LTC2751AIUHF-16#TRPBF [Linear]

LTC2751 - Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C;
LTC2751AIUHF-16#TRPBF
型号: LTC2751AIUHF-16#TRPBF
厂家: Linear    Linear
描述:

LTC2751 - Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C

转换器
文件: 总22页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2751  
Current Output  
12-/14-/16-Bit SoftSpan  
DACs with Parallel I/O  
FeaTures  
DescripTion  
The LTC®2751 is a family of 12-, 14-, and 16-bit multi-  
plying parallel-input, current-output DACs. They operate  
from a single 2.7V to 5.5V supply. All parts are guaranteed  
monotonic over temperature. The LTC2751A-16 provides  
16-bitperformance( 1LSBINLandDNL)overtemperature  
withoutanyadjustments.TheseSoftSpanDACsoffersix  
outputranges—twounipolarandfourbipolar—thatcanbe  
programmedthroughtheparallelinterface,orpinstrapped  
for operation in a single range.  
n
Six Programmable Output Ranges  
Unipolar: 0V to 5V, 0V to 10V  
Bipolar: 5V, 10V, ꢀꢁ5V, ꢂꢀꢁ5V to ꢃꢁ5V  
n
Maximum 16-Bit INL Error: 1 LSB over Temperature  
n
Low 1µA (Maximum) Supply Current  
n
Guaranteed Monotonic over Temperature  
n
Low Glitch Impulse 1nV s  
n
2.7V to 5.5V Single Supply Operation  
n
2µs Settling Time to 1 LSB  
Reference Input: 15V  
n
These parts use a bidirectional input/output parallel in-  
terface that allows readback of any on-chip register. A  
power-oncircuitresetstheDACoutputto0Vwhenpoweris  
initiallyapplied.AlogiclowontheCLRpinasynchronously  
clears the DAC to 0V in any output range.  
n
Parallel Interface with Readback of All Registers  
Asynchronous CLR Pin Clears DAC Output to 0V in  
Any Output Range  
Power-On Reset to 0V  
38-Pin 5mm × 7mm QFN Package  
n
n
n
The parts are specified over commercial and industrial  
temperature ranges.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
applicaTions  
n
High Resolution Offset and Gain Adjustment  
n
Process Control and Industrial Automation  
n
Automatic Test Equipment  
Data Acquisition Systems  
n
Typical applicaTion  
16-Bit DAC with Software Selectable Ranges  
LTCꢀꢃ51-16 Integral Nonlinearity  
REF  
5V  
1.0  
V
V
= 5V  
REF  
10V RANꢀE  
DD  
+
0.8  
0.6  
= 5V  
1/2 LT®1469  
C2  
150pF  
0.4  
0.2  
0.0  
R
R
COM  
R
FB  
OFS  
REF  
R
IN  
R1  
C1  
R2  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
15pF  
LTC2751-16  
I
I
OUT1  
25°C  
90°C  
–45°C  
WR  
UPD  
READ  
D/S  
WR  
UPD  
V
OUT  
16-BIT DAC WITH SPAN SELECT  
1/2 LT1469  
+
OUT2  
GND  
READ  
D/S  
0
16384  
32768  
CODE  
49152  
65535  
CLR  
CLR  
3
16  
2751 TA01b  
5V  
V
DD  
MSPAN  
R
VOS  
C3  
0.1µF  
2751 TA01  
SPAN I/O  
S2-S0  
DATA I/O  
D15-D0  
2751fa  
1
LTC2751  
absoluTe MaxiMuM raTings  
(Notes 1, ꢀ)  
Operating Temperature Range  
I
, I  
, R  
to GND..................................... 0.3V  
OUT1 OUT2 COM  
R , R , R , REF, R  
DD  
LTC2751C..................................................... 0°C to 70°C  
LTC2751I..................................................–40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range .................. –65°C to 150°C  
to GND........................... 15V  
FB OFS IN  
VOS  
V
to GND.................................................. –0.3V to 7V  
S2, S1, S0, D15-D0, MSPAN, READ, D/S,WR,  
UPD, CLR to GND........ –0.3V to V + 0.3V (7V Max)  
DD  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
TOP VIEW  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
R
I
1
2
3
4
5
6
7
8
9
31 WR  
COM  
R
1
2
3
4
5
6
7
8
9
31 WR  
R
I
1
2
3
4
5
6
7
8
9
31 WR  
COM  
COM  
R
30 UPD  
IN  
R
IN  
30 UPD  
R
30 UPD  
IN  
S2  
READ  
29  
28  
S2  
READ  
S2  
READ  
29  
28  
29  
28  
D/S  
OUT2  
NC  
I
D/S  
D/S  
OUT2  
NC  
OUT2  
NC  
27 NC  
NC  
27 NC  
NC  
27 NC  
26  
NC  
D15  
D14  
D13  
D12  
26  
D11  
D10  
D9  
D13  
D12  
D11  
D10  
26  
39  
39  
39  
25 D0  
24 D1  
23 D2  
22 D3  
21 D4  
25 NC  
24 NC  
23 NC  
22 NC  
21 D0  
25 NC  
24 NC  
23 D0  
22 D1  
21 D2  
D8  
D11 10  
D10 11  
D9 12  
D7 10  
D6 11  
D5 12  
D9 10  
D8 11  
D7 12  
20  
D5  
20  
20  
D3  
D1  
13 14 15 16 17 18 19  
LTC2751-16 UHF PACKAGE  
13 14 15 16 17 18 19  
LTC2751-12 UHF PACKAGE  
13 14 15 16 17 18 19  
LTC2751-14 UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
T
= 125°C, θ = 34°C/W  
T
= 125°C, θ = 34°C/W  
JMAX JA  
JMAX  
JA  
T
= 125°C, θ = 34°C/W  
JMAX JA  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
275112  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2751CUHF-12#PBF  
LTC2751IUHF-12#PBF  
LTC2751CUHF-14#PBF  
LTC2751IUHF-14#PBF  
LTC2751BCUHF-16#PBF  
LTC2751BIUHF-16#PBF  
LTC2751ACUHF-16#PBF  
LTC2751AIUHF-16#PBF  
LTC2751CUHF-12#TRPBF  
LTC2751IUHF-12#TRPBF  
LTC2751CUHF-14#TRPBF  
LTC2751IUHF-14#TRPBF  
LTC2751BCUHF-16#TRPBF  
LTC2751BIUHF-16#TRPBF  
LTC2751ACUHF-16#TRPBF  
LTC2751AIUHF-16#TRPBF  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
275112  
–40°C to 85°C  
0°C to 70°C  
275114  
275114  
–40°C to 85°C  
0°C to 70°C  
275116  
275116  
–40°C to 85°C  
0°C to 70°C  
275116  
275116  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2751fa  
2
LTC2751  
elecTrical characTerisTics VDD = 5V, VREF = 5V unless otherwise specifiedꢁ The l denotes the  
specifications which apply over the full operating temperature range, otherwise specifications are at TA = ꢀ5°Cꢁ  
LTCꢀꢃ51-1ꢀ LTCꢀꢃ51-14 LTCꢀꢃ51B-16 LTCꢀꢃ51A-16  
MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
SYMBOL PARAMETER  
Static Performance  
Resolution  
CONDITIONS  
MIN TYP  
l
l
l
12  
12  
14  
14  
16  
16  
16  
16  
Bits  
Bits  
LSB  
Monotonicity  
DNL  
INL  
GE  
Differential  
1
1
2
1
1
5
1
2
0.2  
0.4  
4
1
1
Nonlinearity  
l
l
Integral  
Nonlinearity  
LSB  
LSB  
Gain Error  
All Output  
Ranges  
0.5  
0.6  
0.2  
0.5  
1.5  
0.6  
0.6  
0.5  
20  
14  
GE  
Gain Error Temp-  
erature Coefficient  
0.6  
0.5  
0.6  
2
ppm/°C  
LSB  
DGain/DTemp  
TC  
l
BZE  
BZS  
Bipolar Zero Error All Bipolar  
Ranges  
1
3
12  
8
Bipolar Zero Temp-  
erature Coefficient  
0.5  
ppm/°C  
LSB/V  
nA  
TC  
l
l
PSR  
Power Supply  
Rejection  
V
V
= 5V, 10ꢀ  
= 3V, 10ꢀ  
0.025  
0.06  
0.1  
0.25  
0.4  
1
0.03  
0.1  
0.2  
0.5  
DD  
DD  
I
I
Leakage  
T = 25°C  
0.05  
2
5
0.05  
2
5
0.05  
2
5
0.05  
2
5
LKG  
OUT1  
A
l
Current  
T
to T  
MIN MAX  
C
Output  
Capacitance  
Full-Scale  
Zero Scale  
75  
45  
75  
45  
75  
45  
75  
45  
pF  
pF  
IOUT1  
VDD = 5V, VREF = 5V unless otherwise specifiedꢁ The l denotes specifications that apply over the full operating temperature range,  
otherwise specifications are at TA = ꢀ5°Cꢁ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resistances (Note 3)  
R1/R2  
l
l
l
l
l
Reference Inverting Resistors  
DAC Input Resistance  
Feedback Resistor  
(Note 4)  
16  
8
20  
10  
kW  
kW  
kW  
kW  
kW  
R
REF  
R
(Note 3)  
(Note 3)  
8
10  
FB  
R
Bipolar Offset Resistor  
Offset Adjust Resistor  
16  
800  
20  
OFS  
R
1000  
VOS  
Dynamic Performance  
Output Settling Time  
0V to 10V Range, 10V Step. To 0.0015ꢀ FS  
(Note 5)  
2
μs  
Glitch Impulse  
(Note 6)  
(Note 7)  
1
1
nVs  
nVs  
mV  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
0V to 10V Range, V  
Sine Wave  
=
10V, 10kHꢁ  
0.5  
REF  
THD  
Total Harmonic Distortion  
(Note 8) Multiplying  
(Note 9) at I  
–110  
13  
dB  
Output Noise Voltage Density  
nV/√Hz  
OUT1  
Power Supply  
l
l
V
Supply Voltage  
2.7  
5.5  
1
V
DD  
I
Supply Current, V  
Digital Inputs = 0V or V  
0.5  
μA  
DD  
DD  
DD  
2751fa  
3
LTC2751  
elecTrical characTerisTics VDD = 5V, VREF = 5V unless otherwise specifiedꢁ The l denotes the  
specifications which apply over the full operating temperature range, otherwise specifications are at TA = ꢀ5°Cꢁ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Inputs  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
IH  
DD  
2.7V ≤ V < 3.3V  
DD  
l
l
V
4.5V < V ≤ 5.5V  
0.8  
0.6  
V
V
IL  
DD  
2.7V ≤ V ≤ 4.5V  
DD  
l
l
I
Digital Input Current  
V
V
= GND to V  
DD  
1
6
µA  
pF  
IN  
IN  
IN  
C
Digital Input Capacitance  
= 0V (Note 10)  
IN  
Digital Outputs  
l
l
V
V
I
I
= 200µA  
= 200µA  
V – 0.4  
DD  
V
V
OH  
OL  
OH  
OL  
0.4  
TiMing characTerisTics VDD = 5V, VREF = 5V unless otherwise specifiedꢁ The l denotes specifications that  
apply over the full operating temperature range, otherwise specifications are at TA = ꢀ5°Cꢁ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
= 4ꢁ5V to 5ꢁ5V  
Write and Update Timing  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
I/O Valid to WR Rising Edge Set-Up  
I/O Valid to WR Rising Edge Hold  
WR Pulse Width  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
20  
20  
0
UPD Pulse Width  
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/S Valid to WR Falling Edge Set-Up Time  
WR Rising Edge to D/S Valid Hold Time  
No Data Shoot-Through  
(Note 10)  
0
9
9
Readback Timing  
l
l
l
l
l
l
l
l
l
l
t
13  
t
14  
t
15  
t
17  
t
18  
t
19  
t
20  
t
22  
t
23  
t
24  
WR Rising Edge to READ Rising Edge  
READ Falling Edge to WR Falling Edge  
READ Rising Edge to I/O Propagation Delay  
UPD Valid to I/O Propagation Delay  
D/S Valid to READ Rising Edge  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 10)  
20  
C = 10pF  
L
30  
30  
C = 10pF  
L
(Note 10)  
No Update  
No Update  
(Note 10)  
(Note 10)  
(Note 10)  
9
9
READ Rising Edge to UPD Rising Edge  
UPD Falling Edge to READ Falling Edge  
READ Falling Edge to UPD Rising Edge  
I/O Bus Hi-Z to READ Rising Edge  
READ Falling Edge to I/O Bus Active  
9
9
0
20  
CLR Timing  
l
t
CLR Pulse Width Low  
20  
ns  
25  
2751fa  
4
LTC2751  
TiMing characTerisTics VDD = 5V, VREF = 5V unless otherwise specifiedꢁ The l denotes specifications that  
apply over the full operating temperature range, otherwise specifications are at TA = ꢀ5°Cꢁ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
= ꢀꢁꢃV to 3ꢁ3V  
Write and Update Timing  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
I/O Valid to WR Rising Edge Set-Up  
I/O Valid to WR Rising Edge Hold  
WR Pulse Width  
18  
18  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
UPD Pulse Width  
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/S Valid to WR Falling Edge Set-Up Time  
WR Rising Edge to D/S Valid Hold Time  
No Data Shoot-Through  
(Note 10)  
0
18  
18  
Readback Timing  
l
l
l
l
l
l
l
l
l
l
t
13  
t
14  
t
15  
t
17  
t
18  
t
19  
t
20  
t
22  
t
23  
t
24  
WR Rising Edge to Read Rising Edge  
Read Falling Edge to WR Falling Edge  
Read Rising Edge to I/O Propagation Delay  
UPD Valid to I/O Propagation Delay  
D/S Valid to Read Rising Edge  
18  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 10)  
C = 10pF  
L
40  
40  
C = 10pF  
L
(Note 10)  
No Update  
No Update  
(Note 10)  
(Note 10)  
(Note 10)  
18  
9
Read Rising Edge to UPD Rising Edge  
UPD Falling Edge to Read Falling Edge  
READ Falling Edge to UPD Rising Edge  
I/O Bus Hi-Z to Read Rising Edge  
9
18  
0
Read Falling Edge to I/O Bus Active  
40  
CLR Timing  
l
t
CLR Pulse Width Low  
30  
ns  
25  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
basis. See Application Note 74, “Component and Measurement Advances  
Ensure 16-Bit DAC Settling Time.”  
Note 6: Measured at the major carry transition, 0V to 5V range. Output  
amplifier: LT1469; C = 27pF.  
FB  
Note ꢀ: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 3: Because of the proprietary SoftSpan switching architecture, the  
measured resistance looking into each of the specified pins is constant for  
Note ꢃꢁ Full-scale transition; REF = 0V.  
Note 8ꢁ REF = 6V  
at 1kHꢁ. 0V to 5V range. DAC code = FS. Output  
RMS  
amplifier = LT1469.  
Note 9ꢁ Calculation from V = √4kTRB, where k = 1.38E-23 J/°K  
n
all output ranges if the I  
and I  
pins are held at ground.  
OUT1  
OUT2  
(Boltꢁmann constant), R = resistance (W), T = temperature (°K), and B =  
bandwidth (Hꢁ).  
Note 10ꢁ Guaranteed by design. Not production tested.  
Note 4: R1 is measured from R to R  
; R2 is measured from REF to  
IN  
COM  
R
COM  
.
Note 5: Using LT1469 with C  
= 15pF. A 0.0015ꢀ settling time  
FEEDBACK  
of 1.7μs can be achieved by optimiꢁing the time constant on an individual  
2751fa  
5
LTC2751  
Typical perForMance characTerisTics TA = ꢀ5°C, unless otherwise notedꢁ  
LTCꢀꢃ51-16  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
10V RꢀNGE  
V
V
= 5V  
DD  
REF  
10V RꢀNGE  
DD  
= 5V  
= 5V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
2751 G01  
2751 G02  
INL vs Temperature  
DNL vs Temperature  
Bipolar Zero vs Temperature  
1.0  
0.8  
1.0  
8
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
DD  
REF  
DD  
REF  
DD  
REF  
0.8  
0.6  
6
4
2
0
2
4
6
8
10V RAꢀGE  
10V RANGE  
10V RANGE  
0.6  
0.4  
0.4  
+INL  
–INL  
0.5ppm/°C (TYP)  
0.2  
0.2  
+DNL  
–DNL  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
20  
TEMPERATURE (°C)  
40  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2751 G06  
2751 G04  
2751 G05  
Gain Error vs Temperature  
INL vs VREF  
DNL vs VREF  
16  
12  
8
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
10V RAꢀGE  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
= 5V  
5V RꢀAGE  
5V RꢀAGE  
0.6  
0.6  
0.4  
0.4  
+IAL  
0.6ppm/°C (TYP)  
4
+IAL  
–IAL  
0.2  
0.2  
+DAL  
–DAL  
+DAL  
–DAL  
0
0.0  
0.0  
–IAL  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–4  
–8  
–12  
–16  
–40  
–20  
0
20  
TEMPERATURE (°C)  
40  
60  
80  
–10 –8  
–6  
4
2
V
0
2
4
6
8
10  
–10 –8 –6  
4
2
0
2
4
6
8
10  
(V)  
V
REF  
(V)  
REF  
2751 G07  
2751 G08  
2751 G09  
2751fa  
6
LTC2751  
Typical perForMance characTerisTics TA = ꢀ5°C, unless otherwise notedꢁ  
LTCꢀꢃ51-16  
INL vs VDD  
Settling 0V to 10V  
1.0  
0.8  
UPD  
0.6  
5V/DIV  
0.4  
+INL  
–INL  
0.2  
GATED  
SETTLING  
WAVEFORM  
250µV/DIV  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
2751 G10  
500ns/DIV  
USING LT1469 AMP  
= 12pF  
C
FEEDBACK  
2.5  
3
3.5  
4
4.5  
5
5.5  
0V TO 10V STEP  
V
DD  
(V)  
2751 G09b  
LTCꢀꢃ51-14  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
10V RꢀNGE  
V
V
= 5V  
DD  
REF  
10V RꢀNGE  
DD  
= 5V  
= 5V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
CODE  
CODE  
2751 G11  
2751 G12  
LTCꢀꢃ51-1ꢀ  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
10V RꢀNGE  
V
V
= 5V  
DD  
REF  
10V RꢀNGE  
DD  
= 5V  
= 5V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2751 G13  
2751 G14  
2751fa  
7
LTC2751  
Typical perForMance characTerisTics TA = ꢀ5°C, unless otherwise notedꢁ  
LTCꢀꢃ51-1ꢀ, LTCꢀꢃ51-14, LTCꢀꢃ51-16  
Supply Current vs  
Logic Input Voltage  
Midscale Glitch  
12  
10  
UPD  
5V/DIV  
8
6
1nVs (TYP)  
V
DD  
= 5V  
V
OUT  
2mV/DIV  
4
2
0
2751 G15  
500ns/DIV  
V
= 3V  
DD  
V
V
= 5V  
REF  
0V TO 5V RANGE  
USING AN LT1469  
DD  
= 5V  
C
= 27pF  
FEEDBACK  
0
1
2
3
4
5
LOGIC VOLTAGE (V)  
2751 G16  
ALL DIGITAL PINS TIED TOGETHER  
(EXCEPT READ TIED TO GND)  
Logic Threshold  
vs Supply Voltage  
Supply Current  
vs Update Frequency  
2
1.75  
1.5  
1000  
100  
10  
RISING  
1.25  
1
FALLING  
1
V
V
= 5V  
= 3V  
DD  
0.75  
0.5  
DD  
0.1  
2.5  
3.5  
4
4.5  
5
5.5  
10  
100  
10k  
UPD FREQUENCY (Hz)  
100k  
1M  
3
1k  
V
(V)  
DD  
2751 G18  
2751 G17  
ALTERNATING ZERO-SCALE/FULL-SCALE  
(LTC2751-16)  
2751fa  
8
LTC2751  
pin FuncTions  
R
(Pin 1): Center Tap Point of R and REF. Normally  
tied to the negative input of the external reference invert-  
MSPAN must be connected either directly to GND (Soft-  
COM  
IN  
Span configuration) or V (single-span configuration).  
DD  
ing amplifier.  
D0-D(Pins19-ꢀ1):LTCꢀꢃ51-1OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D0 is the LSB.  
R (Pin):InputResistorforExternalReferenceInverting  
IN  
Amplifier. Normally tied to the external reference voltage  
V
andtoR (Pin37).Typically5V;acceptsupto 15V.  
REF  
OFS  
D0-D4(Pins19-ꢀ3):LTCꢀꢃ51-14OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D0 is the LSB.  
Sꢀ (Pin 3): Span I/O Bit 2. Pins S0, S1 and S2 are used  
to program and to read back the output range of the DAC.  
D0-D6(Pins19-ꢀ5):LTCꢀꢃ51-16OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D0 is the LSB.  
I
(Pin 4): DAC Current Output Complement. Tie I  
OUT2  
OUTꢀ  
to GND.  
NC (Pin 5): No Connection. Must be tied to GND, provides  
necessary shielding for I  
NC (Pins ꢀꢀ-ꢀꢃ): LTCꢀꢃ51-1ꢀ Onlyꢁ No Connection.  
NC (Pins ꢀ4-ꢀꢃ): LTCꢀꢃ51-14 Onlyꢁ No Connection.  
NC (Pins ꢀ6, ꢀꢃ): LTCꢀꢃ51-16 Onlyꢁ No Connection.  
.
OUT2  
D3-D11(Pins6-14):LTCꢀꢃ51-1OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D11 is the MSB.  
D/S (Pin ꢀ8): Data/Span Select. This pin is used to select  
activation of the data or span I/O pins (D0 to D15 or S0  
to S2, respectively), along with their respective dedicated  
registers, for write or read operations. Update operations  
ignore D/S, since all updates affect both data and span  
registers. For single-span operation, tie D/S to GND.  
D5-D13(Pins6-14):LTCꢀꢃ51-14OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D13 is the MSB.  
Dꢃ-D15(Pins6-14):LTCꢀꢃ51-16OnlyDACInput/Output  
Data Bits. These I/O pins set and read back the DAC code.  
D15 is the MSB.  
READ(Pin9):ReadPin.WhenREADisassertedhigh,the  
dataI/Opins(D0-D15)orspanI/Opins(S0-S2)outputthe  
contents of the selected register (see Table 1). For single-  
span operation, readback of the span I/O pins is disabled.  
V
(Pin 15): Positive Supply Input 2.7V ≤ V ≤ 5.5V.  
DD  
DD  
Requires a 0.1µF bypass capacitor to GND.  
GND (Pin 16): Ground. Tie to ground.  
UPD (Pin 30): Update and Buffer Select Pin. When READ  
is held low and UPD is asserted high, the contents of the  
input registers (both data and span) are copied into their  
respectiveDACregisters.TheoutputoftheDACisupdated,  
reflecting the new DAC register values.  
CLR (Pin 1ꢃ): Asynchronous Clear. When CLR is taken  
to a logic low, the data registers are reset to the ꢁero-volt  
code for the present output range (V  
= 0V).  
OUT  
MSPAN(Pin18):ManualSpanControlPin.MSPANisused  
to configure the LTC2751 for operation in a single, fixed  
output range. When configured for single-span operation,  
the output range is set via hardware pin strapping. The  
span input and DAC registers are transparent and do not  
respond to write or update commands.  
When READ is held high, the update function is disabled  
and the UPD pin functions as a buffer selector—logic low  
to select the input register, high for the DAC register. See  
Readback in the Operation section.  
WR (Pin 31): Active Low Write Pin. A Write operation  
copies the data present on the data or span I/O pins (D0-  
D15 or S0-S2, respectively) into the input register. When  
READ is high, the Write function is disabled.  
To configure the part for single-span use, tie MSPAN  
directly to V . If MSPAN is instead connected to GND  
DD  
(SoftSpan configuration), the output ranges are set and  
verified by using write, update and read operations. See  
Manual Span Configuration in the Operation section.  
S0 (Pin 3ꢀ): Span I/O Bit 0. Pins S0, S1 and S2 are used  
to program and to read back the output range of the DAC.  
2751fa  
9
LTC2751  
pin FuncTions  
S1 (Pin 33): Span I/O Bit 1. Pins S0, S1 and S2 are used  
to program and to read back the output range of the DAC.  
R
(Pin 3ꢃ): Bipolar Offset Network. This pin provides  
OFS  
the translation of the output voltage range for bipolar  
spans. Accepts up to 15V; normally tied to the positive  
reference voltage at R (Pin 2).  
R
(Pin 34): DAC Offset Adjust. Nominal input range is  
VOS  
IN  
5V. If not used, R  
should be shorted to I  
.
VOS  
OUT2  
REF(Pin38):FeedbackResistorfortheReferenceInverting  
Amplifier, and Reference Input for the DAC. Normally tied  
to the output of the reference inverting amplifier. Typically  
–5V. Accepts up to 15V.  
I
(Pin 35): DAC current output; normally tied to the  
OUT1  
negative input of the I/V converter amplifier.  
R
(Pin 36): DAC Feedback Resistor; normally tied to  
FB  
the output of the I/V converter amplifier. The DAC output  
Exposed Pad (Pin 39): Ground. The Exposed Pad must  
be soldered to the PCB.  
current from I  
flows through the feedback resistor  
OUT1  
to the R pin.  
FB  
2751fa  
10  
LTC2751  
block DiagraM  
1
38  
REF  
37  
36  
R
COM  
R
FB  
R
OFS  
R
IN  
R1  
R2  
2
I
I
OUT1  
OUT2  
35  
4
READ  
29  
WR  
31  
UPD  
30  
D/S  
28  
CLR  
17  
MSPAN  
18  
16-BIT DAC WITH SPAN SELECT  
3
16  
DAC  
REGISTER  
DAC  
REGISTER  
CONTROL  
LOGIC  
3
16  
INPUT  
REGISTER  
INPUT  
REGISTER  
I/O  
PORT  
I/O  
PORT  
3
16  
2751 BD  
3, 32, 33  
SPAN I/O  
6-14, 19-25  
DATA I/O  
D15-D0  
S2-S0  
2751fa  
11  
LTC2751  
TiMing DiagraMs  
Write, Update and Clear Timing  
t
3
t
1
t
2
WR  
I/O  
INPUT  
t
5
t
6
UPD  
t
4
t
7
t
8
D/S  
t
25  
CLR  
2751 TD01  
Readback Timing  
READ  
t
t
t
14  
24  
13  
WR  
t
23  
I/O  
INPUT  
t
15  
I/O  
OUTPUT  
t
17  
t
20  
t
t
19  
22  
UPD  
t
18  
D/S  
2751 TD02  
operaTion  
Output Ranges  
Digital Section  
The LTC2751 is a current-output, parallel-input precision  
multiplying DAC with software-programmable output  
ranges. SoftSpan provides two unipolar output ranges  
(0V to 5V and 0V to 10V), and four bipolar ranges ( 2.5V,  
5V, 10V and –2.5V to 7.5V). These ranges are obtained  
when an external precision 5V reference is used. When  
a reference voltage of 2V is used, the SoftSpan ranges  
become: 0V to 2V, 0V to 4V, 1V, 2V, 4V and –1V to  
3V. The output ranges are linearly scaled for references  
other than 2V and 5V.  
The LTC2751 family has four internal interface registers  
(see Block Diagram). Two of these—one input and one  
DAC register—are dedicated to the data I/O port, and two  
to the span I/O port. Each port is thus double-buffered.  
The double-buffered feature provides the capability to  
simultaneously update the span and code, which allows  
smooth voltage transitions when changing output ranges.  
ItalsopermitsthesimultaneousupdatingofmultipleDACs.  
2751fa  
12  
LTC2751  
operaTion  
Write and Update Operations  
Table 1 shows the functions of the LTC2751.  
The data input register is loaded directly from a 16-bit  
microprocessor bus by holding the D/S pin low and then  
pulsing the WR pin low. The second register (DAC regis-  
ter) is loaded by pulsing the UPD pin high, which copies  
the data held in the input register into the DAC register.  
Note that updates always include both data and span; but  
the DAC register values will not change unless the input  
register values have been changed by writing.  
Table 1ꢁ Write, Update and Read Functions  
READ D/S WR UPD  
SPAN I/O  
DATA I/O  
0
0
0
0
0
0
0
1
-
-
Write to Input Register  
Write/Update  
(Transparent)  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
-
-
Update DAC Register Update DAC Register  
Write to Input Register  
-
-
Write/Update  
(Transparent)  
Loadingthespaninputregisterisaccomplishedinasimilar  
manner, by holding the D/S pin high and then bringing  
the WR pin low. The span and data register structures  
are the same except for the number of parallel bits—the  
span registers have three bits, while the data registers  
have 12, 14, or 16 bits.  
0
0
1
1
1
1
1
1
0
0
1
1
1
1
X
X
X
X
0
1
0
1
0
1
-
-
Update DAC register Update DAC Register  
-
Read Input Register  
-
Read DAC Register  
Read Input Register  
Read DAC Register  
-
-
To make both registers transparent for flowthrough mode,  
tie WR low and UPD high. However, this defeats the de-  
glitcher operation and output glitch impulse may increase.  
ThedeglitcherisactivatedontherisingedgeoftheUPDpin.  
X = Don’t Care  
Manual Span Configuration  
The interface also allows the use of the input and DAC  
registers in a master-slave, or edge-triggered, configura-  
tion. This mode of operation occurs when WR and UPD  
are tied together and driven by a single clock signal. The  
data bits are loaded into the input register on the falling  
edge of the clock and then loaded into the DAC register  
on the rising edge.  
Multipleoutputrangesarenotneededinsomeapplications.  
To configuretheLTC2751forsingle-spanoperation,tiethe  
MSPAN pin to V and the D/S pin to GND. The desired  
DD  
output range is then specified by the span I/O pins (S0, S1  
and S2) as usual, but the pins are programmed by tying  
directly to GND or V (see Figure 1 and Table 2). In this  
DD  
configuration, the part will initialiꢁe to the chosen output  
The separation of data and span for write and read opera-  
tions makes it possible to control both data and span on  
one 16-bit wide data bus by allowing span pins S2 to S0  
to share bus lines with the data LSBs (D2 to D0). Since  
no write or read operation includes both span and data,  
there cannot be a conflict.  
range at power-up, with V  
= 0V.  
OUT  
When configured for manual span operation, span pin  
readback is disabled.  
V
DD  
The asynchronous clear pin resets the LTC2751 to 0V  
(ꢁero-, half- or quarter-scale code) in any output range.  
CLR resets both the input and DAC data registers, while  
leaving the span registers undisturbed.  
V
MSPAN  
S2  
DD  
LTC2751-16  
S1  
S0  
WR UPD READ  
D/S  
These devices also have a power-on reset. If configured  
for SoftSpan operation, the part initialiꢁes to ꢁero scale in  
the 0V to 5V output range. If configured for single-span  
operation, the part initialiꢁes to the ꢁero-volt code in the  
chosen output range.  
16  
2751 F01  
DATA I/O  
Figure 1ꢁ Configuring the LTCꢀꢃ51 for  
Single-Span Operation ( 10V Range)  
2751fa  
13  
LTC2751  
operaTion  
Table ꢀꢁ Span Codes  
isatwo-functionpin.Theupdatefunctionisdisabledwhen  
READ is high, and the UPD pin instead selects the input  
or DAC register for readback. Table 1 shows the readback  
functions for the LTC2751.  
Sꢀ  
0
S1  
0
S0  
0
SPAN  
Unipolar 0V to 5V  
Unipolar 0V to 10V  
Bipolar –5V to 5V  
Bipolar –10V to 10V  
Bipolar –2.5V to 2.5V  
Bipolar –2.5V to 7.5V  
0
0
1
0
1
0
The most common readback task is to check the contents  
of an input register after writing to it, before updating the  
new data to the DAC register. To do this, bring READ high  
whileholdingUPDlow. Thecontentsoftheselectedport’s  
input register are output by the data or span I/O pins.  
0
1
1
1
0
0
1
0
1
Codes not shown are reserved and should not be used.  
To read back the contents of a DAC register, bring READ  
high, then bring UPD high. The contents of the selected  
data or span DAC register are output by the data or span  
I/O pins. Note: if no update is desired after the readback  
operation, UPD must be returned low before bringing  
READ low, otherwise the UPD pin will revert to its primary  
function and update the DAC.  
Readback  
The contents of any one of the four interface registers can  
be read back by using the READ pin in conjunction with  
the D/S and UPD pins.  
AreadbackoperationisinitiatedbybringingREADtologic  
high.TheI/Opins,whicharehigh-impedancedigitalinputs  
when READ is low, selectively change to low-impedance  
logic outputs during readback.  
System Offset Adjustment  
Many systems require compensation for overall system  
offset. The R  
offset adjustment pin is provided for this  
VOS  
The I/O pins comprise two ports, data and span. The data  
I/O port consists of pins D0-D11, D0-D13 or D0-D15  
(LTC2751-12,LTC2751-14orLTC2751-16,respectively).  
The span I/O port consists of pins S0, S1 and S2 for all  
parts.  
purpose. For noise immunity and ease of adjustment, the  
control voltage is attenuated to the DAC output:  
V
OS  
V
OS  
= –0.01 • V(R ) [0V to 5V, 2.5V spansꢂ  
VOS  
= –0.02 • V(R ) [0V to 10V, 5V,  
VOS  
Each I/O port has one dedicated input register and one  
dedicated DAC register. The register structure is shown  
in the Block Diagram.  
–2.5V to 7.5V spansꢂ  
= –0.04 • V(R ) [ 10V spanꢂ  
V
OS  
VOS  
The D/S pin is used to select which I/O port (data or span)  
isconfiguredtoreadbackthecontentsofitsregisters. The  
unselected I/O port’s pins remain high-impedance inputs.  
The nominal input range of this pin is 5V; other refer-  
ence voltages of up to 15V may be used if needed. The  
R
pin has an input impedance of 1MW. To preserve the  
VOS  
Once the I/O port is selected, its input or DAC register is  
selected for readback by using the UPD pin. Note that UPD  
settling performance of the LTC2751, this pin should be  
driven with a Thevenin-equivalent impedance of 10kW or  
less. If not used, R  
should be shorted to I  
.
VOS  
OUT2  
2751fa  
14  
LTC2751  
operaTionexaMples  
1. Load 5V range with the output at 0V. Note that since span and code are updated together, the output, if started at  
0V, will stay there.  
WR  
SPAN I/O  
INPUT  
010  
DATA I/O  
INPUT  
8000  
H
UPD  
UPDATE  
(5V RANGE, V  
= 0V)  
OUT  
D/S  
READ = LOW  
2751 TD03  
2. Load 10V range with the output at 5V, changing to –5V.  
WR  
SPAN I/O  
INPUT  
011  
DATA I/O  
INPUT  
C000  
4000  
H
H
UPD  
UPDATE (5V)  
UPDATE (–5V)  
D/S  
READ = LOW  
2751 TD04  
3. Write and update mid-scale code in 0V to 5V range (V  
and DAC registers before updating.  
= 2.5V) using readback to check the contents of the input  
OUT  
WR  
HI-Z  
DATA I/O  
INPUT  
8000  
H
HI-Z  
DATA I/O  
OUTPUT  
8000  
0000  
H
H
INPUT REGISTER  
DAC REGISTER  
UPD  
UPDATE (2.5V)  
D/S  
READ  
2751 TD05  
2751fa  
15  
LTC2751  
applicaTions inForMaTion  
Op Amp Selection  
when programmed in a unipolar or bipolar output range.  
These are the changes the op amp can cause to the INL,  
DNL, unipolar offset, unipolar gain error, bipolar ꢁero  
and bipolar gain error. Tables 3 and 4 can also be used  
to determine the effects of op amp parameters on the  
LTC2751-14 and the LTC2751-12. However, the results  
obtained from Tables 3 and 4 are in 16-bit LSBs. Divide  
these results by 4 (LTC2751-14) and 16 (LTC2751-12) to  
obtain the correct LSB siꢁing.  
Because of the extremely high accuracy of the 16-bit  
LTC2751-16, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 3 and 4 contain equations for evaluating the ef-  
fects of op amp parameters on the LTC2751’s accuracy  
Table 5 contains a partial list of LTC precision op amps  
recommended for use with the LTC2751. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
the system’s specified error budget. Select the amplifier  
from Table 5 and insert the specified op amp parameters  
in Table 4. Add up all the errors for each category to de-  
termine the effect the op amp has on the accuracy of the  
part.Arithmeticsummationgivesan(unlikely)worst-case  
effect. A root-sum-square (RMS) summation produces a  
more realistic estimate.  
Table 3ꢁ Variables for Each Output Range That Adjust the  
Equations in Table 4  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
Aꢀ  
A3  
A4  
A5  
1
5V  
10V  
2
1
3
0.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
10V  
4
4
0.83  
1.4  
0.7  
2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
0.5  
1.5  
Table 4ꢁ Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1)ꢁ Subscript 1  
Refers to Output Amp, Subscript ꢀ Refers to Reference Inverting Ampꢁ  
UNIPOLAR  
OFFSET (LSB)  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
DNL (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
V
• 3.2 •  
V
• 0.82 •  
A3 • V  
OS1  
• 13.2 •  
A3 • V  
• 19.8 •  
V
• 13.2 •  
V
• 13.2 •  
OS1  
)
)
)
)
)
)
(V  
(V  
(V  
(V  
(V  
(V  
OS1  
OS1  
OS1  
OS1  
OS1  
5V  
5V  
5V  
5V  
5V  
5V  
I
(nA)  
I
• 0.0003 •  
I
• 0.00008 •  
I
• 0.13 •  
I
• 0.13 •  
0
I
B1  
• 0.0018 •  
I
B1  
• 0.0018 •  
(V  
(V  
B1  
B1  
B1  
B1  
B1  
)
)
(V  
(V  
(V  
(V  
)
)
)
)
REF  
REF  
REF  
REF  
REF  
REF  
16.5k  
VOL1  
1.5k  
VOL1  
131k  
VOL1  
131k  
VOL1  
A
VOL1  
(V/V)  
(mV)  
A1 •  
A2 •  
0
0
0
0
A5 •  
A5 •  
)
)
(A  
(A  
)
)
(A  
(A  
5V  
5V  
5V  
V
0
0
0
0
0
0
A4 • V  
• 13.1 •  
V
• 26.2 •  
V
• 26.2 •  
OS2  
OS2  
OS2  
OS2  
(V  
)
(V  
(V  
(
))  
)
REF  
REF  
REF  
5V  
5V  
REF  
5V  
REF  
I
(mV)  
A4 • I • 0.13 •  
I
• 0.26 •  
I
B2  
• 0.26 •  
131k  
B2  
B2  
B2  
(
))  
(V  
REF  
(V  
)
)
(V  
66k  
VOL2  
131k  
A
VOL2  
(V/V)  
A4 •  
(A  
)
(A  
(A  
)
)
VOL2  
VOL2  
Table 5ꢁ Partial List of LTC Precision Amplifiers Recommended for Use with the LTCꢀꢃ51 with Relevant Specifications  
AMPLIFIER SPECIFICATIONS  
t
SETTLING  
VOLTAGE CURRENT  
SLEW  
RATE  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
with  
POWER  
V
I
A
VOL  
NOISE  
NOISE  
LTCꢀꢃ51  
µs  
DISSIPATION  
mW  
OS  
B
AMPLIFIER  
LT1001  
µV  
nA  
V/mV  
nV/Hz  
pA/Hz  
25  
2
800  
10  
14  
14  
2.7  
5
0.12  
0.008  
0.008  
0.3  
0.25  
0.2  
0.16  
4.5  
22  
0.8  
0.7  
120  
120  
115  
19  
2
46  
11  
LT1097  
50  
0.35  
0.25  
20  
1000  
1500  
4000  
5000  
2000  
LT1112 (Dual)  
LT1124 (Dual)  
LT1468  
60  
0.75  
12.5  
90  
10.5/Op Amp  
69/Op Amp  
117  
70  
75  
10  
0.6  
LT1469 (Dual)  
125  
10  
5
0.6  
22  
90  
2
123/Op Amp  
2751fa  
16  
LTC2751  
applicaTions inForMaTion  
Op amp offset will contribute mostly to output offset and  
gain error and has minimal effect on INL and DNL. For  
the LTC2751-16, a 250µV op amp offset will cause about  
0.8LSB INL degradation and 0.2LSB DNL degradation  
with a 5V reference. For the LTC2751 programmed in 5V  
unipolar mode, the same 250µV op amp offset will cause  
a 3.3LSB ꢁero-scale error and a 3.3LSB gain error.  
be very dependent on ambient conditions. Minimiꢁing  
the error due to reference temperature coefficient can be  
achieved by choosing a precision reference with a low  
output voltage temperature coefficient and/or tightly con-  
trolling the ambient temperature of the circuit to minimiꢁe  
temperature gradients.  
As precision DAC applications move to 16-bit and higher  
performance, referenceoutputvoltage noise may contrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practi-  
cal for the system resolution desired. Precision voltage  
references, like the LT1236, produce low output noise in  
the 0.1Hꢁ to 10Hꢁ region, well below the 16-bit LSB level  
in 5V or 10V full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimiꢁe output noise.  
While not directly addressed by the simple equations in  
Tables 3 and 4, temperature effects can be handled just  
as easily for unipolar and bipolar applications. First, con-  
sult an op amp’s data sheet to find the worst-case V  
OS  
and I over temperature. Then, plug these numbers in  
the V and I equations from Table 4 and calculate the  
B
OS  
B
temperature-induced effects.  
For applications where fast settling time is important,  
Application Note 74, “Component and Measurement  
Advances Ensure 16-Bit DAC Settling Time,” offers a  
thorough discussion of 16-bit DAC settling time and op  
amp selection.  
Table 6ꢁ Partial List of LTC Precision References Recommended  
for Use with the LTCꢀꢃ51 with Relevant Specifications  
Precision Voltage Reference Considerations  
INITIAL  
TOLERANCE  
TEMPERATURE  
DRIFT  
0ꢁ1Hz to 10Hz  
NOISE  
REFERENCE  
Much in the same way selecting an operational amplifier  
for use with the LTC2751 is critical to the performance of  
the system, selecting a precision voltage reference also  
requiresduediligence.TheoutputvoltageoftheLTC2751is  
directlyaffectedbythevoltagereference;thus,anyvoltage  
reference error will appear as a DAC output voltage error.  
LT1019A-5,  
LT1019A-10  
0.05ꢀ  
0.05ꢀ  
0.075ꢀ  
0.05ꢀ  
5ppm/°C  
5ppm/°C  
10ppm/°C  
10ppm/°C  
12µV  
P-P  
LT1236A-5,  
LT1236A-10  
3µV  
P-P  
LT1460A-5,  
LT1460A-10  
20µV  
P-P  
P-P  
LT1790A-2.5  
12µV  
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit appli-  
cations: output voltage initial tolerance, output voltage  
temperature coefficient and output voltage noise.  
Grounding  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding techniques should be used. I  
to the star ground with as low a resistance as possible.  
When it is not possible to locate star ground close to  
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( 0.05ꢀ), minimiꢁes the gain error caused by the refer-  
ence; however, a calibration sequence that corrects for  
system ꢁero- and full-scale error is always recommended.  
must be tied  
OUT2  
I
, a low resistance trace should be used to route this  
OUT2  
pin to star ground. This minimiꢁes the voltage drop from  
this pin to ground caused by the code dependent current  
flowing to ground. When the resistance of this circuit  
board trace becomes greater than 1W, a force/sense am-  
plified configuration should be used to drive this pin (see  
Figure 2). This preserves the excellent accuracy (1LSB  
INL and DNL) of the LTC2751-16.  
Areference’soutputvoltagetemperaturecoefficientaffects  
notonlythefull-scaleerror, butcanalsoaffectthecircuit’s  
INL and DNL performance. If a reference is chosen with  
a loose output voltage temperature coefficient, then the  
DAC output voltage along its transfer characteristic will  
2751fa  
17  
LTC2751  
applicaTions inForMaTion  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
6
I
OUT2  
200Ω  
200Ω  
2
6
1000pF  
LT1468  
1
2
+ 3  
+
2
3
ZETEX  
BAT54S  
6
I
LT1001  
OUT2  
3
1
2
REF  
5V  
ZETEX*  
BAT54S  
5
+
3
7
1/2 LT®1469  
6
C2**  
150pF  
*SCHOTTKY BARRIER DIODE  
2
R
1
R
38 37  
REF  
36  
C1  
15pF  
R
FB  
OFS  
R
IN  
COM  
R1  
R2  
0.1µF  
15V  
LTC2751-16  
8
I
I
35  
OUT1  
2
3
31  
30  
29  
28  
17  
18  
WR  
UPD  
READ  
D/S  
WR  
UPD  
1
V
OUT  
16-BIT DAC WITH SPAN SELECT  
1/2 LT1469  
+
4
OUT2  
GND  
READ  
D/S  
0.1µF  
16  
4
CLR  
CLR  
–15V  
3
16  
15  
V
DD  
5V  
MSPAN  
C3  
R
VOS  
0.1µF  
3, 33, 32  
SPAN I/O  
S2-S0  
**FOR MULTIPLYING APPLICATIONS C2 = 15pF  
6-14, 19-25  
34  
DATA I/O  
D15-D0  
2751 F02  
Figure ꢀꢁ Basic Connections for SoftSpan VOUT DAC with Two Optional Circuits  
for Driving IOUTꢀ from GND with a Force/Sense Amplifier  
2751fa  
18  
LTC2751  
Typical applicaTions  
16-Bit DAC with Software-Selectable Ranges  
REF  
5V  
5
+
7
1/2 LT1469  
6
C2**  
150pF  
2
R
1
R
38 37  
REF  
36  
R
R
IN  
COM  
FB  
OFS  
C1  
15pF  
R1  
R2  
0.1µF  
15V  
LTC2751-16  
8
I
I
35  
OUT1  
2
31  
30  
29  
28  
17  
18  
WR  
UPD  
READ  
D/S  
WR  
UPD  
1
V
OUT  
16-BIT DAC WITH SPAN SELECT  
1/2 LT1469  
4
OUT2  
GND  
3 +  
READ  
D/S  
16  
4
–15V  
5V  
CLR  
CLR  
0.1µF  
3
16  
15  
V
DD  
MSPAN  
C3  
0.1µF  
R
VOS  
3, 33, 32  
SPAN I/O  
S2-S0  
6-14, 19-25  
34  
2751 TA02  
DATA I/O  
D15-D0  
**FOR MULTIPLYING APPLICATIONS C2 = 15pF  
2751fa  
19  
LTC2751  
package DescripTion  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-ꢀ70ꢀ Rev C)  
0.70 0.05  
5.50 0.05  
4.ꢀ0 0.05  
3.00 REF  
5.ꢀ5 0.05  
3.ꢀ5 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
5.5 REF  
6.ꢀ0 0.05  
7.50 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN ꢀ NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
0.75 0.05  
0.00 – 0.05  
3.00 REF  
5.00 0.ꢀ0  
37 38  
0.40 0.ꢀ0  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
2
5.ꢀ5 0.ꢀ0  
5.50 REF  
7.00 0.ꢀ0  
3.ꢀ5 0.ꢀ0  
(UH) QFN REF C ꢀꢀ07  
0.200 REF 0.25 0.05  
0.50 BSC  
R = 0.ꢀ25  
TYP  
R = 0.ꢀ0  
TYP  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
2751fa  
20  
LTC2751  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/12 Correction made in the Typical Application diagram.  
1, 18  
2751fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC2751  
Typical applicaTion  
Offset and Gain Trim Circuitsꢁ Powering VDD from LT10ꢀꢃ Ensures Quiet Supply  
+
V
IN  
OUT  
U3  
LT1027  
+
2
6
5
2
1
V
C13  
8
2
3
2
10µF  
TRIM  
R2  
10k  
3
R1  
10k  
C20  
10µF  
GND  
4
U2A  
1
GND  
LT®1469  
1
C23  
0.1µF  
+
C22  
0.001µF  
4
V
GND  
GND  
GND  
C1  
30pF  
15  
2
1
38  
37 36  
6
7
8
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
V
R
R
REF  
R R  
OFS FB  
DD  
IN  
COM  
35  
9
6
5
I
I
OUT1  
10  
11  
12  
13  
14  
19  
20  
21  
22  
23  
24  
25  
U2B  
LT1469  
7
V
OUT  
4
+
OUT2  
U1  
LTC2751-16  
34  
DATA I/O  
R
VOS  
GND  
D4  
D3  
D2  
D1  
D0  
3
33  
32  
S2  
S1  
SPAN I/O  
S0 D/S READ UPD WR CLR  
MSPAN NC GND GND  
2751 TA03  
28 29 30 31 17  
18  
5
16  
39  
D/S READ UPD WR CLR  
GND  
relaTeD parTs  
PART NUMBER  
LT1027  
DESCRIPTION  
COMMENTS  
Precision Reference  
Precision Reference  
2ppm/°C Maximum Drift  
LT1236A-5  
LT1468  
0.05ꢀ Maximum Tolerance, 1ppm 0.1Hꢁ to 10Hꢁ Noise  
90MHꢁ GBW, 22V/µs Slew Rate  
16-Bit Accurate Op-Amp  
LT1469  
Dual 16-Bit Accurate Op-Amp  
90MHꢁ GBW, 22V/µs Slew Rate  
LTC1588/LTC1589/ Serial 12-/14-/16-Bit I  
LTC1592  
Single DACs  
Software-Selectable (SoftSpan) Ranges, 1LSB INL, DNL, 16-Lead SSOP Package  
OUT  
LTC1591/LTC1597 Parallel 14-/16-Bit I  
Single DAC  
Integrated 4-Quadrant Resistors  
OUT  
LTC1821  
Parallel 16-Bit V  
Single DAC  
1LSB INL, DNL, 0V to 10V, 0V to –10V, 10V Output Ranges  
OUT  
LTC2601/LTC2611/ Serial 12-/14-/16-Bit V  
LTC2621  
Single DACs  
Single DACs, SPI-Compatible, Single Supply, 0V to 5V Outputs in 3mm × 3mm  
DFN-10 Package  
OUT  
2
LTC2606/LTC2616/ Serial 12-/14-/16-Bit V  
LTC2626  
Single DACs  
Single DACs, I C-Compatible, Single Supply, 0V to 5V Outputs in 3mm × 3mm  
OUT  
DFN-10 Package  
LTC2641/LTC2642 Serial 12-/14-/16-Bit Unbuffered V  
DACs  
Single  
2LSB INL, 1LSB DNL, 1µs Settling, Tiny MSOP-10, 3mm × 3mm DFN-10  
Packages  
OUT  
LTC2704  
Serial 12-/14-/16-Bit V  
Quad DACs  
Software-Selectable (SoftSpan) Ranges, Integrated Amplifiers  
OUT  
2751fa  
LT 1112 REV A • PRINTED IN USA  
22 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2007  
(408)432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY