC2642............................. –40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
ꢀtorage Temperature Range................... –65°C to 150°C  
Lead Temperature (ꢀoldering, 10 secN .................. 300°C  
Cꢀ, ꢀCLK, DꢁI,  
CLR to GID ........................0.3V to (V + 0.3VN or 6V  
DD  
REF, V , IV to GID ........0.3V to (V + 0.3VN or 6V  
OUT  
DD  
R
R
to ꢁIV....................................................... –6V to 6V  
to GID ..................................................... –6V to 6V  
FS  
FS  
PIN CONFIGURATION  
LTC±641  
TOP VIEW  
TOP VIEW  
REF  
CS  
1
2
3
4
8
7
6
5
GND  
REF  
CS  
SCLK  
DIN  
1
2
3
4
8 GND  
V
V
DD  
7 V  
6 V  
OUT  
5 CLR  
9
DD  
SCLK  
DIN  
OUT  
CLR  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C (IOTE 2N, θ = 200°C/W  
JMAX  
JA  
T
= 125°C (IOTE 2N, θ = 43°C/W  
JMAX  
JA  
EXPOꢀED PAD (PꢁI 9N ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
LTC±64±  
TOP VIEW  
TOP VIEW  
REF  
CS  
1
2
3
4
5
10 GND  
REF  
CS  
SCLK  
DIN  
CLR  
1
2
3
4
5
10 GND  
9
8
7
6
V
DD  
9
8
7
6
V
DD  
11  
SCLK  
DIN  
R
FB  
R
FB  
INV  
INV  
V
OUT  
CLR  
V
OUT  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C (IOTE 2N, θ = 120°C/W  
JA  
JMAX  
T
= 125°C (IOTE 2N, θ = 43°C/W  
JA  
JMAX  
EXPOꢀED PAD (PꢁI 11N ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
26412f  
2
LTC2641/LTC2642  
ORDER INFORMATION  
LTC±641  
LEAD FREE FINIꢀH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DEꢀCRIPTION  
TEMPERATURE RANGE  
LTC2641CDD-16#PSF  
LTC2641CDD-14#PSF  
LTC2641CDD-12#PSF  
LTC2641CDD-16#TRPSF  
LTC2641CDD-14#TRPSF  
LTC2641CDD-12#TRPSF  
LCZP  
LCZI  
LCZM  
8-Lead (3mm × 3mmN Plastic DFI  
8-Lead (3mm × 3mmN Plastic DFI  
8-Lead (3mm × 3mmN Plastic DFI  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
LTC2641ꢁDD-16#PSF  
LTC2641ꢁDD-14#PSF  
LTC2641ꢁDD-12#PSF  
LTC2641ꢁDD-16#TRPSF  
LTC2641ꢁDD-14#TRPSF  
LTC2641ꢁDD-12#TRPSF  
LCZP  
LCZI  
LCZM  
8-Lead (3mm × 3mmN Plastic DFI  
8-Lead (3mm × 3mmN Plastic DFI  
8-Lead (3mm × 3mmN Plastic DFI  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LTC2641CMꢀ8-16#PSF  
LTC2641CMꢀ8-14#PSF  
LTC2641CMꢀ8-12#PSF  
LTC2641CMꢀ8-16#TRPSF  
LTC2641CMꢀ8-14#TRPSF  
LTC2641CMꢀ8-12#TRPSF  
LTCZꢀ  
LTCZR  
LTCZQ  
8-Lead Plastic MꢀOP  
8-Lead Plastic MꢀOP  
8-Lead Plastic MꢀOP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
LTC2641ꢁMꢀ8-16#PSF  
LTC2641ꢁMꢀ8-14#PSF  
LTC2641ꢁMꢀ8-12#PSF  
LTC2641ꢁMꢀ8-16#TRPSF  
LTC2641ꢁMꢀ8-14#TRPSF  
LTC2641ꢁMꢀ8-12#TRPSF  
LTCZꢀ  
LTCZR  
LTCZQ  
8-Lead Plastic MꢀOP  
8-Lead Plastic MꢀOP  
8-Lead Plastic MꢀOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LTC±64±  
LTC2642CDD-16#PSF  
LTC2642CDD-14#PSF  
LTC2642CDD-12#PSF  
LTC2642CDD-16#TRPSF  
LTC2642CDD-14#TRPSF  
LTC2642CDD-12#TRPSF  
LCZW  
LCZV  
LCZT  
10-Lead (3mm × 3mmN Plastic DFI  
10-Lead (3mm × 3mmN Plastic DFI  
10-Lead (3mm × 3mmN Plastic DFI  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
LTC2642ꢁDD-16#PSF  
LTC2642ꢁDD-14#PSF  
LTC2642ꢁDD-12#PSF  
LTC2642ꢁDD-16#TRPSF  
LTC2642ꢁDD-14#TRPSF  
LTC2642ꢁDD-12#TRPSF  
LCZW  
LCZV  
LCZT  
10-Lead (3mm × 3mmN Plastic DFI  
10-Lead (3mm × 3mmN Plastic DFI  
10-Lead (3mm × 3mmN Plastic DFI  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LTC2642CMꢀ-16#PSF  
LTC2642CMꢀ-14#PSF  
LTC2642CMꢀ-12#PSF  
LTC2642CMꢀ-16#TRPSF  
LTC2642CMꢀ-14#TRPSF  
LTC2642CMꢀ-12#TRPSF  
LTCZZ  
LTCZY  
LTCZX  
10-Lead Plastic MꢀOP  
10-Lead Plastic MꢀOP  
10-Lead Plastic MꢀOP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
LTC2642ꢁMꢀ-16#PSF  
LTC2642ꢁMꢀ-14#PSF  
LTC2642ꢁMꢀ-12#PSF  
LTC2642ꢁMꢀ-16#TRPSF  
LTC2642ꢁMꢀ-14#TRPSF  
LTC2642ꢁMꢀ-12#TRPSF  
LTCZZ  
LTCZY  
LTCZX  
10-Lead Plastic MꢀOP  
10-Lead Plastic MꢀOP  
10-Lead Plastic MꢀOP  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
26412f  
3
LTC2641/LTC2642  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply oꢁer the full operating  
temperature range, otherwise specifications are at TA = ±5°C. VDD = 3V or 5V, VREF = ±.5V, CL = 10pF, GND = 0, RL = ∞ unless  
otherwise specified.  
