LTC2751AIUHF-16-PBF [Linear]

Current Output 12-/14-/16-Bit SoftSpanTM DACs with Parallel I/O; 电流输出12位/ 14位/ 16位SoftSpanTM的DAC与并行I / O
LTC2751AIUHF-16-PBF
型号: LTC2751AIUHF-16-PBF
厂家: Linear    Linear
描述:

Current Output 12-/14-/16-Bit SoftSpanTM DACs with Parallel I/O
电流输出12位/ 14位/ 16位SoftSpanTM的DAC与并行I / O

文件: 总20页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2751  
Current Output  
TM  
12-/14-/16-Bit SoftSpan  
DACs with Parallel I/O  
FEATURES  
DESCRIPTION  
The LTC®2751 is a family of 12-, 14-, and 16-bit multi-  
plying parallel-input, current-output DACs. They operate  
from a single 2.7V to 5.5V supply. All parts are guaranteed  
monotonic over temperature. The LTC2751A-16 provides  
16-bitperformance( 1LꢀSILandDILovertemperature  
withoutanyadjustments.TheseoftꢀpanDACsoffersix  
outputranges—twounipolarandfourbipolar—thatcanbe  
programmedthroughtheparallelinterface,orpinstrapped  
for operation in a single range.  
Six Programmable Output Ranges  
Unipolar: 0V to 5V, 0V to 10V  
Bipolar: ±5V, ±10V, ±±25V, ±25V to 725V  
Maximum 16-Bit INL Error: ±1 LSB oꢀer ꢁemperature  
Low 1µA (Maximum) Supply Current  
Guaranteed Monotonic oꢀer ꢁemperature  
Low Glitch Impulse 1nV s  
2.7V to 5.5V ꢀingle ꢀupply Operation  
2µs ꢀettling Time to 1 LꢀS  
Reference ꢁnput: 15V  
These parts use a bidirectional input/output parallel  
interface that allows readback of any on-chip register. A  
power-oncircuitresetstheDACoutputto0Vwhenpoweris  
initiallyapplied.AlogiclowontheCLRpinasynchronously  
clears the DAC to 0V in any output range.  
Parallel ꢁnterface with Readback of All Registers  
Asynchronous CLR Pin Clears DAC Output to 0V in  
Any Output Range  
Power-On Reset to 0V  
38-Pin 5mm × 7mm QFI Package  
The parts are specified over commercial and industrial  
temperature ranges.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
APPLICATIONS  
High Resolution Offset and Gain Adjustment  
Process Control and ꢁndustrial Automation  
Automatic Test Equipment  
Data Acquisition ꢀystems  
TYPICAL APPLICATION  
16-Bit DAC with Software Selectable Ranges  
LꢁC±751-16 Integral Nonlinearity  
REF  
5V  
1.0  
V
V
= 5V  
REF  
DD  
0.8  
0.6  
= 5V  
1/2 LT®1469  
±10V RANGE  
C2  
150pF  
+
0.4  
0.2  
2
R
1
R
38 37  
REF  
36  
R
R
OFS  
IN  
R1  
COM  
FB  
0.0  
C1  
R2  
15pF  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
LTC2751-16  
I
I
OUT1 35  
31  
30  
29  
28  
17  
18  
WR  
UPD  
READ  
D/S  
WR  
UPD  
16-BIT DAC WITH SPAN SELECT  
V
OUT  
25°C  
90°C  
–45°C  
1/2 LT1469  
+
OUT2  
GND  
4
READ  
D/S  
16  
CLR  
CLR  
0
16384  
32768  
CODE  
49152  
65535  
3
16  
15  
5V  
V
DD  
MSPAN  
C3  
0.1μF  
R
VOS  
2751 TA01b  
3, 32, 33  
SPAN I/O  
S2-S0  
6-14, 19-25  
34  
2751 TA01  
DATA I/O  
D15-D0  
2751f  
1
LTC2751  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, ±)  
Operating Temperature Range  
, ꢁ  
, R  
to GID..................................... 0.3V  
OUT1 OUT2 COM  
R , R , R , REF, R  
DD  
LTC2751C .................................................... 0°C to 70°C  
LTC2751ꢁ ................................................. –40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
