LTC2656CFE-H12#PBF [Linear]

LTC2656 - Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference; Package: TSSOP; Pins: 20; Temperature Range: 0°C to 70°C;
LTC2656CFE-H12#PBF
型号: LTC2656CFE-H12#PBF
厂家: Linear    Linear
描述:

LTC2656 - Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference; Package: TSSOP; Pins: 20; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总26页 (文件大小:1665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2656  
Octal 16-/12-Bit Rail-to-Rail  
DACs with 10ppm/°C  
Max Reference  
FEATURES  
DESCRIPTION  
The LTC®2656 is a family of octal 16-/12-bit rail-to-rail  
DACs with a precision integrated reference. The DACs have  
built-in high performance, rail-to-rail, output buffers and  
are guaranteed monotonic. The LTC2656-L has a full-scale  
output of 2.5V with the integrated 10ppm/°C reference and  
operates from a single 2.7V to 5.5V supply. The LTC2656-H  
has a full-scale output of ±.096V with the integrated refer-  
enceandoperatesfroma±.5Vto5.5Vsupply.EachDACcan  
also operate with an external reference, which sets the DAC  
full-scaleoutputtotwotimestheexternalreferencevoltage.  
n
Precision 10ppm/°C Max Reference  
n
Maximum INL Error: ±±LꢀS at 16 Sits  
n
Guaranteed Monotonic over Temperature  
n
ꢀelectable Internal or External Reference  
n
2.7V to 5.5V ꢀupply Range (LTC2656-L)  
n
Integrated Reference Suffers  
n
ꢀ UltralowꢀCrosstalkꢀBetweenꢀDACs(<1nV•s)  
n
Power-On-Reset to Zero-ꢀcale/Mid-scale  
n
Asynchronous LDAC Update Pin  
n
Tiny 20-Lead ±mm × 5mm QFN and 20-Lead  
Thermally Enhanced TꢀꢀOP Packages  
These DACs communicate via a ꢀPI/MICROWIRE com-  
patible±-wireserialinterfacewhichoperatesatclockrates  
up to 50MHz. The LTC2656 incorporates a power-on reset  
circuit that is controlled by the PORꢀEL pin. If PORꢀEL  
is tied to GND the DACs reset to zero-scale. If PORꢀEL is  
APPLICATIONS  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
tied to V , the DACs reset to mid-scale.  
Instrumentation  
Automatic Test Equipment  
CC  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.ꢀ. Patents, including 53962±5, 6891±33.  
n
Automotive  
BLOCK DIAGRAM  
REFCOMP  
REFIN/OUT  
INTERNAL REFERENCE  
REF  
REF  
GND  
V
CC  
REFLO  
V
DAC A  
REF  
DAC H  
REF  
V
OUTH  
V
OUTG  
V
OUTF  
V
OUTE  
OUTA  
INL vs Code  
4
3
V
OUTB  
DAC G  
REF  
2
DAC B  
REF  
1
0
–1  
–2  
–3  
–4  
V
OUTC  
DAC C  
REF  
DAC F  
REF  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
128  
16384  
32768  
CODE  
49152  
65535  
V
OUTD  
DAC E  
DAC D  
2656 TA01b  
POWER-ON RESET  
PORSEL  
SDO  
CS/LD  
CONTROL LOGIC  
DECODE  
SCK  
SDI  
32-BIT SHIFT REGISTER  
CLR  
LDAC  
2656 TA01a  
2656fa  
1
LTC2656  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
ꢀupply Voltage (V ) ................................... –0.3V to 6V  
Maximum Junction Temperature........................... 150°C  
ꢀtorage Temperature Range.......................65 to 150°C  
Lead Temperature (ꢀoldering, 10 sec)  
CC  
CS/LD, ꢀCK, ꢀDI, LDAC, CLR, REFLO.......... –0.3V to 6V  
V
to V  
................. –0.3V to Min(V + 0.3V, 6V)  
OUTA  
OUTH CC  
REFIN/OUT, REFCOMP ...... –0.3V to Min(V + 0.3V, 6V)  
FE Package ....................................................... 300°C  
CC  
PORꢀEL, ꢀDO................... –0.3V to Min(V + 0.3V, 6V)  
CC  
Operating Temperature Range  
LTC2656C ................................................ 0°C to 70°C  
LTC2656I.............................................. –±0°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
REFLO  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
V
V
CC  
20 19 18 17  
OUTA  
V
OUTB  
V
OUTH  
V
1
2
3
4
5
6
16  
15  
14  
13  
V
V
V
V
OUTB  
OUTH  
OUTG  
OUTF  
OUTE  
REFCOMP  
V
V
V
REFCOMP  
OUTG  
OUTF  
OUTE  
V
V
OUTC  
OUTC  
21  
21  
V
V
OUTD  
OUTD  
REFIN/OUT  
12 PORSEL  
REFIN/OUT  
LDAC  
PORSEL  
CLR  
LDAC  
11 CLR  
CS/LD  
SDO  
7
8
9 10  
SCK 10  
SDI  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
UFD PACKAGE  
20-LEAD (4mm × 5mm) PLASTIC QFN  
T
= 150°C, θ = 38°C/W, θ = 10°C/W  
JA JC  
JMAX  
T
= 150°C, θ = ±3°C/W  
JA  
JMAX  
EXPOꢀED PAD (PIN 21) Iꢀ GND, MUꢀT SE ꢀOLDERED TO PCS  
EXPOꢀED PAD (PIN 21) Iꢀ GND, MUꢀT SE ꢀOLDERED TO PCS  
2656fa  
2
LTC2656  
PRODUCT SELECTOR GUIDE  
LTC2656 B  
C
UFD -L  
16  
#TR PBF  
LEAD FREE DESIGNATOR  
PSF = Lead Free  
TAPE AND REEL  
TR = Tape and Reel  
RESOLUTION  
16 = 16-Sit  
12 = 12-Sit  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = ±.096V  
PACKAGE TYPE  
UFD = 20-Lead (±mm × 5mm) Plastic QFN  
FE = 20-Lead Thermally Enhanced TꢀꢀOP  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–±0°C to 85°C)  
ELECTRICAL GRADE (OPTIONAL)  
S = ±±LꢀS Maximum INL (16-Sit)  
C = ±12LꢀS Maximum INL (16-Sit)  
PRODUCT PART NUMBER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2656fa  
3
LTC2656  
ORDER INFORMATION  
TEMPERATURE  
RANGE  
MAXIMUM  
INL  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
LTC2656SCFE-L16#PSF  
LTC2656SIFE-L16#PSF  
LTC2656SCFE-L16#TRPSF  
LTC2656SIFE-L16#TRPSF  
LTC2656FE-L16  
LTC2656FE-L16  
20-Lead Thermally Enhanced TꢀꢀOP  
20-Lead Thermally Enhanced TꢀꢀOP  
0°C to 70°C  
–±0°C to 85°C  
±±  
±±  
LTC2656SCUFD-L16#PSF LTC2656SCUFD-L16#TRPSF 56L16  
20-Lead (±mm × 5mm) Plastic QFN  
20-Lead (±mm × 5mm) Plastic QFN  
0°C to 70°C  
–±0°C to 85°C  