LTC±641-1±  
LTC±64±-1±  
LTC±641-14  
LTC±64±-14  
LTC±641-16  
LTC±64±-16  
ꢀYMBOL PARAMETER  
ꢀtatic Peformance  
CONDITIONꢀ  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITꢀ  
I
Resolution  
12  
12  
14  
14  
16  
16  
Sits  
Sits  
Monotonicity  
DIL  
ꢁIL  
Differential Ionlinearity  
ꢁntegral Ionlinearity  
Zero Code Offset Error  
Zero Code Tempco  
Gain Error  
(Iote 2N  
(Iote 2N  
Code = 0  
0.5  
0.5  
1
0.5  
0.5  
1
1
0.5  
0.5  
1
2
LꢀS  
LꢀS  
ZꢀE  
2
2
LꢀS  
Zꢀ  
0.05  
0.5  
0.1  
6.2  
1
0.05  
1
0.05  
2
ppm/°C  
LꢀS  
TC  
GE  
GE  
2
4
5
Gain Error Tempco  
DAC Output Resistance  
0.1  
6.2  
1
0.1  
6.2  
1
ppm/°C  
kΩ  
TC  
R
(Iote 4N  
OUT  
Sipolar Resistor Matching (LTC2642N R /R  
FS ꢁIV  
Ratio Error (Iote 7N  
(LTC2642N  
0.1  
2
0.03  
4
0.015  
5
%
LꢀS  
SZE  
SZꢀ  
Sipolar Zero Offset Error  
Sipolar Zero Tempco  
0.5  
0.1  
0.5  
0.1  
2
(LTC2642N  
0.1  
ppm/°C  
LꢀS  
TC  
PꢀR  
Power ꢀupply Rejection  
ΔV = 10%  
DD  
0.5  
0.5  
1
The denotes the specifications which apply oꢁer the full operating temperature range, otherwise specifications are at TA = ±5°C.  
VDD = 3V or 5V, VREF = ±.5V, CL = 10pF, GND = 0, RL = ∞ unless otherwise specified.  
ꢀYMBOL  
PARAMETER  
CONDITIONꢀ  
MIN  
TYP  
MAX  
UNITꢀ  
Reference Input  
V
Reference ꢁnput Range  
2.0  
V
V
REF  
DD  
R
REF  
Reference ꢁnput Resistance (Iote 5N  
Unipolar Mode (LTC2641N  
Sipolar Mode (LTC2642N  
11  
8.5  
14.8  
11.4  
kΩ  
kΩ  
Dynamic Performance—V  
OUT  
ꢀR  
Voltage Output ꢀlew Rate  
Output ꢀettling Time  
DAC Glitch ꢁmpulse  
Digital Feedthrough  
Measured from 10% to 90%  
To 0.5LꢀS of Fꢀ  
15  
1
V/μs  
μs  
Major Carry Transition  
0.5  
0.2  
nV•s  
nV•s  
Code = 0000hex; ICꢀ = V  
;
DD  
ꢀCLK, DꢁI 0V to V Levels  
DD  
Dynamic Performance—Reference Input  
SW  
Reference –3dS Sandwidth  
Code = FFFFhex  
1.3  
1
MHz  
Reference Feedthrough  
ꢀignal-to-Ioise Ratio  
Code = 0000hex, V = 1V at 100kHz  
mV  
P-P  
REF  
P-P  
ꢀIR  
92  
dS  
C
Reference ꢁnput Capacitance  
Code = 0000hex  
Code = FFFFhex  
75  
120  
pF  
pF  
ꢁI(REFN  
Digital Inputs  
V
Digital ꢁnput High Voltage  
Digital ꢁnput Low Voltage  
V
V
= 3.6V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
ꢁH  
CC  
CC  
V
V
CC  
V
CC  
= 4.5V to 5.5V  
= 2.7V to 4.5V  
0.8  
0.6  
V
V
ꢁL  
26412f  
4
LTC2641/LTC2642  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply oꢁer the full operating  
temperature range, otherwise specifications are at TA = ±5°C. VDD = 3V or 5V, VREF = ±.5V, CL = 10pF, GND = 0, RL = ∞ unless  
otherwise specified.  
ꢀYMBOL  
PARAMETER  
CONDITIONꢀ  
= GID to V  
CC  
MIN  
TYP  
MAX  
1
UNITꢀ  
μA  
ꢁI  
Digital ꢁnput Current  
Digital ꢁnput Capacitance  
Hysteresis Voltage  
V
ꢁI  
C
V
(Iote 6N  
3
10  
pF  
ꢁI  
H
0.15  
V
Power ꢀupply  
V
ꢀupply Voltage  
2.7  
5.5  
V
DD  
D
ꢀupply Current, V  
Digital ꢁnputs = 0V or V  
DD  
120  
200  
μA  
DD  
DD  
P
Power Dissipation  
Digital ꢁnputs = 0V or V , V = 5V  
0.60  
0.36  
mW  
mW  
DD DD  
Digital ꢁnputs = 0V or V , V = 3V  
DD DD  
TIMING CHARACTERISTICS The denotes the specifications which apply oꢁer the full operating temperature  
range, otherwise specifications are at TA = ±5°C. VDD = 3V or 5V, VREF = ±.5V, CL = 10pF, GND = 0, RL = ∞ unless otherwise specified.  
ꢀYMBOL  
PARAMETER  
CONDITIONꢀ  
MIN  
10  
0
TYP  
MAX  
UNITꢀ  
ns  
t
t
t
t
t
t
t
t
t
f
DꢁI Valid to ꢀCLK ꢀetup Time  
DꢁI Valid to ꢀCLK Hold Time  
ꢀCLK Pulse Width High  
ꢀCLK Pulse Width Low  
1
ns  
2
9
ns  
3
9
ns  
4
Cꢀ Pulse High Width  
10  
8
ns  
5
LꢀS ꢀCLK High to Cꢀ High  
ns  
6
Cꢀ Low to ꢀCLK High  
8
ns  
7
Cꢀ High to ꢀCLK Positive Edge  
8
ns  
8
CLR Pulse Width Low  
ꢀCLK Frequency  
15  
ns  
9
50% Duty Cycle  
50  
MHz  
μs  
ꢀCLK  
V
DD  
High to Cꢀ Low (Power-Up DelayN  
30  
Note 4: R  
tolerance is typically 20%.  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
OUT  
Note 5: Reference input resistance is code dependent. Minimum is at  
871Chex (34,588N in unipolar mode and at 671Chex (26, 396N in bipolar  
mode.  
Note ±: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Guaranteed by gain error and offset error testing, not production  
Note 3: LTC2641-16/LTC2642-16 1LꢀS = 0.0015% = 15.3ppm of full  
scale. LTC2641-14/LTC2642-14 1LꢀS = 0.006% = 61ppm of full scale.  
LTC2641-12/LTC2642-12 1LꢀS = 0.024% = 244ppm of full scale.  
tested.  
26412f  
5
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Integral Nonlinearity (INL)  
INL ꢁs VREF  
ꢁs ꢀupply (VDD  
)
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
= 2.5V  
V
= 5.5V  
REF  
LTC2642-16  
DD  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.6  
0.6  
0.6  
+INL  
+INL  
–INL  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
–INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
16384  
32768  
CODE  
49152  
65535  
2
3
4
5
6
2
3
4
5
6
V
(V)  
V
(V)  
DD  
REF  
26412 G01  
26412 G02  
26412 G03  
Differential Nonlinearity (DNL)  
ꢁs ꢀupply (VDD  
)
Differential Nonlinearity (DNL)  
DNL ꢁs VREF  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
= 2.5V  
V
= 5.5V  
DD  
REF  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
+DNL  
–DNL  
+DNL  
–DNL  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
2
3
4
5
6
2
3
4
5
6
0
16384  
32768  
CODE  
49152  
65535  
V
(V)  
V
(V)  
REF  
DD  
26412 G05  
26412 G06  
26412 G04  
INL ꢁs Temperature  
DNL ꢁs Temperature  
Bipolar Zero Error ꢁs Temperature  
1.0  
0.8  
5
4
1.0  
0.8  
V
V
= 2.5V  
REF  
= 5V  
DD  
V
V
= 2.5V  
REF  
= 5V  
DD  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.6  
0.6  
3
+INL  
–INL  
0.4  
0.4  
2
0.2  
0.2  
+DNL  
–DNL  
1
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
26412 G07  
26412 G08  
26412 G09  
26412f  
6
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unbuffered Zero ꢀcale Error ꢁs  
Temperature (LTC±641-16)  
Unbuffered Full-ꢀcale Error ꢁs  
Temperature (LTC±641-16)  
1.0  
Bipolar Gain Error ꢁs Temperature  
5
4
1.0  
0.8  
V
V
= 2.5V  
REF  
= 5V  
DD  
0.8  
0.6  
0.4  
0.2  
0
3
0.6  
2
0.4  
1
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
26412 G10  
26412 G12  
26412 G11  
14-Bit Integral Nonlinearity (INL)  
(LTC±64±-14)  
14-Bit Differential Nonlinearity  
(DNL) (LTC±64±-14)  
IREF ꢁs Code (Unipolar LTC±641)  
1.0  
0.8  
1.0  
0.8  
250  
200  
150  
100  
50  
V
= 2.5V  
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
4096  
8192  
12288  
16383  
32768  
CODE  
0
4096  
8192  
12288  
16383  
0
16384  
49152  
65535  
CODE  
CODE  
26412 G14  
26412 G13  
26412 G15  
1±-Bit Integral Nonlinearity (INL)  
(LTC±64±-1±)  
1±-Bit Differential Nonlinearity  
(DNL) (LTC±64±-1±)  
IREF ꢁs Code (Bipolar LTC±64±)  
1.0  
0.8  
1.0  
0.8  
250  
200  
150  
100  
50  
V
= 2.5V  
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32768  
CODE  
49152  
0
16384  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
65535  
CODE  
CODE  
26412 G18  
26412 G16  
26412 G17  
26412f  
7
LTC2641/LTC2642  
TYPICAL PERFORMANCE CHARACTERISTICS  
ꢀupply Current (IDD) ꢁs  
Temperature  
ꢀupply Current (IDD) ꢁs ꢀupply  
Voltage (VDD  
ꢀupply Current (IDD) ꢁs Digital  
Input Voltage  
)
150  
125  
150  
125  
100  
75  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 2.5V  
V
= 2.5V  
REF  
REF  
V
V
= 5V  
= 3V  
DD  
DD  
V
= 5V  
DD  
100  
75  
50  
25  
0
50  
V
= 3V  
DD  
25  
0
–40  
–15  
10  
35  
60  
85  
2.5  
3.5  
4
4.5  
5
5.5  
3
0
0.5  
1
1.5  
2
2.5  
5
3
3.5 4 4.5  
TEMPERATURE (°C)  
V
(V)  
DIGITAL INPUT VOLTAGE (V)  
DD  
26412 G19  
26412 G20  
26412 G21  
ꢀupply Current (IDD) ꢁs VREF  
,
ꢀupply Current (IDD) ꢁs VREF  
,
Midscale Glitch Impulse  
VDD = 5V  
VDD = 3V  
150  
125  
100  
75  
150  
125  
100  
75  
CS  
5V/DIV  
V
= 5V  
V
= 3V  
DD  
DD  
CODE  
32767  
CODE  
32768  
CODE  
32767  
V
OUT  
20mV/DIV  
50  
50  
26412 G24  
25  
25  
LTC2641-16  
500ns/DIV  
UNBUFFERED  
C
= 10pF  
L
0
0
3.5  
4
2.5  
1
1.5  
2
2.5  
3
4.5  
5
1
1.5  
2
3
V
(V)  
V
REF  
(V)  
REF  
26412 G22  
26412 G23  
VOUT ꢁs VDD = 0V to 5.5V  
(POR Function) LTC±641  
Full-ꢀcale Transition  
Full-ꢀcale ꢀettling (Zoomed In)  
CS  
CS  
V
= V  
REF  
5V/DIV  
DD  
5V/DIV  
0V TO 5.5V  
2V/DIV  
SETTLE  
RESIDUE  
250μV/DIV  
V
OUT  
V
OUT  
1V/DIV  
10mV/DIV  
26412 G27  
26412 G25  
26412 G26  
LTC2641-16  
= 2.5V  
CONSULT FACTORY FOR  
MEASUREMENT CIRCUIT  
500ns/DIV  
LTC2641-16  
50ms/DIV  
LTC2641-16  
500ns/DIV  
V
UNBUFFERED  
UNBUFFERED  
REF  
C
= 10pF  
C
V
V
= 10pF  
L
L
= 2.5V  
REF  
= 5V  
DD  
26412f  
8
LTC2641/LTC2642  
PIN FUNCTIONS  
LTC±641  
LTC±64±  
REF (Pin 1): Reference Voltage ꢁnput. Apply an external  
REF (Pin 1): Reference Voltage ꢁnput. Apply an external  
reference at REF between 2V and V .  
reference at REF between 2V and V .  
DD  
DD  
Cꢀ (Pin ±): ꢀerial ꢁnterface Chip ꢀelect/Load ꢁnput. When  
Cꢀ (Pin ±): ꢀerial ꢁnterface Chip ꢀelect/Load ꢁnput. When  
Cꢀ is low, ꢀCLK is enabled for shifting in data on DꢁI.  
Cꢀ is low, ꢀCLK is enabled for shifting in data on DꢁI.  
When Cꢀ is taken high, ꢀCLK is disabled, the 16-bit input  
word is latched and the DAC is updated  
When Cꢀ is taken high, ꢀCLK is disabled, the 16-bit input  
word is latched and the DAC is updated.  
ꢀCLK (Pin 3): ꢀerial ꢁnterface Clock ꢁnput. CMOꢀ and  
TTL compatible.  
ꢀCLK (Pin 3): ꢀerial ꢁnterface Clock ꢁnput. CMOꢀ and  
TTL compatible.  