ꢀtorage Temperature Range................... –65°C to 150°C  
to GID........................... 15V  
VOꢀ  
FS OFꢀ ꢁI  
V
to GID.................................................. –0.3V to 7V  
ꢀ2, ꢀ1, ꢀ0, D15-D0, MꢀPAI, READ, D/ꢀ,WR,  
UPD, CLR to GID........–0.3V to V + 0.3V (7V Maxꢂ  
DD  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
R
I
1
2
3
4
5
6
7
8
9
31 WR  
R
I
1
2
3
4
5
6
7
8
9
31 WR  
R
1
2
3
4
5
6
7
8
9
31 WR  
COM  
COM  
COM  
R
IN  
30 UPD  
R
IN  
30 UPD  
R
IN  
30 UPD  
S2  
READ  
D/S  
S2  
READ  
D/S  
29  
28  
S2  
READ  
D/S  
29  
28  
29  
28  
I
OUT2  
NC  
OUT2  
NC  
OUT2  
NC  
27 NC  
26  
NC  
27 NC  
26  
NC  
27 NC  
26 NC  
25 NC  
24 NC  
23 NC  
22 NC  
21 D0  
D15  
D14  
D13  
D12  
D13  
D12  
D11  
D10  
D11  
D10  
D9  
39  
39  
39  
25 D0  
24 D1  
23 D2  
22 D3  
21 D4  
25 NC  
24 NC  
23 D0  
22 D1  
21 D2  
D8  
D11 10  
D10 11  
D9 12  
D9 10  
D8 11  
D7 12  
D7 10  
D6 11  
D5 12  
20  
20  
D5  
20  
D3  
D1  
13 14 15 16 17 18 19  
LTC2751-16 UHF PACKAGE  
13 14 15 16 17 18 19  
LTC2751-14 UHF PACKAGE  
13 14 15 16 17 18 19  
LTC2751-12 UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
T
= 125°C, θ = 34°C/W  
T
= 125°C, θ = 34°C/W  
JMAX JA  
JMAX  
JA  
T
= 125°C, θ = 34°C/W  
JA  
JMAX  
EXPOꢀED PAD (PꢁI 39ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS EXPOꢀED PAD (PꢁI 39ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
EXPOꢀED PAD (PꢁI 39ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2751CUHF-12#PSF LTC2751CUHF-12#TRPSF  
LTC2751ꢁUHF-12#PSF LTC2751ꢁUHF-12#TRPSF  
LTC2751CUHF-14#PSF LTC2751CUHF-14#TRPSF  
LTC2751ꢁUHF-14#PSF LTC2751ꢁUHF-14#TRPSF  
ꢁAPE AND REEL  
PARꢁ MARKING*  
275112  
PACKAGE DESCRIPꢁION  
ꢁEMPERAꢁURE RANGE  
0°C to 70°C  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
38-Lead (5mm × 7mmꢂ Plastic QFI  
275112  
–40°C to 85°C  
0°C to 70°C  
275114  
275114  
–40°C to 85°C  
0°C to 70°C  
LTC2751SCUHF-16#PSF LTC2751SCUHF-16#TRPSF  
LTC2751SꢁUHF-16#PSF LTC2751SꢁUHF-16#TRPSF  
LTC2751ACUHF-16#PSF LTC2751ACUHF-16#TRPSF  
LTC2751AꢁUHF-16#PSF LTC2751AꢁUHF-16#TRPSF  
275116  
275116  
–40°C to 85°C  
0°C to 70°C  
275116  
275116  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2751f  
2
LTC2751  
ELECTRICAL CHARACTERISTICS  
V
= 5V, V  
= 5V unless otherwise specified2 ꢁhe  
REF  
denotes the  
DD  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at ꢁ = ±5°C2  
A
LꢁC±751-1±  
LꢁC±751-14  
LꢁC±751B-16  
LꢁC±751A-16  
SYMBOL PARAMEꢁER  
Static Performance  
Resolution  
CONDIꢁIONS  
MIN ꢁYP  
MAX MIN ꢁYP MAX MIN ꢁYP MAX MIN ꢁYP MAX UNIꢁS  
12  
12  
14  
14  
16  
16  
16  
16  
Sits  
Sits  
LꢀS  
Monotonicity  
DIL  
ꢁIL  
GE  
Differential  
1
1
2
1
1
5
1
2
0.2  
0.4  
4
1
1
Ionlinearity  
ꢁntegral  
Ionlinearity  
LꢀS  
LꢀS  
Gain Error  
All Output  
Ranges  
0.5  
0.6  
0.2  
0.5  
1.5  
0.6  
0.6  
0.5  
20  
14  
GE  
Gain Error Temp-  
erature Coefficient  
ΔGain/ΔTemp  
0.6  
0.5  
0.6  
2
ppm/°C  
LꢀS  
TC  
SZE  
SZꢀ  
Sipolar Zero Error All Sipolar  
Ranges  
1
3
12  
8
Sipolar Zero Temp-  
erature Coefficient  
0.5  
ppm/°C  
LꢀS/V  
nA  
TC  
PꢀR  
Power ꢀupply  
Rejection  
V
V
= 5V, 10ꢃ  
= 3V, 10ꢃ  
0.025  
0.06  
0.1  
0.25  
0.4  
1
0.03  
0.1  
0.2  
0.5  
DD  
DD  
Leakage  
T = 25°C  
0.05  
2
5
0.05  
2
5
0.05  
2
5
0.05  
2
5
LKG  
OUT1  
A
Current  
T
to T  
MꢁI MAX  
C
ꢁOUT1  
Output  
Capacitance  
Full-ꢀcale  
Zero ꢀcale  
75  
45  
75  
45  
75  
45  
75  
45  
pF  
pF  
V
= 5V, V  
= 5V unless otherwise specified2 ꢁhe  
denotes specifications that apply oꢀer the full operating temperature range,  
DD  
REF  
otherwise specifications are at ꢁ = ±5°C2  
A
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
Resistances (Note 3)  
R1/R2  
Reference ꢁnverting Resistors  
DAC ꢁnput Resistance  
Feedback Resistor  
(Iote 4ꢂ  
16  
8
20  
10  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
R
REF  
FS  
(Iote 3ꢂ  
(Iote 3ꢂ  
8
10  
Sipolar Offset Resistor  
Offset Adjust Resistor  
16  
800  
20  
OFꢀ  
VOꢀ  
1000  
Dynamic Performance  
Output ꢀettling Time  
0V to 10V Range, 10V ꢀtep. To 0.0015ꢃ Fꢀ  
(Iote 5ꢂ  
2
μs  
Glitch ꢁmpulse  
(Iote 6ꢂ  
(Iote 7ꢂ  
1
1
nV•s  
nV•s  
mV  
Digital-to-Analog Glitch ꢁmpulse  
Multiplying Feedthrough Error  
0V to 10V Range, V  
ꢀine Wave  
=
10V, 10kHz  
0.5  
REF  
THD  
Total Harmonic Distortion  
(Iote 8ꢂ Multiplying  
(Iote 9ꢂ at ꢁ  
–110  
13  
dS  
Output Ioise Voltage Density  
nV/√Hz  
OUT1  
Power Supply  
V
ꢀupply Voltage  
2.7  
5.5  
1
V
DD  
DD  
ꢀupply Current, V  
Digital ꢁnputs = 0V or V  
0.5  
μA  
DD  
DD  
2751f  
3
LTC2751  
ELECTRICAL CHARACTERISTICS  
V
= 5V, V  
= 5V unless otherwise specified2 ꢁhe  
denotes the  
DD  
REF  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at ꢁ = ±5°C2  
A
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
Digital Inputs  
V
Digital ꢁnput High Voltage  
Digital ꢁnput Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
ꢁH  
DD  
2.7V ≤ V < 3.3V  
DD  
V
4.5V < V ≤ 5.5V  
0.8  
0.6  
V
V
ꢁL  
DD  
2.7V ≤ V ≤ 4.5V  
DD  
Digital ꢁnput Current  
V
= GID to V  
DD  
1
6
µA  
pF  
ꢁI  
ꢁI  
ꢁI  
C
Digital ꢁnput Capacitance  
V
= 0V (Iote 10ꢂ  
ꢁI  
Digital Outputs  
V
OH  
V
OL  
= 200µA  
= 200µA  
V – 0.4  
DD  
V
V
OH  
OL  
0.4  
TIMING CHARACTERISTICS  
V
= 5V, V  
= 5V unless otherwise specified2 ꢁhe  
REF  
denotes specifications that  
DD  
apply oꢀer the full operating temperature range, otherwise specifications are at ꢁ = ±5°C2  
A
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
V
= 425V to 525V  
DD  
Write and Update ꢁiming  
t
t
t
t
t
t
t
t
ꢁ/O Valid to WR Rising Edge ꢀet-Up  
ꢁ/O Valid to WR Rising Edge Hold  
WR Pulse Width  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
20  
20  
0
UPD Pulse Width  
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/ꢀ Valid to WR Falling Edge ꢀet-Up Time  
WR Rising Edge to D/ꢀ Valid Hold Time  
Io Data ꢀhoot-Through  
(Iote 10ꢂ  
0
9
9
Readback ꢁiming  
t
13  
t
14  
t
15  
t
17  
t
18  
t
19  
t
20  
t
22  
t
23  
t
24  
WR Rising Edge to READ Rising Edge  
READ Falling Edge to WR Falling Edge  
READ Rising Edge to ꢁ/O Propagation Delay  
UPD Valid to ꢁ/O Propagation Delay  
D/ꢀ Valid to READ Rising Edge  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Iote 10ꢂ  
20  
C = 10pF  
L
30  
30  
C = 10pF  
L
(Iote 10ꢂ  
Io Update  
Io Update  
(Iote 10ꢂ  
(Iote 10ꢂ  
(Iote 10ꢂ  
9
9
READ Rising Edge to UPD Rising Edge  
UPD Falling Edge to READ Falling Edge  
READ Falling Edge to UPD Rising Edge  
ꢁ/O Sus Hi-Z to READ Rising Edge  
READ Falling Edge to ꢁ/O Sus Active  
9
9
0
20  
CLR ꢁiming  
t
CLR Pulse Width Low  
20  
ns  
25  
2751f  
4
LTC2751  
TIMING CHARACTERISTICS  
V
= 5V, V  
= 5V unless otherwise specified2 ꢁhe  
REF  
denotes specifications that  
DD  
apply oꢀer the full operating temperature range, otherwise specifications are at ꢁ = ±5°C2  
A
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
V
= ±27V to 323V  
DD  
Write and Update ꢁiming  
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
ꢁ/O Valid to WR Rising Edge ꢀet-Up  
ꢁ/O Valid to WR Rising Edge Hold  
WR Pulse Width  
18  
18  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UPD Pulse Width  
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/ꢀ Valid to WR Falling Edge ꢀet-Up Time  
WR Rising Edge to D/ꢀ Valid Hold Time  
Io Data ꢀhoot-Through  
(Iote 10ꢂ  
0
18  
18  
Readback ꢁiming  
t
13  
t
14  
t
15  
t
17  
t
18  
t
19  
t
20  
t
22  
t
23  
t
24  
WR Rising Edge to Read Rising Edge  
Read Falling Edge to WR Falling Edge  
Read Rising Edge to ꢁ/O Propagation Delay  
UPD Valid to ꢁ/O Propagation Delay  
D/ꢀ Valid to Read Rising Edge  
18  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Iote 10ꢂ  
C = 10pF  
L
40  
40  
C = 10pF  
L
(Iote 10ꢂ  
Io Update  
Io Update  
(Iote 10ꢂ  
(Iote 10ꢂ  
(Iote 10ꢂ  
18  
9
Read Rising Edge to UPD Rising Edge  
UPD Falling Edge to Read Falling Edge  
READ Falling Edge to UPD Rising Edge  
ꢁ/O Sus Hi-Z to Read Rising Edge  
9
18  
0
Read Falling Edge to ꢁ/O Sus Active  
40  
CLR ꢁiming  
t
CLR Pulse Width Low  
30  
ns  
25  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
basis. ꢀee Application Iote 74, “Component and Measurement Advances  
Ensure 16-Sit DAC ꢀettling Time.”  
Note 6: Measured at the major carry transition, 0V to 5V range. Output  
amplifier: LT1469; C = 27pF.  
FS  
Note ±: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 3: Secause of the proprietary ꢀoftꢀpan switching architecture, the  
measured resistance looking into each of the specified pins is constant for  
Note 72 Full-scale transition; REF = 0V.  
Note 82 REF = 6V  
at 1kHz. 0V to 5V range. DAC code = Fꢀ. Output  
RMꢀ  
amplifier = LT1469.  
Note 92 Calculation from V = √4kTRS, where k = 1.38E-23 J/°K  
n
all output ranges if the ꢁ  
and ꢁ  
pins are held at ground.  
OUT1  
OUT2  
(Soltzmann constantꢂ, R = resistance (Ωꢂ, T = temperature (°Kꢂ, and S =  
bandwidth (Hzꢂ.  
Note 102 Guaranteed by design. Iot production tested.  
Note 4: R1 is measured from R to R  
; R2 is measured from REF to  
ꢁI  
COM  
R
COM  
.
Note 5: Using LT1469 with C  
= 15pF. A 0.0015ꢃ settling time  
FEEDSACK  
of 1.7μs can be achieved by optimizing the time constant on an individual  
2751f  
5
LTC2751  
TYPICAL PERFORMANCE CHARACTERISTICS ꢁ = ±5°C, unless otherwise noted2  
A
LꢁC±751-16  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
DD  
REF  
DD  
= 5V  
= 5V  
±10V RANGE  
±10V RANGE  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
2751 G01  
2751 G02  