±±  
±±  
LTC2656SIUFD-L16#PSF  
LTC2656SIUFD-L16#TRPSF  
56L16  
LTC2656SCFE-H16#PSF  
LTC2656SIFE-H16#PSF  
LTC2656SCFE-H16#TRPSF  
LTC2656SIFE-H16#TRPSF  
LTC2656FE-H16 20-Lead Thermally Enhanced TꢀꢀOP  
LTC2656FE-H16 20-Lead Thermally Enhanced TꢀꢀOP  
0°C to 70°C  
–±0°C to 85°C  
±±  
±±  
LTC2656SCUFD-H16#PSF LTC2656SCUFD-H16#TRPSF 56H16  
20-Lead (±mm × 5mm) Plastic QFN  
20-Lead (±mm × 5mm) Plastic QFN  
0°C to 70°C  
–±0°C to 85°C  
±±  
±±  
LTC2656SIUFD-H16#PSF  
LTC2656SIUFD-H16#TRPSF 56H16  
LTC2656CCFE-L16#PSF  
LTC2656CIFE-L16#PSF  
LTC2656CCFE-L16#TRPSF  
LTC2656CIFE-L16#TRPSF  
LTC2656CFE-L16 20-Lead Thermally Enhanced TꢀꢀOP  
LTC2656CFE-L16 20-Lead Thermally Enhanced TꢀꢀOP  
0°C to 70°C  
–±0°C to 85°C  
±12  
±12  
LTC2656CCUFD-L16#PSF LTC2656CCUFD-L16#TRPSF 6CL16  
20-Lead (±mm × 5mm) Plastic QFN  
20-Lead (±mm × 5mm) Plastic QFN  
0°C to 70°C  
–±0°C to 85°C  
±12  
±12  
LTC2656CIUFD-L16#PSF  
LTC2656CIUFD-L16#TRPSF  
6CL16  
LTC2656CFE-L12#PSF  
LTC2656IFE-L12#PSF  
LTC2656CFE-L12#TRPSF  
LTC2656IFE-L12#TRPSF  
LTC2656FE-L12  
LTC2656FE-L12  
20-Lead Thermally Enhanced TꢀꢀOP  
20-Lead Thermally Enhanced TꢀꢀOP  
0°C to 70°C  
–±0°C to 85°C  
±1  
±1  
LTC2656CUFD-L12#PSF  
LTC2656IUFD-L12#PSF  
LTC2656CUFD-L12#TRPSF  
LTC2656IUFD-L12#TRPSF  
56L12  
56L12  
20-Lead (±mm × 5mm) Plastic QFN  
20-Lead (±mm × 5mm) Plastic QFN  
0°C to 70°C  
–±0°C to 85°C  
±1  
±1  
LTC2656CFE-H12#PSF  
LTC2656IFE-H12#PSF  
LTC2656CFE-H12#TRPSF  
LTC2656IFE-H12#TRPSF  
LTC2656FE-H12 20-Lead Thermally Enhanced TꢀꢀOP  
LTC2656FE-H12 20-Lead Thermally Enhanced TꢀꢀOP  
0°C to 70°C  
–±0°C to 85°C  
±1  
±1  
LTC2656CUFD-H12#PSF  
LTC2656IUFD-H12#PSF  
LTC2656CUFD-H12#TRPSF  
LTC2656IUFD-H12#TRPSF  
56H12  
56H12  
20-Lead (±mm × 5mm) Plastic QFN  
20-Lead (±mm × 5mm) Plastic QFN  
0°C to 70°C  
–±0°C to 85°C  
±1  
±1  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the  
shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2656fa  
4
LTC2656  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2656B-L16/LTC2656C-L16/LTC2656-L12 (internal reference = 1.25V)  
LTC2656B-L16/  
LTC2656-L12  
LTC2656C-L16  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
12  
12  
16  
16  
Sits  
Sits  
LꢀS  
Monotonicity  
(Note 3)  
(Note 3)  
DNL  
INL  
Differential Nonlinearity  
±0.1 ±0.5  
±0.5 ±1  
±0.3  
±1  
l
l
Integral Nonlinearity (Note 3)  
LTC2656S-L16: V = 5.5V, V = 2.5V  
LTC2656C-L16: V = 5.5V, V = 2.5V  
±2  
±6  
±±  
±12  
LꢀS  
LꢀS  
CC  
CC  
REF  
REF  
l
Load Regulation  
V
= 5V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
0.0± 0.125  
0.06 0.25  
0.6  
2
±
LꢀS/mA  
CC  
–15mA ≤ I  
≤ 15mA  
OUT  
l
V
CC  
= 3V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
1
LꢀS/mA  
–7.5mA ≤ I  
≤ 7.5mA  
OUT  
l
l
ZꢀE  
Zero-ꢀcale Error  
Offset Error  
1
±1  
2
3
1
±1  
2
3
mV  
mV  
V
V
= 1.25V (Note ±)  
REF  
±2  
±2  
Oꢀ  
V
Temperature Coefficient  
µV/°C  
ꢁFꢀR  
ppm/°C  
Oꢀ  
l
GE  
Gain Error  
±0.02 ±0.1  
1
±0.02 ±0.1  
1
Gain Temperature Coefficient  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to 2.5  
0ꢀtoꢀ2ꢀ•ꢀV  
MAX  
UNITS  
V
DAC Output ꢀpan  
Internal Reference  
External Reference = V  
V
V
OUT  
EXTREF  
EXTREF  
PꢀR  
Power ꢀupply Rejection  
DC Output Impedance  
V
V
±10ꢁ  
–80  
dS  
Ω
CC  
l
l
R
OUT  
= 5V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
≤ 15mA  
0.0±  
0.15  
0.15  
CC  
–15mA ≤ I  
OUT  
V
CC  
= 3V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
0.0±  
Ω
–7.5mA ≤ I  
≤ 7.5mA  
OUT  
DC Crosstalk (Note 5)  
Due to Full-ꢀcale Output Change  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±1.5  
±2  
±1  
µV  
µV/mA  
µV  
I
ꢀhort-Circuit Output Current  
(Note 6)  
V
= 5.5V, V  
= 2.75V  
EXTREF  
ꢀC  
CC  
l
l
Code: Zero-ꢀcale, Forcing Output to V  
20  
20  
65  
65  
mA  
mA  
CC  
Code: Full-ꢀcale, Forcing Output to GND  
V
= 2.7V, V = 1.35V  
CC  
EXTREF  
l
l
Code: Zero-ꢀcale, Forcing Output to V  
10  
10  
±0  
±0  
mA  
mA  
CC  
Code: Full-ꢀcale, Forcing Output to GND  
Reference  
Reference Output Voltage  
1.2±8  
1.25  
1.252  
±10  
V
Reference Temperature Coefficient C-Grade (Note 7)  
I-Grade (Note 7)  
±2  
±2  
ppm/°C  
ppm/°C  
Reference Line Regulation  
V
V
±10ꢁ  
–80  
3
dS  
mA  
CC  
CC  
l
l
Reference ꢀhort-Circuit Current  
= 5.5V, Forcing Output to GND  
5
REFCOMP Pin ꢀhort-Circuit Current V = 5.5V, Forcing Output to GND  
60  
±0  
200  
µA  
CC  
Reference Load Regulation  
V
= 3V ±10ꢁ or 5V ±10ꢁ, I  
= 100µA  
mV/mA  
CC  
OUT  
ꢀourcing  
Reference Output Voltage Noise  
Density  
C
= C  
= 0.1µF at f = 1kHz  
REFIN/OUT  
30  
nV/√Hz  
REFCOMP  
2656fa  
5
LTC2656  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2656B-L16/LTC2656C-L16/LTC2656-L12 (internal reference = 1.25V)  
SYMBOL PARAMETER  
Reference Input Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
External Reference Mode (Note 13)  
0.5  
V
/2  
CC  
Reference Input Current  
0.001  
±0  
1
µA  
Reference Input Capacitance  
(Note 9)  
pF  
Power Supply  
l
V
Positive ꢀupply Voltage  
ꢀupply Current (Note 8)  
For ꢀpecified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
V
V
V
= 5V, Internal Reference On  
= 5V, Internal Reference Off  
= 3V, Internal Reference On  
= 3V, Internal Reference Off  
3.1  
2.7  
3.0  
2.6  
±.25  
3.7  
3.8  
3.2  
mA  
mA  
mA  
mA  
CC  
CC  
CC  
CC  
l
I
ꢀupply Current in ꢀhutdown Mode  
(Note 8)  
V
= 5V  
3
µA  
ꢀHDN  
CC  
Digital I/O  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 3.6V to 5.5V  
= 2.7V to 3.6V  
2.±  
2.0  
V
V
IH  
CC  
CC  
l
l
V
V
V
= ±.5V to 5.5V  
= 2.7V to ±.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
l
l
l
l
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
Load Current = –100µA  
Load Current = 100µA  
V
–0.±  
CC  
V
V
OH  
OL  
0.±  
±1  
8
I
V
= GND to V  
CC  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance (Note 9)  
IN  
AC Performance  
t
ꢀettling Time (Note 10)  
±0.02±ꢁ (±1LꢀS at 12 Sits)  
±0.0015ꢁ (±1LꢀS at 16 Sits)  
±.2  
8.9  
µs  
µs  
ꢀettling Time for 1LꢀS ꢀtep  
±0.02±ꢁ (±1LꢀS at 12 Sits)  
±0.0015ꢁ (±1LꢀS at 16 Sits)  
2.2  
±.9  
µs  
µs  
Voltage Output ꢀlew Rate  
Capacitive Load Driving  
1.8  
1000  
3
V/µs  
pF  
Glitch Impulse (Note 11)  
DAC-to-DAC Crosstalk (Note 12)  
At Mid-ꢀcale Transition, V = 3V  
nV•s  
nV•s  
CC  
Due to Full-ꢀcale Output Change,  
2
C
= C  
= No Load  
REFOUT  
REFCOMP  
Multiplying Sandwidth  
150  
kHz  
e
n
Output Voltage Noise Density  
At f = 1kHz  
At f = 10kHz  
85  
80  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, Internal Reference  
8
600  
µV  
µV  
P-P  
P-P  
2656fa  
6
LTC2656  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2656B-H16/LTC2656-H12 (internal reference = 2.048V)  
LTC2656-H12  
LTC2656B-H16  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
l
12  
12  
16  
16  
Sits  
Sits  
Monotonicity  
(Note 3)  
(Note 3)  
DNL  
INL  
Differential Nonlinearity  
±0.1 ±0.5  
±0.5 ±1  
0.0± 0.125  
±0.3  
±2  
±1  
±±  
2
LꢀS  
Integral Nonlinearity (Note 3)  
Load Regulation  
V
= 5.5V, V = 2.5V  
LꢀS  
CC  
REF  
V
= 5V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
0.6  
LꢀS/mA  
CC  
–15mA ≤ I  
≤ 15mA  
OUT  
l
l
ZꢀE  
Zero-ꢀcale Error  
Offset Error  
1
±1  
2
3
1
±1  
2
3
mV  
mV  
V
V
= 2.0±8V (Note ±)  
REF  
±2  
±2  
Oꢀ  
V
Temperature Coefficient  
µV/°C  
ꢁFꢀR  
ppm/°C  
Oꢀ  
l
GE  
Gain Error  
±0.02 ±0.1  
1
±0.02 ±0.1  
1
Gain Temperature Coefficient  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to ±.096  
0ꢀtoꢀ2ꢀ•ꢀV  
MAX  
UNITS  
V
DAC Output ꢀpan  
Internal Reference  
External Reference = V  
V
V
OUT  
EXTREF  
EXTREF  
PꢀR  
Power ꢀupply Rejection  
DC Output Impedance  
V
V
±10ꢁ  
–80  
dS  
Ω
CC  
l
R
OUT  
= 5V ±10ꢁ, Internal Reference, Mid-ꢀcale,  
≤ 15mA  
0.0±  
0.15  
CC  
–15mA ≤ I  
OUT  
DC Crosstalk (Note 5)  
Due to Full-ꢀcale Output Change  
Due to Load Current Change  
Due to Powering Down (per Channel)  
±1.5  
±2  
±1  
µV  
µV/mA  
µV  
I
ꢀhort-Circuit Output Current  
(Note 6)  
V
= 5.5V, V  
= 2.75V  
EXTREF  
ꢀC  
CC  
l
l
Code: Zero-ꢀcale, Forcing Output to V  
20  
20  
65  
65  
mA  
mA  
CC  
Code: Full-ꢀcale, Forcing Output to GND  
Reference  
Reference Output Voltage  
2.0±±  
2.0±8  
2.052  
±10  
V
Reference Temperature Coefficient C-Grade (Note 7)  
I-Grade (Note 7)  
±2  
±2  
ppm/°C  
ppm/°C  
Reference Line Regulation  
V
V
±10ꢁ  
–80  
3
dS  
mA  
CC  
CC  
l
l
Reference ꢀhort-Circuit Current  
= 5.5V, Forcing Output to GND  
5
REFCOMP Pin ꢀhort-Circuit Current V = 5.5V, Forcing Output to GND  
60  
±0  
35  
200  
µA  
CC  
Reference Load Regulation  
V
C
= 5V ±10ꢁ, I  
= 100µA ꢀourcing  
mV/mA  
nV/√Hz  
CC  
OUT  
Reference Output Voltage Noise  
Density  
= C  
= 0.1µF at f = 1kHz  
REFIN/OUT  
REFCOMP  
l
l
l
Reference Input Range  
Reference Input Current  
External Reference Mode (Note 13)  
0.5  
V
/2  
V
µA  
pF  
CC  
0.001  
±0  
1
Reference Input Capacitance  
(Note 9)  
2656fa  
7
LTC2656  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2656B-H16/LTC2656-H12 (internal reference = 2.048V)  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Positive ꢀupply Voltage  
ꢀupply Current (Note 8)  
For ꢀpecified Performance  
±.5  
5.5  
V
CC  
l
l
I
V
V
= 5V, Internal Reference On  
= 5V, Internal Reference Off  
3.3  
3.0  
±.25  
3.7  
mA  
mA  
CC  
CC  
CC  
l
I
ꢀupply Current in ꢀhutdown Mode  
(Note 8)  
V
= 5V  
3
µA  
ꢀHDN  
CC  
Digital I/O  
l
l
l
l
l
l
V
V
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
V
V
= ±.5V to 5.5V  
= ±.5V to 5.5V  
2.±  
V
V
IH  
CC  
CC  
0.8  
IL  
Load Current = –100µA  
Load Current = 100µA  
V
–0.±  
V
OH  
OL  
CC  
0.±  
±1  
8
V
I
V
= GND to V  
CC  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance (Note 9)  
IN  
AC Performance  
t
ꢀettling Time (Note 10)  
±0.02±ꢁ (±1LꢀS at 12 Sits)  
±0.0015ꢁ (±1LꢀS at 16 Sits)  
±.6  
7.9  
µs  
µs  
ꢀettling Time for 1LꢀS ꢀtep  
±0.02±ꢁ (±1LꢀS at 12 Sits)  
±0.0015ꢁ (±1LꢀS at 16 Sits)  
2.0  
3.8  
µs  
µs  
Voltage Output ꢀlew Rate  
Capacitive Load Driving  
1.8  
1000  
6
V/µs  
pF  
Glitch Impulse (Note 11)  
DAC-to-DAC Crosstalk (Note 12)  
At Mid-ꢀcale Transition, V = 5V  
nV•s  
nV•s  
CC  
Due to Full-ꢀcale Output Change,  
3
C
= C  
= No Load  
REFOUT  
REFCOMP  
Multiplying Sandwidth  
150  
kHz  
e
n
Output Voltage Noise Density  
At f = 1kHz  
At f = 10kHz  
85  
80  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, Internal Reference  
12  
650  
µV  
µV  
P-P  
P-P  
2656fa  
8
LTC2656  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. LTC2656B-L16/LTC2656C-L16/LTC2656-L12/LTC2656B-H16/LTC2656-H12  
(see Figure 1).  
SYMBOL PARAMETER  
= 2.7V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
ꢀDI Valid to ꢀCK ꢀetup  
±
±
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
ꢀDI Valid to ꢀCK Hold  
2
3
±
5
6
7
8
ꢀCK High Time  
9
ꢀCK Low Time  
9
CS/LD Pulse Width  
10  
7
LꢀS ꢀCK High to CS/LD High  
CS/LD Low to ꢀCK High  
ꢀDO Propagation Delay from ꢀCK Falling Edge  
7
C
V
V
= 10pF  
LOAD  
l
l
= ±.5V to 5.5V  
= 2.7V to ±.5V  
20  
±5  
ns  
ns  
CC  
CC  
l
l
l
l
l
t
t
t
t
CLR Pulse Width  
20  
7
ns  
ns  
9
CS/LD High to ꢀCK Positive Edge  
LDAC Pulse Width  
10  
12  
13  
15  
200  
ns  
CS/LD High to LDAC High or Low Transition  
ꢀCK Frequency  
ns  
50ꢁ Duty Cycle  
50  
MHz  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 8: Digital inputs at 0V or V  
.
CC  
Note 9: Guaranteed by design and not production tested.  
Note 10: Internal reference mode. DAC is stepped 1/± scale to 3/± scale  
and 3/± scale to 1/± scale. Load is 2kΩ in parallel with 200pF to GND.  
Note 2: All voltages are with respect to GND.  
Note 3: Linearity and monotonicity are defined from code kL to code  
N
2 – 1, where N is the resolution and kL is the lower end code for which  
Note 11: V = 5V, internal reference mode. DAC is stepped ±1LꢀS  
CC  
no output limiting occurs. For V = 2.5V and N = 16, kL = 128 and  
REF  
between half scale and half scale – 1LꢀS. Load is 2k in parallel with 200pF  
to GND.  
Note 12: DAC-to-DAC crosstalk is the glitch that appears at the output  
linearity is defined from code 128 to code 65535. For V = 2.5V and  
REF  
N = 12, kL = 8 and linearity is defined from code 8 to code ±,095.  
Note 4: Inferred from measurement at code 128 (LTC2656-16) or code 8  
(LTC2656-12).  
of one DAC due to a full-scale change at the output of another DAC. It is  
measured with V = 5V and using internal reference, with the measured  
CC  
Note 5: DC crosstalk is measured with V = 5V and using internal  
CC  
DAC at mid-scale.  
reference with the measured DAC at mid-scale.  
Note 13: Gain error specification may be degraded for reference input  
voltages less than 1V. ee Gain Error vs Reference Input Voltage curve in  
the Typical Performance Characteristics section.  
Note 6: This IC includes current limiting that is intended to protect the  
device during momentary overload conditions. Junction temperature can  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
2656fa  
9
LTC2656  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C unless otherwise noted.  
LTC2656-L16  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.5  
4
3
4
3
V
= 3V  
V
= 3V  
CC  
CC  
2
2
INL (POS)  
INL (NEG)  
1
1
0
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
–0.5  
–1.0  
32768  
CODE  
49152  
30 50  
32768  
CODE  
128  
65535  
–50 –30  
128  
16384  
49152  
65535  
16384  
–10 10  
70 90  
110 130  
TEMPERATURE (°C)  
2656 G02  
2656 G03  
2656 G01  
DNL vs Temperature  
REFOUT Voltage vs Temperature  
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
1.0  
0.5  
V
= 3V  
V
= 3V  
CC  
CC  
DNL (POS)  
DNL (NEG)  
0
–0.5  
–1.0  
30 50  
–50 –30 –10 10  
70 90 110 130  
–50 –30 –10 10 30 50 70 90 110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2656 G04  
2656 G05  
Settling to 1LSB Rising  
Settling to 1LSB Falling  
3/4 SCALE TO 1/4  
SCALE STEP  
CS/LD  
3V/DIV  
V
= 3V, V = 2.5V  
CC  
FS  
R
L
= 2k, C = 200pF  
L
V
OUT  
AVERAGE OF 2048  
EVENTS  
100µV/DIV  
8.7µs  
8.9µs  
V
OUT  
100µV/DIV  
1/4 SCALE TO 3/4  
SCALE STEP  
V
= 3V, V = 2.5V  
CC  
L
FS  
CS/LD  
3V/DIV  
R
= 2k, C = 200pF  
L
AVERAGE OF 2048  
EVENTS  
2µs/DIV  
2µs/DIV  
2656 G06  
2656 G07  
2656fa  
10  
LTC2656  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C unless otherwise noted.  
LTC2656-H16  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.5  
4
3
4
3
V
= 5V  
V
= 5V  
V
CC  
= 5V  
CC  
CC  
2
2
INL (POS)  
INL (NEG)  
1
1
0
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
–0.5  
–1.0  
32768  
CODE  
49152  
–50 –30  
30 50  
32768  
CODE  
128  
65535  
–10 10  
70 90  
110 130  
128  
16384  
49152  
65535  
16384  
TEMPERATURE (°C)  
2656 G09  
2656 G10  
2656 G08  
DNL vs Temperature  
REFOUT Voltage vs Temperature  
1.0  
0.5  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
2.042  
V
= 5V  
V
= 5V  
CC  
CC  
DNL (POS)  
DNL (NEG)  
0
–0.5  
–1.0  
30 50  
–50 –30 –10 10  
70 90 110 130  
–50 –30 –10 10 30 50 70 90 110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2656 G11  
2656 G12  
Settling to 1LSB Rising  
Settling to 1LSB Falling  
CS/LD  
5V/DIV  
6.1µs  
V
OUT  
250µV/DIV  
3/4 SCALE TO 1/4  
SCALE STEP  
7.9µs  
V
= 5V, V = 4.096V  
V
CC  
FS  
OUT  
R
L
= 2k, C = 200pF  
L
250µV/DIV  
AVERAGE OF 2048  
EVENTS  
1/4 SCALE TO  
R = 2k, C = 200pF  
L L  
CS/LD  
5V/DIV  
3/4 SCALE STEP AVERAGE OF 2048  
V
CC  
V
FS  
= 5V,  
= 4.096V  
EVENTS  
2µs/DIV  
2µs/DIV  
2656 G13  
2656 G14  
2656fa  
11  
LTC2656  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C unless otherwise noted.  
LTC2656-12  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB (12 Bit) Rising  
1.0  
0.5  
1.0  
0.5  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 2.048V  
= 2.048V  
CS/LD  
5V/DIV  
4.6µs  
0
0
V
OUT  
1mV/DIV  
–0.5  
–1.0  
–0.5  
–1.0  
1/4 SCALE TO  
R = 2k, C = 200pF  
L L  
3/4 SCALE STEP AVERAGE OF 2048  
V
CC  
V
FS  
= 5V,  
= 4.095V  
EVENTS  
2048  
3072  
2048  
3072  
2µs/DIV  
8
4095  
8
4095  
1024  
1024  
2656 G17  
CODE  
CODE  
2656 G15  
2656 G16  
LTC2656-16  
Headroom at Rails  
vs Output Current  
Load Regulation  
Current Limiting  
10  
8
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.20  
0.15  
0.10  
0.05  
0
V
CC  
V
CC  
= 5V (LTC2656-H)  
= 3V (LTC2656-L)  
V
CC  
V
CC  
= 5V (LTC2656-H)  
= 3V (LTC2656-L)  
5V SOURCING  
6
INTERNAL REF.  
CODE = MID-SCALE  
INTERNAL REF.  
CODE = MID-SCALE  
3V SOURCING  
(LTC2656-L)  
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
5V  
SINKING  
3V SINKING  
(LTC2656-L)  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
(mA)  
0
1
2
3
4
I
5
6
7
8
9
10  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
(mA)  
I
(mA)  
I
OUT  
OUT  
OUT  
2656 G18  
2656 G20  
2656 G19  
Offset Error vs Temperature  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
3.0  
2.5  
1.00  
0.75  
0.50  
0.25  
0
64  
48  
32  
2.0  
16  
1.5  
1.0  
0
–0.25  
–0.50  
–0.75  
–1.00  
–16  
–32  
–48  
–64  
0.5  
0
30 50  
–50 –30  
30 50  
TEMPERATURE (°C)  
–50 –30 –10 10  
70 90 110 130  
–10 10  
70 90  
110 130  
–50 –30 –10 10 30 50 70 90 110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3656 G21  
2656 G23  
2656 G22  
2656fa  
12  
LTC2656  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C unless otherwise noted.  
LTC2656-16  
Offset Error vs Reference Input  
Gain Error vs Reference Input  
ICC Shutdown vs VCC  
2.0  
64  
48  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
OFFSET ERROR OF 8 CHANNELS  
GAIN ERROR OF 8 CHANNELS  
1.5  
1.0  
32  
0.5  
16  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–16  
–32  
–48  
–64  
0
1.5  
REFERENCE VOLTAGE (V)  
1.5  
REFERENCE VOLTAGE (V)  
0.5  
1.0  
2.0  
2.5  
0.5  
1.0  
2.0  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
5.5  
4.5  
5.0  
V
CC  
2656 G24  
2656 G25  
2656 G26  
Supply Current vs Logic Voltage  
Hardware CLR to Mid-Scale  
Hardware CLR to Zero-Scale  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
V
V
= 5V  
REF  
CODE = FULL-SCALE  
CC  
SWEEP SCK, SDI, CS/LD  
= 2.048V  
BETWEEN 0V AND V  
CC  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
V
= 5V  
CC  
V
V
= 5V  
REF  
CODE = FULL-SCALE  
CC  
(LTC2656-H)  
= 2.048V  
CLR  
5V/DIV  
CLR  
5V/DIV  
V
= 3V  
CC  
(LTC2656-L)  
0
1
2
3
4
5
1µs/DIV  
1µs/DIV  
2656 G29  
2656 G28  
LOGIC VOLTAGE (V)  
2656 G27  
Mid-Scale Glitch Impulse  
Multiplying Bandwidth  
Large-Signal Response  
8
6
4
2
CS/LD  
5V/DIV  
0
V
OUT  
–2  
V
V
= 5V, 6nV•s TYP  
CC  
V
1V/DIV  
OUT  
(LTC2656-H16)  
5mV/DIV  
–4  
–6  
= 3V, 3nV•s TYP  
CC  
V
V
V
= 5V  
REF(DC)  
REF(AC)  
CC  
–8  
V
(LTC2656-L16)  
OUT  
= 2V  
V
V
= 5V  
REF  
ZERO-SCALE TO FULL-SCALE  
CC  
5mV/DIV  
= 0.2V  
= 2.048V  
–10  
–12  
P-P  
CODE = FULL-SCALE  
2µs/DIV  
1k  
10k  
100k  
1M  
2.5µs/DIV  
2656 G32  
2656 G31  
FREQUENCY (Hz)  
2656 G30  
2656fa  
13  
LTC2656  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C unless otherwise noted.  
LTC2656  
DAC-to-DAC Crosstalk (Dynamic)  
Power-On Reset Glitch  
Power-On Reset to Mid-Scale  
LTC2656-H  
ONE DAC  
SWITCH 0-FS  
2V/DIV  
V
CC  
V
CC  
2V/DIV  
2V/DIV  
LTC2656-H16, V = 5V, 3nV•s TYP  
CC  
C
= C  
= NO LOAD  
REFOUT  
REFCOMP  
V
OUT  
2mV/DIV  
V
OUT  
ZERO-SCALE  
LTC2656-H16, V = 5V, <1nV•s TYP  
CC  
V
10mV/DIV  
OUT  
C
= C  
= 0.1µF  
REFOUT  
REFCOMP  
1V/DIV  
V
OUT  
2mV/DIV  
2µs/DIV  
200µs/DIV  
250µs/DIV  
2656 G32  
2656 G34  
2656 G35  
Reference 0.1Hz to 10Hz  
Voltage Noise  
Noise Voltage vs Frequency  
0.1Hz to 10Hz Voltage Noise  
1200  
1000  
800  
600  
400  
200  
0
V
= 5V  
V
C
= 1.25V  
= C  
CC  
V
= 5V, V = 2.5V  
REFOUT  
REFCOMP  
CC FS  
CODE = MID-SCALE  
INTERNAL REF  
= 0.1µF  
REFOUT  
CODE = MID-SCALE  
INTERNAL REF  
C
= C  
= 0.1µF  
REFCOMP  
REFOUT  
C
= C  
= 0.1µF  
REFCOMP  
REFOUT  
2µV/DIV  
5µV/DIV  
LTC2656-H  
LTC2656-L  
10  
1
100  
1k  
10k 100k  
1M  
1 SEC/DIV  
1 SEC/DIV  
2656 G38  
2656 G37  
FREQUENCY (Hz)  
2656 G36  
2656fa  
14  
LTC2656  
PIN FUNCTIONS (TSSOP/QFN)  
REFLO (Pin 1/Pin 19): Reference Low Pin. The voltage  
at this pin sets the zero-scale voltage of all DACs. REFLO  
should be tied to GND.  
SCK (Pin 10/Pin 8): ꢀerial Interface Clock Input. CMOꢀ  
and TTL compatible.  
SDI (Pin 11/Pin 9): ꢀerial Interface Data Input. Data is  
applied to ꢀDI for transfer to the device at the rising edge  
of ꢀCK (Pin 10). The LTC2656 accepts input word lengths  
of either 2± or 32 bits.  
V
to V  
(Pins 2, 3, 5, 6, 15, 16, 17, 18/Pins  
OUTA  
OUTH  
20, 1, 3, 4, 13, 14, 15, 16): DAC Analog Voltage Out-  
puts. The output range is 0V to 2 times the voltage at the  
REFIN/OUT pin.  
SDO (Pin 12/Pin 10): ꢀerial Interface Data Output. This  
pin is used for daisy-chain operation. The serial output  
of the shift register appears at the ꢀDO pin. The data  
transferred to the device via the ꢀDI pin is delayed 32  
ꢀCK rising edges before being output at the next falling  
edge. This pin is continuously driven and does not go high  
impedance when CS/LD is taken active high.  
REFCOMP (Pin 4/Pin 2): Internal Reference Compensa-  
tion Pin. For low noise and reference stability, tie a 0.1µF  
capacitor to GND. Connect REFCOMP to GND to allow the  
use of external reference at start-up.  
REFIN/OUT (Pin 7/Pin 5): This pin acts as the internal  
reference output in internal reference mode and acts as  
the reference input pin in external reference mode. When  
acting as an output, the nominal voltage at this pin is  
1.25V for L options and 2.0±8V for H options. For low  
noise and reference stability tie a capacitor from this pin  
CLR (Pin 13/Pin 11): Asynchronous Clear Input. A logic  
low at this level-triggered input clears all registers and  
causestheDACvoltageoutputstodropto0VifthePORꢀEL  
pin is tied to GND. If the PORꢀEL pin is tied to V , a logic  
CC  
to GND. This capacitor value must be ≤C  
, where  
low at CLR sets all registers to mid-scale code and causes  
REFCOMP  
C
is the capacitance tied to the REFCOMP pin. In  
the DAC voltage outputs to go to mid-scale.  
REFCOMP  
external reference mode, the allowable reference input  
PORSEL (Pin 14/Pin 12): Power-On Reset ꢀelect Pin. If  
voltage range is 0.5V to V /2.  
CC  
tied to GND, the DAC resets to zero-scale at power-up. If  
LDAC (Pin 8/Pin 6): Asynchronous DAC Update Pin. If  
CS/LDishigh,afallingedgeonLDACimmediatelyupdates  
the DAC register with the contents of the input register  
(similar to a software update). If CS/LD is low when LDAC  
goes low, the DAC register is updated after CS/LD returns  
high. A low on the LDAC pin powers up the DAC outputs.  
All the software power-down commands are ignored if  
LDAC is low when CS/LD goes high.  
tied to V , the DAC resets to mid-scale at power-up.  
CC  
V
(Pin 19/Pin 17): ꢀupply Voltage Input. For -L op-  
CC  
tions, 2.7V ≤ V ≤ 5.5V and for -H options, ±.5V ≤ V  
CC  
CC  
≤ 5.5V.  
GND (Pin 20/Pin 18): Ground.  
ExposedPad(Pin21/Pin21):Ground. Mustbesoldered  
to PCS Ground.  
CS/LD (Pin 9/Pin 7): ꢀerial Interface Chip ꢀelect/Load  
Input. When CS/LD is low, ꢀCK is enabled for shifting  
data on ꢀDI into the register. When CS/LD is taken high,  
ꢀCK is disabled and the specified command (see Table 1)  
is executed.  
2656fa  
15  
LTC2656  
BLOCK DIAGRAM  
REFCOMP  
GND  
REFIN/OUT  
INTERNAL REFERENCE  
REF  
REF  
V
CC  
REFLO  
V
DAC A  
REF  
DAC H  
REF  
V
OUTH  
V
OUTG  
V
OUTF  
V
OUTE  
OUTA  
V
OUTB  
DAC G  
REF  
DAC B  
REF  
V
OUTC  
DAC C  
REF  
DAC F  
REF  
V
OUTD  
DAC E  
DAC D  
POWER-ON RESET  
PORSEL  
SDO  
CS/LD  
CONTROL LOGIC  
DECODE  
SCK  
SDI  
32-BIT SHIFT REGISTER  
CLR  
LDAC  
2656 BD  
2656fa  
16  
LTC2656  
TIMING DIAGRAMS  
t
1
t
t
t
t
4
6
2
3
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
t
8
SDO  
LDAC  
t
t
13  
12  
2656 F01a  
Figure 1a  
CS/LD  
t
13  
LDAC  
2656 F01  
Figure 1b  
2656fa  
17  
LTC2656  
OPERATION  
The LTC2656 is a family of octal voltage output DACs in  
20-lead ±mm × 5mm QFN and in 20-lead thermally en-  
hancedTꢀꢀOPpackages.EachDACcanoperaterail-to-rail  
in external reference mode, or with its full-scale voltage  
set by an integrated reference. Four combinations of ac-  
curacy (16-bit and 12-bit), and full-scale voltage (2.5V or  
±.096V) are available. The LTC2656 is controlled using a  
±-wire ꢀPI/MICROWIRE compatible interface.  
supply turn-on and turn-off sequences, when the voltage  
at V is in transition.  
CC  
Transfer Function  
The digital-to-analog transfer function is:  
k
2
VOUT(IDEAL)  
=
2 V – V  
+ V  
(
)
REF  
REFLO REFLO  
N   
Power-On Reset  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution of the DAC, and V is the volt-  
REF  
TheLTC2656-L/LTC2656-Hcleartheoutputtozero-scaleif  
thePORꢀELpinistiedtoGND,whenpowerisfirstapplied,  
makingsysteminitializationconsistentandrepeatable.For  
some applications, downstream circuits are active during  
DAC power-up and may be sensitive to nonzero outputs  
from the DAC during this time. The LTC2656 contains  
circuitrytoreducethepower-onglitch.Theanalogoutputs  
typicallyriselessthan10mVabovezero-scaleduringpower  
on if the power supply is ramped to 5V in 1ms or more.  
In general, the glitch amplitude decreases as the power  
supply ramp time is increased. ꢀee Power-On Reset Glitch  
in the Typical Performance Characteristics.  
age at the REFIN/OUT pin. The resulting DAC output span  
isꢀ0Vꢀtoꢀ2ꢀ•ꢀV , as it is necessary to tie REFLO to GND.  
REF  
V
is nominally 1.25V for LTC2656-L and 2.0±8V for  
LTC2656-H, in internal reference mode.  
REF  
Table 1. Command and Address Codes  
COMMAND*  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All  
Write to and Update (Power Up) n  
Power Down n  
Power Down Chip (All DACs and Reference)  
ꢀelect Internal Reference (Power-Up Reference)  
Alternatively, if the PORꢀEL pin is tied to V , the  
CC  
LTC2656-L/ LTC2656-H sets the output to mid-scale when  
ꢀelect External Reference (Power-Down  
Reference)  
power is first applied.  
1
1
1
1
No Operation  
Power Supply Sequencing and Start-Up  
ADDRESS (n)*  
A3 A2 A1 A0  
For the LTC2656 family of parts, the internal reference is  
powered up at start-up by default. If an external reference  
is to be used, the REFCOMP pin must be hardwired to  
GND. Having REFCOMP hardwired to GND at power up  
will cause the REFIN/OUT pin to become high impedance  
and will allow for the use of an external reference at start-  
up. However in this configuration, the internal reference  
will still be on even though it is disconnected from the  
REFIN/OUT pin and will draw supply current. In order  
to use external reference after power-up, the command  
ꢀelect External Reference (0111b) should be used to turn  
the internal reference off (see Table 1.)  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC S  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
*Command and address codes not shown are reserved and should not  
be used.  
Serial Interface  
The voltage at REFIN/OUT should be kept within the range  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, powering on the ꢀDI  
and ꢀCK buffers and enabling the input shift register. Data  
(ꢀDI input) is transferred at the next 2± rising ꢀCK edges.  
2656fa  
– 0.3V ≤ REFIN/OUT ≤ V + 0.3V if the external reference  
CC  
is to be used (see Absolute Maximum Ratings). Particular  
care should be taken to observe these limits during power  
18  
LTC2656  
OPERATION  
The ±-bit command, C3-C0, is loaded first; followed by the  
±-bitDACaddress, A3-A0;andfinallythe16-bitdataword.  
For the LTC2656-16 the data word comprises the 16-bit  
input code, ordered MꢀS-to-LꢀS. For the LTC2656-12 the  
data word comprises the 12-bit input code, ordered MꢀS-  
to-LꢀS, followed by four don’t care bits. Data can only be  
transferred to the LTC2656 when the CS/LD signal is low.  
TherisingedgeofCS/LDendsthedatatransferandcauses  
thedevicetocarryouttheactionspecifiedinthe2±-bitinput  
word. The complete sequence is shown in Figure 2a.  
are thus connected in series, effectively forming a single  
input shift register which extends through the entire  
chain. Secause of this, the devices can be addressed and  
controlledindividuallybysimplyconcatenatingtheirinput  
words; the first instruction addresses the last device in  
the chain and so forth. The ꢀCK and CS/LD signals are  
common to all devices in the series.  
In use, CS/LD is first taken low. Then the concatenated  
input data is transferred to the chain, using ꢀDI of the  
first device as the data input. When the data transfer is  
complete, CS/LD is taken high, completing the instruction  
sequence for all devices simultaneously. A single device  
can be controlled by using the no-operation command  
(1111) for the other devices in the chain.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16- or 12-bit input code,  
and is converted to an analog voltage at the DAC output.  
The update operation also powers up the selected DAC  
if it had been in power-down mode. The data path and  
registers are shown in the Slock Diagram.  
Power-Down Mode  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever  
less than eight DAC outputs are needed. When in power  
down, the buffer amplifiers, bias circuits and integrated  
reference circuits are disabled and draw essentially zero  
current. The DAC outputs are put into a high impedance  
state, and the output pins are passively pulled to ground  
through individual 80k resistors. Input- and DAC-register  
contents are not disturbed during power down.  
While the minimum input word is 2± bits, it may option-  
ally be extended to 32 bits. To use the 32-bit word width,  
8 don’t-care bits must be transferred to the device first,  
followed by the 2±-bit word as just described. Figure 2b  
showsthe32-bitsequence.The32-bitwordisrequiredfor  
daisy-chainoperation,andisalsoavailabletoaccommodate  
microprocessorsthathaveaminimumwordwidthof16bits  
(2bytes).The16-bitdatawordisignoredforallcommands  
that do not include a write operation.  
Any channel or combination of DAC channels can be put  
into power-down mode by using command 0100b in  
combination with the appropriate DAC address, (n). The  
integrated reference is automatically powered down when  
external reference is selected using command 0111b. In  
addition, all the DAC channels and the integrated refer-  
ence together can be put into power-down mode using  
power-down chip command 0101b. For all power-down  
commands the 16-bit data word is ignored.  
Daisy-Chain Operation  
TheserialoutputoftheshiftregisterappearsattheDOpin.  
Data transferred to the device from the ꢀDI input is delayed  
32 ꢀCK rising edges before being output at the next ꢀCK  
falling edge. The ꢀDO pin is continuously driven and does  
not go high impedance when CS/LD is taken active high.  
Normal operation resumes by executing any command  
which includes a DAC update, in software as shown in  
Table 1 or by taking the asynchronous LDAC pin low. The  
selected DAC is powered up as its voltage output is up-  
dated. When a DAC which is in a powered-down state is  
poweredupandupdated,normalsettlingisdelayed.Ifless  
than eight DACs are in a powered-down state prior to the  
update command, the power-up delay time is 12µs. If, on  
TheDOoutputcanbeusedtofacilitatecontrolofmultiple  
serial devices from a single 3-wire serial port (i.e., ꢀCK,  
ꢀDIandCS/LD). ꢀuchadaisy-chainseriesisconfigured  
by connecting ꢀDO of each upstream device to ꢀDI of the  
next device in the chain. The shift registers of the devices  
the other hand, all eight DACs and the integrated reference  
2656fa  
19  
LTC2656  
OPERATION  
2656fa  
20  
LTC2656  
OPERATION  
are powered down, then the main bias generation circuit  
block has been automatically shut down in addition to the  
individual DAC amplifiers and integrated reference. In this  
case, the power-up delay time is 1±µs. The power up of  
the integrated reference depends on the command that  
powered it down. If the reference is powered down using  
theselectexternalreferencecommand(0111b),thenitcan  
only be powered back up using select internal reference  
command(0110b). Howeverifthereferencewaspowered  
down using power-down chip command (0101b), then in  
addition to select internal reference command (0110b),  
any command that powers up the DACs will also power  
up the integrated reference.  
reference. The LTC2656-L has a 1.25V reference that pro-  
vides a full-scale DAC output of 2.5V. The LTC2656-H has  
a 2.0±8V reference that provides a full-scale DAC output  
of ±.096V. Soth references exhibit a typical temperature  
drift of 2ppm/°C. Internal reference mode can be selected  
by using command 0110b, and is the power-on default. A  
bufferisneedediftheinternalreferenceisrequiredtodrive  
external circuitry. For reference stability and low noise, it  
is recommended that a 0.1µF capacitor be tied between  
REFCOMP and GND. In this configuration, the internal  
referencecandriveupto0.1µFcapacitiveloadwithoutany  
stability problems. In order to ensure stable operation, the  
capacitive load on the REFIN/OUT pin should not exceed  
the capacitive load on the REFCOMP pin.  
Asynchronous DAC Update Using LDAC  
The DAC can also operate in external reference mode us-  
ing command 0111b. In this mode, the REFIN/OUT pin  
acts as an input that sets the DAC’s reference voltage. The  
input is high impedance and does not load the external  
reference source. The acceptable voltage range at this  
In addition to the update commands shown in Table 1, the  
LDAC pin asynchronously updates all the DAC registers  
with the contents of the input registers.  
If CS/LD is high, a low on the LDAC pin causes all the  
DAC registers to be updated with the contents of the  
input registers.  
pin is 0.5V ≤ REFIN/OUT ≤ V /2. The resulting full-scale  
CC  
REFIN/OUT  
outputꢀvoltageꢀisꢀ2ꢀ•ꢀV  
. For using external refer-  
ence at start-up, see the Power ꢀupply ꢀequencing and  
ꢀtart-Up section.  
If CS/LD is low, a low going pulse on the LDAC pin before  
therisingedgeofCS/LDpowersupalltheDACoutputsbut  
does not cause the output to be updated. If LDAC remains  
lowaftertherisingedgeofCS/LD,thenLDACisrecognized,  
the command specified in the 2±-bit word just transferred  
is executed and the DAC outputs are updated.  
Integrated Reference Buffers  
Each of the eight DACs in LTC2656 has its own integrated  
high performance reference buffer. The buffers have very  
highinputimpedanceanddonotloadthereferencevoltage  
source. These buffers shield the reference voltage from  
glitchescausedbyDACswitchingandthusminimizeDAC-  
to-DACdynamiccrosstalk.TypicallyDAC-to-DACcrosstalk  
islessthan3nV•s.Bytying0.1µFcapacitorsbetweenꢀ  
REFCOMP and GND, and also between REFIN/OUT and  
GND,ꢀthisꢀnumberꢀcanꢀbeꢀreducedꢀtoꢀlessꢀthanꢀ1nV•s.ꢀSeeꢀ  
the curve DAC-to-DAC Dynamic Crosstalk in the Typical  
Performance Characteristics section.  
The DAC outputs are powered up when LDAC is taken  
low, independent of the state of CS/LD. The integrated  
reference is also powered up if it was powered down us-  
ing power-down chip (0101b) command. The integrated  
reference will not power up when LDAC is taken low,  
if it was powered down using select external reference  
(0111b) command.  
If LDAC is low at the time CS/LD goes high, it inhibits any  
software power-down command (power down n, power-  
down chip, select external reference) that was specified  
in the input word.  
Voltage Outputs  
EachoftheLTC2656’seightrail-to-railoutputamplifierscon-  
tainedinthesepartshasaguaranteedloadregulationwhen  
sourcing or sinking up to 15mA at 5V (7.5mA at 3V).  
Reference Modes  
For applications where an accurate external reference is  
notavailable,theLTC2656hasauser-selectable,integrated  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
2656fa  
21  
LTC2656  
OPERATION  
load conditions. The measured change in output voltage  
permilliampereofforcedloadcurrentchangeisexpressed  
in LꢀS/mA.  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shielditfromnoise.Analoggroundshouldbeacontinuous  
and uninterrupted plane, except for necessary lead pads  
and vias, with signal traces on another layer.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LꢀS/mA to Ohms. The amplifiers’ DC output  
impedance is 0.0±Ω when driving a load well away from  
the rails.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground.TheREFLOpinshouldbeconnectedtothesystem  
star ground. Resistance from the REFLO pin to the system  
star ground should be as low as possible.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30Ω typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30Ωꢀ•ꢀ1mAꢀ=ꢀ30mV.ꢀSeeꢀtheꢀgraphꢀHeadroomꢀatꢀRailsꢀvsꢀ  
Output Current in the Typical Performance Characteristics  
section.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
ꢀince the analog outputs of the device cannot go below  
ground, they may limit the lowest codes as shown in Fig-  
ure 3b. ꢀimilarly, limiting can occur in external reference  
Board Layout  
TheexcellentloadregulationandDCcrosstalkperformance  
of these devices is achieved in part by keeping “signal”  
and “power” grounds separate.  
mode near full-scale when the REFIN/OUT pin is at V /2.  
CC  
If V  
= V /2 and the DAC full-scale error (FꢀE)  
REFIN/OUT  
CC  
is positive, the output for the highest codes limits at V  
CC  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
awayfromsensitiveanalogsignalsandfacilitatestheuseof  
separatedigitalandanaloggroundplaneswhichhavemini-  
mal capacitive and resistive interaction with each other.  
are shown in Figure 3c. No full-scale limiting can occur if  
V
≤ (V – FꢀE)/2.  
REFIN/OUT  
CC  
Offset and linearity are defined and tested over the region of  
theDACtransferfunctionwherenooutputlimitingcanoccur.  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2656 F03  
(3c)  
OUTPUT  
VOLTAGE  
0
32,768  
65,535  
INPUT CODE  
(3a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(3b)  
Figure 3. Effects of Rail-to-Rail Operation on a DAC Transfer Curve. (3a) Overall Transfer Function (3b) Effect of  
Negative Offset for Codes Near Zero-Scale (3c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
2656fa  
22  
LTC2656  
PACKAGE DESCRIPTION  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
2656fa  
23  
LTC2656  
PACKAGE DESCRIPTION  
UFD Package  
20-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev S)  
0.70 ±0.05  
2.65 ± 0.05  
4.50 ± 0.05  
3.10 ± 0.05  
1.50 REF  
3.65 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
2.50 REF  
4.10 ± 0.05  
5.50 ± 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR  
C = 0.35  
0.75 ± 0.05  
1.50 REF  
19  
4.00 ± 0.10  
R = 0.05 TYP  
(2 SIDES)  
20  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ± 0.10  
(2 SIDES)  
2.50 REF  
3.65 ± 0.10  
2.65 ± 0.10  
(UFD20) QFN 0506 REV B  
0.25 ± 0.05  
0.50 BSC  
0.200 REF  
R = 0.115  
TYP  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2656fa  
24  
LTC2656  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/10 Added C-grade to data sheet  
3 to 6, 9  
7
Updated Electrical Characteristics table for H-grade  
2656fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2656  
TYPICAL APPLICATION  
Digitally Controlled Output Voltage 1.1A Supply  
V
V
CC  
CC  
JP2  
4
2
3
1
MID-SCALE  
ZERO-SCALE  
C1  
0.1µF  
V
IN  
C1  
0.1µF  
C1  
0.1µF  
R4  
7.5k  
1.2V TO 36V  
IN  
LT3080  
REFCOMP REFIN/OUT LDAC PORSEL V  
CLR  
CC  
7
8
20  
1
3
CS  
SCK  
SDO  
V
V
V
OUTA  
OUTB  
OUTC  
OUTD  
V
TO  
CONTROL  
1µF  
MICROCONTROLLER  
10  
9
+
4
LTC2656*  
SDI  
V
13  
14  
15  
16  
V
OUTE  
OUT  
V
OUTF  
V
OUT  
V
V
OUTG  
OUTH  
SET  
2.2µF  
GND REFLO GND  
21  
19  
18  
NOTE: LT3080 MINIMUM LOAD CURRENT  
IS 0.5mA  
2656 TA02  
*PIN NUMBERS INDICATED ARE FOR THE QFN PACKAGE  
RELATED PARTS  
PART NUMBER  
LTC1660/LTC1665  
LTC166±  
DESCRIPTION  
COMMENTS  
Octal 10-/8-Sit V  
DACs in 16-Pin Narrow ꢀꢀOP  
V
CC  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Quad 10-Sit V  
DAC in 16-Pin Narrow ꢀꢀOP  
OUT  
LTC1821  
ꢀingle 16-Sit V  
DAC with ±1LꢀS INL, DNL  
Parallel Interface, Precision 16-Sit ꢀettling in 2μs for 10V ꢀtep  
OUT  
LTC2600/LTC2610/ Octal 16-/1±-/12-Sit V  
LTC2620  
DACs in 16-Lead Narrow ꢀꢀOP  
250μA per DAC, 2.5V to 5.5V ꢀupply Range, Rail-to-Rail Output,  
ꢀPI ꢀerial Interface  
OUT  
LTC2601/LTC2611/ ꢀingle 16-/1±-/12-Sit V  
LTC2621  
DACs in 10-Lead DFN  
300μA per DAC, 2.5V to 5.5V ꢀupply Range, Rail-to-Rail Output,  
ꢀPI ꢀerial Interface  
OUT  
LTC2602/LTC2612/ Dual 16-/1±-/12-Sit V  
LTC2622  
DACs in 8-Lead MꢀOP  
DACs in 16-Lead ꢀꢀOP  
300μA per DAC, 2.5V to 5.5V ꢀupply Range, Rail-to-Rail Output,  
ꢀPI ꢀerial Interface  
OUT  
LTC260±/LTC261±/ Quad 16-/1±-/12-Sit V  
LTC262±  
250μA per DAC, 2.5V to 5.5V ꢀupply Range, Rail-to-Rail Output,  
ꢀPI ꢀerial Interface  
OUT  
2
LTC2605/LTC2615/ Octal 16-/1±-/12-Sit V  
LTC2625  
DACs with I C Interface  
250μA per DAC, 2.7V to 5.5V ꢀupply Range, Rail-to-Rail Output  
270μA per DAC, 2.7V to 5.5V ꢀupply Range, Rail-to-Rail Output  
250μA per DAC, 2.7V to 5.5V ꢀupply Range, Rail-to-Rail Output with  
OUT  
2
LTC2606/LTC2616/ ꢀingle 16-/1±-/12-Sit V  
LTC2626  
DACs with I C Interface  
OUT  
2
LTC2609/LTC2619/ Quad 16-/1±-/12-Sit V  
LTC2629  
DACs with I C Interface  
OUT  
ꢀeparate V Pins for Each DAC  
REF  
LTC2636  
Octal 12-/10-/8-Sit V  
DACs with 10ppm/°C Reference  
125μA per DAC, 2.7V to 5.5V ꢀupply Range, Internal 1.25V or 2.0±8V  
Reference, Rail-to-Rail Output, ꢀPI Interface  
OUT  
LTC26±1/LTC26±2  
LTC270±  
ꢀingle 16-/1±-/12-Sit V  
DACs with ±1LꢀS INL, DNL  
±1LꢀS (Max) INL, DNL, 3mm × 3mm DFN and MꢀOP Packages,  
120μA ꢀupply Current, ꢀPI Interface  
OUT  
Quad 16-/1±-/12-Sit V  
±1LꢀS DNL  
DACs with ±2LꢀS INL,  
DACs with ±1LꢀS INL,  
ꢀoftware Programmable Output Ranges Up to ±10V, PI Interface  
OUT  
LTC2755  
Quad 16-/1±-/12-Sit I  
±1LꢀS DNL  
ꢀoftware Programmable Output Ranges Up to ±10V, Parallel Interface  
OUT  
2656fa  
LT 1110 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Slvd., Milpitas, CA 95035-7±17  
26  
LINEAR TECHNOLOGY CORPORATION 2009  
(±08) ±32-1900 FAX: (±08) ±3±-0507 www.linear.com  

相关型号:

LTC2656CFE-H12PBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CFE-H12TRPBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CFE-L12#PBF

LTC2656 - Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/&deg;C Max Reference; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2656CFE-L12PBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CFE-L12TRPBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CIFE-L16#PBF

LTC2656 - Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/&deg;C Max Reference; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2656CIFE-L16PBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear
Linear

LTC2656CIUFD-L16PBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CUFD-H12#PBF

LTC2656 - Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/&deg;C Max Reference; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2656CUFD-H12PBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear

LTC2656CUFD-H12TRPBF

Octal 16-/12-Bit Rail-to-Rail DACs with 10ppm/°C Max Reference
Linear