DIN (Pin 4): ꢀerial ꢁnterface Data ꢁnput. Data is applied  
to DꢁI for transfer to the device at the rising edge of  
ꢀCLK.  
DIN (Pin 4): ꢀerial ꢁnterface Data ꢁnput. Data is applied  
to DꢁI for transfer to the device at the rising edge of  
ꢀCLK.  
CLR (Pin 5): Asynchronous Clear ꢁnput. A logic low clears  
CLR (Pin 5): Asynchronous Clear ꢁnput. A logic low clears  
the DAC to midscale.  
the DAC to code 0.  
V
(Pin 6): DAC Output Voltage. The output range is  
REF  
V
(Pin 6): DAC Output Voltage. The output range is  
REF  
OUT  
0V to V  
OUT  
0V to V  
.
.
INV (Pin 7): Center Tap of ꢁnternal ꢀcaling Resistors.  
Connecttoanexternalamplifier’sinvertinginputinbipolar  
mode.  
V
(Pin 7): ꢀupply Voltage. ꢀet between 2.7V and  
DD  
5.5V.  
GND (Pin 8): Circuit Ground.  
R
(Pin 8): Feedback Resistor. Connect to an external  
FB  
Exposed Pad (DFN Pin 9): Circuit Ground. Must be sol-  
dered to PCS ground.  
amplifier’s output in bipolar mode. The bipolar output  
range is –V to V  
.
REF  
REF  
V
(Pin 9): ꢀupply Voltage. ꢀet between 2.7V and  
DD  
5.5V.  
GND (Pin 10): Circuit Ground.  
Exposed Pad (DFN Pin 11): Circuit Ground. Must be  
soldered to PCS ground.  
26412f  
9
LTC2641/LTC2642  
BLOCK DIAGRAMS  
LTC±641  
LTC±64±  
7
1
9
1
REF  
REF  
V
V
DD  
DD  
R
FB  
8
7
LTC2641-16  
LTC2641-14  
LTC2641-12  
LTC2642-16  
LTC2642-14  
LTC2642-12  
INV  
V
OUT  
V
OUT  
POWER-ON  
RESET  
POWER-ON  
RESET  
16-/14-/12-BIT DAC  
6
16-/14-/12-BIT DAC  
6
CS  
CS  
2
3
4
5
2
3
4
5
SCLK  
DIN  
CLR  
SCLK  
DIN  
CLR  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
16-BIT DATA LATCH  
16-BIT DATA LATCH  
16-BIT SHIFT REGISTER  
16-BIT SHIFT REGISTER  
GND  
8
GND  
10  
2641 BD  
2642 BD  
TIMING DIAGRAM  
t
1
t
t
t
t
6
2
3
4
1
2
3
15  
16  
SCK  
SDI  
t
8
t
5
t
7
26412 TD  
CS/LD  
OPERATION  
General Description  
Digital-to-Analog Architecture  
The DAC architecture is a voltage switching mode resis-  
tor ladder using precision thin-film resistors and CMOꢀ  
switches. TheLTC2641/LTC2642DACresistorladdersare  
composed of a proprietary arrangement of matched DAC  
sections. The four MꢀSs are decoded to drive 15 equally  
weighted segments, and the remaining lower bits drive  
successively lower weighted sections. Major carry glitch  
The LTC2641/LTC2642 family of 16-/14-/12-bit voltage  
output DACs offer full 16-bit performance with less than  
2LꢀSintegrallinearityerrorandlessthan 1LꢀSdifferen-  
tiallinearityerror,guaranteeingmonotonicoperation.They  
operate from a single supply ranging from 2.7V to 5.5V,  
consuming 120μA (typicalN. An external voltage reference  
of 2V to V determines the DAC’s full-scale output volt-  
DD  
impulse is very low at 500pV•sec, C = 10pF, ten times  
age.A3-wireserialinterfaceallowstheLTC2641/LTC2642  
to fit into a small 8-/10-pin MꢀOP or DFI 3mm × 3mm  
package.  
L
lower than previous DACs of this type.  
26412f  
10  
LTC2641/LTC2642  
OPERATION  
The digital-to-analog transfer function at the V  
is:  
pin  
chip select input (CꢀN controls and frames the loading  
OUT  
of serial data from the data input (DꢁIN. Following a Cꢀ  
high-to-low transition, the data on DꢁI is loaded, MꢀS  
first, into the shift register on each rising edge of the serial  
clock input (ꢀCLKN. After 16 data bits have been loaded  
intotheserialinputregister, alow-to-hightransitiononCꢀ  
transfersthedatatothe16-bitDAClatch,updatingtheDAC  
output (see Figures 1a, 1b, 1cN. While Cꢀ remains high,  
the serial input shift register is disabled. ꢁf there are less  
than16low-to-hightransitionsonCLKwhileCremains  
low, the data will be corrupted, and must be reloaded.  
Also, if there are more than 16 low-to-high transitions  
on ꢀCLK while Cꢀ remains low, only the last 16 data bits  
loaded from DꢁI will be transferred to the DAC latch. For  
the 14-bit DACs, (LTC2641-14/LTC2642-14N, the MꢀS  
remains in the same (left-justifiedN position in the input  
16-bit data word. Therefore, two “don’t-care” bits must  
be loaded after the LꢀS, to make up the required 16 data  
bits (Figure 1bN. ꢀimilarly, for the 12-bit family members  
(LTC2641-12/LTC2642-12N four “don’t-care” bits must  
follow the LꢀS (Figure 1cN.  
k
VOUT(IDEAL)  
=
V
NREF  
2
where k is the decimal equivalent of the binary DAC input  
code, I is the resolution, and V is between 2.0V and  
REF  
V
(see Tables 1a, 1b and 1cN.  
DD  
The LTC2642 includes matched resistors that are tied to  
an external amplifier to provide bipolar output swing (Fig-  
ure 2N. The bipolar transfer function at the RFS pin is:  
k
N–1  
VOUT _BIPOLAR(IDEAL) = VREF ⎜  
– 1  
2
(see Tables 2a, 2b and 2cN.  
ꢀerial Interface  
The LTC2641/LTC2642 communicates via a standard  
3-wire ꢀPꢁ/QꢀPꢁ/MꢁCROWꢁRE compatible interface. The  
CS  
DAC  
UPDATED  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
26412 F01a  
DATA (16 BITS)  
Figure 1a. 16-Bit Timing Diagram (LTC±641-16/LTC±64±-16)  
CS  
DAC  
UPDATED  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
26412 F01b  
DATA (14 BITS + 2 DON’T-CARE BITS)  
Figure 1b. 14-Bit Timing Diagram (LTC±641-14/LTC±64±-14)  
CS  
SCLK  
DIN  
DAC  
UPDATED  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
X
X
26412 F01c  
DATA (12 BITS + 4 DON’T-CARE BITS)  
Figure 1c. 1±-Bit Timing Diagram (LTC±641-1±/LTC±64±-1±)  
26412f  
11  
LTC2641/LTC2642  
OPERATION  
Power-On Reset  
32,768 (LTC2642-16N; 8,192 (LTC2642-14N; or 2,048  
(LTC2642-12N.  
The LTC2641/LTC2642 include a power-on reset circuit  
to ensure that the DAC ouput comes up in a known state.  
Clearing the DAC  
When V is first applied, the power-on reset circuit sets  
DD  
A 10ns (minimumN low pulse on the CLR pin asynchro-  
nously clears the DAC latch to code zero (LTC2641N or to  
midscale (LTC2642N.  
the output of the LTC2641 to zero-scale (code 0N. The  
LTC2642 powers up to midscale (bipolar zeroN. Depend-  
ing on the DAC number of bits, the midscale code is:  
APPLICATIONS INFORMATION  
Unipolar Configuration  
The external amplifier provides a unity-gain buffer. The  
LTC2642 can also be used in unipolar configuration by  
Figure 2 shows a typical unipolar DAC application for  
the LTC2641. Tables 1a, 1b and 1c show the unipolar  
binary code tables for 16-bit, 14-bit and 12-bit operation.  
tying R and ꢁIV to REF. This provides power-up and  
FS  
clear to midscale.  
V
REF  
2.5V  
OUT  
LT®1019CS8-2.5  
IN  
5V  
0.1μF  
4.7μF  
Table 1a. 16-Bit Unipolar Binary Code Table  
(LTC±641-16)  
5V/3V  
7
GND  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
0.1μF  
ANALOG OUTPUT  
(V  
5V/3V  
0.1μF  
1
REF  
)
OUT  
V
DD  
MꢀS  
LꢀS  
LTC2641-16  
1111 1111 1111 1111 V (65,535/65,536N  
UNIPOLAR V  
0V TO 2.5V  
REF  
OUT  
1/2 LTC6078  
V
6
OUT  
+
1000 0000 0000 0000 V (32,768/65,536N = V /2  
REF  
REF  
2
3
4
5
16-BIT DAC  
CS  
0000 0000 0000 0001 V (1/65,536N  
REF  
SCLK  
DIN  
CLR  
0000 0000 0000 0000 0V  
GND  
8
26412 F02  
Figure ±. 16-Bit Unipolar Output (LTC±641-16) Unipolar VOUT = 0V to VREF  
Table 1b. 14-Bit Unipolar Binary Code Table  
(LTC±641-14)  
Table 1c. 1±-Bit Unipolar Binary Code Table  
(LTC±641-1±)  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
)
)
OUT  
OUT  
MꢀS  
LꢀS  
MꢀS  
LꢀS  
1111 1111 1111 11xx V (16,383/16,384N  
1111 1111 1111 xxxx  
1000 0000 0000 xxxx  
0000 0000 0001 xxxx  
V
REF  
V
REF  
V
REF  
(4,095/4,096N  
REF  
1000 0000 0000 00xx V (8,192/16,384N = V /2  
(2,048/4,096N = V /2  
REF  
REF  
REF  
0000 0000 0000 01xx V (1/16,384N  
(1/4,096N  
REF  
0000 0000 0000 00xx 0V  
0000 0000 0000 xxxx 0V  
26412f  
12  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Bipolar Configuration  
The amplifier circuit provides a gain of +2 from the V  
OUT  
pin, and gain of –1 from V . Tables 2a, 2b and 2c show  
REF  
Figure 3 shows a typical bipolar DAC application for the  
the bipolar offset binary code tables for 16-bit, 14-bit and  
12-bit operation.  
LTC2642. The on-chip bipolar offset/gain resistors, R  
FS  
andR ,areconnectedtoanexternalamplifiertoproduce  
ꢁIV  
a bipolar output swing from –V to V at the R pin.  
REF  
REF  
FS  
V
REF  
2.5V  
5V/3V  
OUT  
LT1019CS8-2.5  
GND  
IN  
5V  
0.1μF  
4.7μF  
0.1μF  
9
1
REF  
V
DD  
R
FB  
8
5V  
0.1μF  
0.1μF  
LTC2642-16  
C1  
10pF  
INV  
OUT  
7
6
BIPOLAR V  
OUT  
1/2 LT1678  
–2.5V TO 2.5V  
V
+
2
3
4
5
16-BIT DAC  
CS  
SCLK  
DIN  
CLR  
–5V  
GND  
10  
26412 F02  
Figure 3. 16-Bit Bipolar Output (LTC±64±-16) VOUT = –VREF to VREF  
Table ±a. 16-Bit Bipolar Offset Binary  
Code Table (LTC±64±-16)  
Table ±b. 14-Bit Bipolar Offset Binary  
Code Table (LTC±64±-14)  
Table ±c. 1±-Bit Bipolar Offset Binary  
Code Table (LTC±64±-1±)  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC LATCH  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
ANALOG OUTPUT  
(V  
)
)
)
OUT  
OUT  
OUT  
MꢀS  
LꢀS  
MꢀS  
LꢀS  
MꢀS  
LꢀS  
1111 1111 1111 1111 V (32,767/32,768N  
1111 1111 1111 11xx V (8,191/8,192N  
1111 1111 1111 xxxx  
1000 0000 0001 xxxx  
V
V
(2,047/2,048N  
(1/2,048N  
REF  
REF  
REF  
1000 0000 0000 0001 V (1/32,768N  
1000 0000 0000 01xx V (1/8,192N  
REF  
REF  
REF  
1000 0000 0000 0000 0V  
1000 0000 0000 00xx 0V  
1000 0000 0000 xxxx 0V  
0111 1111 1111 xxxx –V (1/2048N  
0111 1111 1111 1111 –V (1/32,768N  
0111 1111 1111 11xx –V (1/8,192N  
REF  
REF  
REF  
0000 0000 0000 0000 –V  
0000 0000 0000 00xx –V  
0000 0000 0000 xxxx –V  
REF  
REF  
REF  
26412f  
13  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Unbuffered Operation and V  
Loading  
it is critical to protect the V  
leakage current.  
pin from any sources of  
OUT  
OUT  
The DAC output is available directly at the V  
pin, which  
OUT  
swings from GID to V . Unbuffered operation provides  
REF  
Unbuffered V  
ꢀettling Time  
OUT  
thelowestpossibleoffset,full-scaleandlinearityerrors,the  
fastest settling time and minimum power consumption.  
The settling time at the V  
pin can be closely approxi-  
OUT  
mated by a single-pole response where:  
However, unbuffered operation requires that appropriate  
τ = R • (C + C N  
loading be maintained on the V  
pin. The LTC2641/  
OUT  
OUT  
L
OUT  
LTC2642 V  
can be modeled as an ideal voltage source  
OUT  
(Figure 4N. ꢀettling to 1/2LꢀS at 16-bits requires about  
12 time constants (ln(2 • 65,536NN. The typical settling  
time of 1μs corresponds to a time constant of 83ns, and  
in series with a source resistance of R , typically 6.2k  
OUT  
(Figure 4N. The DAC’s linear output impedance allows  
it to drive medium loads (R > 60kN without degrading  
L
a total (C  
+ C N of about 83ns/6.2k = 13pF. The internal  
OUT  
OUT  
L
ꢁIL or DIL; only the gain error is increased. The gain  
capacitance, C  
is typically 10pF, so an external C of  
L
error (GEN caused by a load resistance, R , (relative to  
L
3pF corresponds to 1μs settling to 1/2LꢀS.  
full scaleN is:  
V
REF  
–1  
GE =  
ROUT  
RL  
REF  
R
LTC2641  
LTC2642  
1+  
V
OUT  
OUT  
V
OUT  
+
0V TO V  
REF  
CODE  
C
OUT  
R
C
I
L
V
L
L
REF  
(
N
)
2
ꢁn 16-bit LꢀSs:  
–65536  
26412 F04  
GND  
GE =  
LSB  
[
]
ROUT  
RL  
Figure 4. VOUT Pin Equiꢁalent Circuit  
1+  
Op Amp ꢀelection  
R
has a low tempco (typically < 50ppm/°CN, and is  
The optimal choice for an external buffer op amp depends  
on whether the DAC is used in the unipolar or bipolar  
mode of operation, and also depends on the accuracy,  
speed, power dissipation and board area requirements of  
the application. The LTC2641/LTC2642’s combination of  
tiny package size, rail-to-rail single supply operation, low  
power dissipation, fast settling and nearly ideal accuracy  
specifications makes it impractical for one op amp type  
to fit every application.  
OUT  
independent of DAC code. The variation of R , part-to-  
OUT  
part, is typically less than 20%.  
Iote on LꢀS units:  
For the following error descriptions, “LꢀS” means 16-bit  
LꢀS and 65,536 is rounded to 66k.  
To convert to 14-bit LꢀSs (LTC2641-14/LTC2642-14N  
divide by 4.  
ꢁn bipolar mode (LTC2642 onlyN, the amplifier operates  
with the internal resistors to provide bipolar offset and  
scaling. ꢁn this case, a precision amplifier operating from  
dual power supplies, such as the the LT1678 provides the  
To convert to 12-bit LꢀSs (LTC2641-12/LTC2642-12N  
divide by 16.  
A constant current, ꢁ , loading V  
will produce an offset  
L
OUT  
of:  
V
output range (Figure 3N.  
REF  
V
= –ꢁ • R  
L OUT  
OFFꢀET  
ꢁn unipolar mode, the output amplifier operates as a unity  
gain voltage follower. For unipolar, single supply applica-  
tions a precision, rail-to-rail input, single supply op amp  
ForV =2.5V, a16-bitLSequals2.5V/65,536, or3V.  
REF  
ꢀince R  
is 6.2k, an ꢁ of 6nA produces an offset of  
OUT  
L
1LꢀS. Therefore, to avoid degrading DAC performance,  
26412f  
14  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
suchastheLTC6078issuitable, iftheapplicationdoesnot  
require linear operation very near to GID, or zero scale  
(Figure 2N. The LTC6078 typically swings to within 1mV  
of GID if it is not required to sink any load current. For an  
LꢀS size of 38μV, 1mV represents 26 missing codes near  
zero scale. Linearity will be degraded over a somewhat  
larger range of codes above GID. ꢁt is also unavoidable  
that settling time and transient performance will degrade  
whenever a single supply amplifier is operated very close  
to GID, or to the positive supply rail.  
voltage temperature coefficient (referenced to 25°CN of  
0.6ꢂV/°C will add 1LꢀS of zero-scale error. Also, ꢁ  
and  
SꢁAꢀ  
the V  
error it causes, will typically show significant  
OFFꢀET  
relative variation over temperature.  
Op amp open-loop gain, A , contributes to DAC gain  
VOL  
error (GEN:  
66k  
AVOL  
GE =  
LSB  
[
]
Op amp input common mode rejection ratio (CMRRN is an  
input-referred error that corresponds to a combination of  
gain error (GEN and ꢁIL, depending on the op amp archi-  
tecture and operating conditions. A conservative estimate  
of total CMRR error is:  
The small LꢀS size of a 16-bit DAC, coupled with the tight  
accuracy specifications on the LTC2641/LTC2642, means  
that the accuracy and input specifications for the external  
op amp are critical for overall DAC performance.  
Op Amp ꢀpecifications and Unipolar DAC Accuracy  
CMRR  
20  
V
CMRR_RANGE  
Most op amp accuracy specifications convert easily to  
DAC accuracy.  
Error = 10  
• 66k LSB  
[
]
VREF  
Op amp input bias current on the noninverting (+N input is  
where V  
is the voltage range that CMRR (in  
CMRR_RAIGE  
equivalent to an ꢁ loading the DAC V  
pin and therefore  
L
OUT  
dSNisspecifiedover.OpampTypicalPerformanceCharac-  
teristics graphs are useful to predict the impact of CMRR  
errors on DAC performance. Typically, a precision op amp  
will exhibit a fairly linear CMRR behavior (corresponding  
to DAC gain error onlyN over most of the common mode  
input range (CMRN, and become nonlinear and produce  
significant errors near the edge of the CMR.  
produces a DAC zero-scale error (ZꢀEN (see Unbuffered  
OperationN:  
ZꢀE = –ꢁ (ꢁI+N • R  
[Volts]  
S
OUT  
ꢁn 16-bit LꢀSs:  
66k  
ZSE = –I IN+ • 6.2k •  
LSB  
[
]
(
)
B
V
REF  
Rail-to-rail input op amps are a special case, because they  
have 2 distinct input stages, one with CMR to GID and  
the other with CMR to V . This results in a “crossover”  
CM input region where operation switches between the  
two input stages.  
Op amp input impedance, R , is equivalent to an R  
ꢁI  
L
+
loading the LTC2641/LTC2642 V  
gain error of:  
pin, and produces a  
OUT  
–66k  
The LTC6078 rail-to-rail input op amp typically exhibits  
remarkably low crossover linearity error, as shown in the  
GE =  
LSB  
[
]
6.2k  
1+  
R
V
vs V Typical Performance Characteristics graphs  
Oꢀ  
CM  
IN  
(see the LTC6078 data sheetN. Crossover occurs at CM  
+
Op amp offset voltage, V , corresponds directly to DAC  
inputs about 1V below V , and an LTC6078 operating as  
Oꢀ  
+
zero code offset error, ZꢀE:  
a unipolar DAC buffer with V = 2.5V and V = 5V will  
REF  
typically add only about 1LꢀS of GE and almost no ꢁIL  
66k  
VREF  
ZSE = VOS  
LSB  
error due to CMRR. Even in a full rail-to-rail application,  
[
]
+
with V = V = 5V, a typical LTC6078 will add only about  
REF  
1LꢀS of ꢁIL at 16-bits.  
Temperature effects also must be considered. Over the  
–40°C to 85°C industrial temperature range, an offset  
26412f  
15  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Op Amp ꢀpecifications and Bipolar DAC Accuracy  
introduce a zero that will partially cancel this pole. C1  
should nominally be <C , typically in the range of 5pF  
P
TheopampcontributionstounipolarDACerrordiscussed  
above apply equally to bipolar operation. The bipolar ap-  
plication circuit gains up the DAC span, and all errors, by  
a factor of 2. ꢀince the LꢀS size also doubles, the errors  
in LꢀSs are identical in unipolar and bipolar modes.  
to 10pF. This will restore the phase margin and improve  
coarse settling time, but a pole-zero doublet will unavoid-  
ably leave a slower settling tail, with a time constant of  
roughly (C + C1N • 28k/2, which will limit 16-bit settling  
P
time to be greater than 2μs.  
One added error in bipolar mode comes from ꢁ (ꢁI N,  
S
Reference and GND Input  
which flows through R to generate an offset. The full  
FS  
bias current offset error becomes:  
TheLTC2641/LTC2642operateswithexternalvoltagerefer-  
+
ences from 2V to V , and linearity, offset and gain errors  
V
= (ꢁ (ꢁI N • R – ꢁ (ꢁI N • R • 2N [Volts]  
OUT  
DD  
OFFꢀET  
S
FS  
S
are virtually unchanged vs V . Full 16-bit performance  
REF  
ꢀo:  
can be maintained if appropriate guidelines are followed  
when selecting and applying the reference. The LTC2641/  
LTC2642’s very low gain error tempco of 0.1ppm/°C, typi-  
cal, corresponds to less than 0.5LꢀS variation over the  
–40°C to 85°C temperature range. ꢁn practice, this means  
thattheoverallgainerrortempcowillbedeterminedalmost  
entirely by the external reference tempco.  
33k  
VOFFSET = I (IN)28k I (IN+)12.4k •  
[LSB]  
VREF  
(
)
B
B
ꢀettling Time with Op Amp Buffer  
Whenusinganexternalopamp,theoutputsettlingtimewill  
stillincludethesinglepolesettlingontheLTC2641/LTC2642  
V
node, with time constant R • (C  
+ C N (see Un-  
TheDACvoltage-switchingmodeinvertedresistorladder  
architectureusedintheLTC2641/LTC2642exhibitsarefer-  
OUT  
OUT  
OUT L  
bufferedV ettlingTimeN.C willincludethebufferinput  
OUT  
L
capacitance and PC board interconnect capacitance.  
ence input resistance (R N that is code dependent (see  
REF  
the Typical Performance curves ꢁ vs ꢁnput CodeN.  
REF  
Theexternalbufferamplifieraddsanotherpoletotheoutput  
response, with a time constant equal to (fbandwidth/2πN.  
ꢁn unipolar mode, the minimum R  
is 14.8k (at code  
REF  
For example, assume that C is maintained at the same  
871Chex, 34,588 decimalN and the the maximum R is  
L
REF  
value as above, so that the V  
node time constant is  
300k at code 0000hex (zero scaleN. The maximum change  
OUT  
83ns = 1ꢂs/12. The output amplifier pole will also have a  
time constant of 83ns if the closed-loop bandwidth equals  
(1/2π • 83nsN = 1.9MHz. The effective time constant of  
two cascaded single-pole sections is approximately the  
in ꢁ for a 2.5V reference is 160μA. ꢀince the maximum  
REF  
occursnearmidscale, theILerrorisaboutonehalfofthe  
change on V , so maintaining an ꢁIL error of <0.1LꢀS  
REF  
requiresareferenceloadregulationof(1.53ppm2/160μAN  
=19[ppm/mA].Thisimpliesareferenceoutputimpedance  
of 48mΩ, including series wiring resistance.  
root square sum of the individual time constants, or √2  
• 83ns = 117ns, and 1/2 LꢀS settling time will be ~12 •  
117ns = 1.4ꢂs. This represents an ideal case, with no slew  
limiting and ideal op amp phase margin. ꢁn practice, it  
will take a considerably faster amplifier, as well as careful  
attention to maintaining good phase margin, to approach  
the unbuffered settling time of 1ꢂs.  
To prevent output glitches from occuring when resistor  
ladder branches switch from GID to V , the reference  
REF  
inputmustmaintainlowimpedanceathigherfrequencies.  
A 0.1ꢂF ceramic capacitor with short leads between REF  
and GID provides high frequency bypassing. A surface  
mount ceramic chip capacitor is preferred because it has  
the lowest inductance. An additional 1ꢂF between REF  
and GID provides low frequency bypassing. The circuit  
will benefit from even higher bypass capacitance, as long  
as the external reference remains stable with the added  
The output settling time for bipolar applications (Figure 3N  
will be somewhat increased due to the feedback resistor  
network R and R (each 28k nominalN. The parasitic  
FS  
ꢁIV  
capacitance,C ,ontheopamp(Ninputnodewillintroduce  
P
a feedback loop pole with a time constant of (C • 28k/2N.  
P
A small feedback capacitor, C1, should be included, to  
capacative loading.  
26412f  
16  
LTC2641/LTC2642  
APPLICATIONS INFORMATION  
Digital Inputs and Interface Logic  
return current paths flow through the “star GID” area. ꢁn  
particular, theresistancefromtheLTC2641GIDpintothe  
All of the digital inputs include ꢀchmitt-trigger buffers  
to accept slow transition interfaces. This means that op-  
tocuplers can interface directly to the LTC2641/LTC2642  
without additional external logic. Digital input hysteresis  
is typically 150mV.  
point where the V input source connects to the ground  
REF  
plane should be as low as possible. Excessive resistance  
here will be multiplied by the code dependent ꢁ current  
REF  
to produce an ꢁIL error similar to the error produced by  
V
REF  
source resistance.  
The digital inputs are compatible with TTL/CMOꢀ-logic  
levels. However, rail-to-rail (CMOꢀN logic swings are  
preferred, because operating the logic inputs away from  
ꢀourcesofgroundreturncurrentintheanalogareainclude  
op amp power supply bypass capacitors and the GID  
connection for single supply amps. A useful technique  
for minimizing errors is to use a separate board layer  
for power ground return connections, and reserve one  
ground plane layer for low current “signal” GID connec-  
tions. The “signal”, or “star” GID plane must connected  
to the “power” GID plane at a single point, which should  
be located near the LTC2641/LTC2642 GID pin.  
the supply rails generates additional ꢁ and GID current,  
DD  
(see Typical Performance Characteristic graph ꢀupply  
Current vs Logic ꢁnput VoltageN.  
Digital feedthrough is only 0.2nV•s typical, but it is always  
preferredtokeepalllogicinputsstaticexceptwhenloading  
a new code into the DAC.  
fseparateanaloganddigitalgroundareasexistitisneces-  
sary to connect them at a single location, which should be  
fairly close to the DAC for digital signal integrity. ꢁn some  
systems, large GID return currents can flow between the  
digital and analog GIDs, especially if different PC boards  
are involved. ꢁn such cases the digital and analog ground  
connection point should not be made right at the “star”  
GID area, so the highly sensitive analog signals are not  
corrupted.fforcedtochoose,alwaysplaceanalogground  
quality ahead of digital signal ground. (A few mV of noise  
on the digital inputs is imperceptible, thanks to the digital  
input hysteresisN  
Board Layout for Precision  
Even a small amount of board leakage can degrade ac-  
curacy. The 6nA leakage current into V  
needed to  
OUT  
generate1LꢀSoffseterrorcorrespondsto833MΩleakage  
resistance from a 5V supply.  
The V  
node is relatively sensitive to capacitive noise  
OUT  
coupling, so minimum trace length, appropriate shielding  
and clean board layout are imperative here.  
Temperature differences at the DAC, op amp or reference  
pins can easily generate tens of microvolts of thermo-  
couple voltages. Analog signal traces should be short,  
close together and away from heat dissipating compo-  
nents. Air currents across the board can also generate  
thermocouples.  
Just by maintaining separate areas on the GID plane  
where analog and digital return currents naturally flow,  
good results are generally achieved. Only after this has  
been done, it is sometimes useful to interrupt the ground  
planewithstrategicallyplacedslots”,topreventthedigital  
ground currents from fringing into the analog portion of  
the plane. When doing this, the gap in the plane should be  
only as long as it needs to be to serve its purpose.  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane.  
Caution: if a GID plane gap is improperly placed, so that  
it interrupts a significant GID return path, or if a signal  
traces crosses over the gap, then adding the gap may  
greatly degrade performance! ꢁn this case, the GID and  
signal return currents are forced to flow the long way  
around the gap, and then are typically channeled directly  
A “star ground” area should be established by attaching  
the LTC2641/LTC2642 GID pin, V  
GID and the DAC  
REF  
V
GID reference terminal to the same area on the GID  
OUT  
plane. Care should be taken to ensure that no large GID  
into the most sensitive area of the analog GID plane.  
26412f  
17  
LTC2641/LTC2642  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698N  
R = 0.115  
0.38 0.10  
TYP  
5
8
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699N  
R = 0.115  
0.38 0.10  
TYP  
6
10  
0.675 0.05  
3.50 0.05  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
2.15 0.05 (2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
2.38 0.10  
(2 SIDES)  
2.38 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
26412f  
18  
LTC2641/LTC2642  
PACKAGE DESCRIPTION  
Mꢀ8 Package  
8-Lead Plastic MꢀOP  
(Reference LTC DWG # 05-08-1660 Rev FN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6  
5
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
0.889 0.127  
(.035 .005)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
SEATING  
PLANE  
0.22 – 0.38  
RECOMMENDED SOLDER PAD LAYOUT  
0.1016 0.0508  
(.009 – .015)  
(.004 .002)  
NOTE:  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Mꢀ Package  
10-Lead Plastic MꢀOP  
(Reference LTC DWG # 05-08-1661 Rev EN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.497 0.076  
(.0196 .003)  
REF  
10 9  
8
7 6  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
0.889 0.127  
(.035 .005)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
0.53 0.152  
(.021 .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
0.50  
(.0197)  
BSC  
0.305 0.038  
(.0120 .0015)  
TYP  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
RECOMMENDED SOLDER PAD LAYOUT  
0.50  
(.0197)  
BSC  
NOTE:  
MSOP (MS) 0307 REV E  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
26412f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2641/LTC2642  
TYPICAL APPLICATION  
Wide Range Current Load ꢀinks 0A to ±.5A  
V
REF  
2.5V  
OUT  
IN  
5V  
5V  
0.1μF  
0.1μF  
4.7μF  
LT1019CS8-2.5  
GND  
10V  
7
1
REF  
V
DD  
0.1μF  
LTC2641-16  
I
SINK  
0A TO 2.5A  
V
6
OUT  
+
2
3
4
5
16-BIT DAC  
CS  
1k  
SCLK  
DIN  
CLR  
IRLZ44  
LTC2054HV  
0.033μF  
GND  
8
10k  
1Ω  
10W  
26412 TA02  
RELATED PARTS  
PART NUMBER  
DEꢀCRIPTION  
COMMENTꢀ  
DACs  
LTC1588/LTC1589 12-/14-/16-Sit ꢀoftꢀpanTM Current Output DACs  
LTC1592  
ꢀoftware Programmable Output Ranges up to 10V  
LTC1595/LTC1596 ꢀerial 16-Sit Current Output DACs  
Low Glitch, 1LꢀS Maximum ꢁIL, DIL  
1LꢀS Max ꢁIL, DIL, 10V Output  
LTC1591/LTC1597 Parallel 14-/16-Sit Current Output DACs  
LTC1599  
LTC1650  
16-Sit Current Output DAC  
16-Sit Voltage Output DAC  
1LꢀS Max ꢁIL, DIL, 10V Output  
2nV•s Glitch ꢁmpulse, 30nV/√Hz Ioise  
ꢀingle DACs, ꢀingle ꢀupply, 0V to 5V Outputs in DFI10  
LTC2621/LTC2611 12-/14-/16-Sit ꢀerial Voltage Output DACs  
LTC2601  
LTC2704-12  
LTC2704-14  
LTC2704-16  
12-/14-/16-Sit Quad Voltage Output DACs  
ꢀoftware Programmable Output Ranges up to 10V, erial ꢁ/O  
Op Amps  
LT®1678  
LTC2054  
LT6010  
Dual Low Ioise Rail-to-Rail Precision Op Amp  
Micropower Zero Drift Op Amp  
3.9nV/√Hz at 1MHz  
3μV Maximum Offset  
150μA 8nV/√Hz Rail-to-Rail Output Precision Op Amp  
Dual CMOꢀ Rail-to-Rail ꢁnput/Output Amplifier  
Micropower  
LTC6078  
References  
LT1019  
54μA per Amp, 16nV/√Hz ꢁnput Ioise Voltage  
Precision Sandgap Reference  
0.005% Max, 5ppm/°C Max  
ꢀoftꢀpan is a trademark of Linear Technology Corporation.  
26412f  
LT 0707 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Slvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408N 432-1900 FAX: (408N 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY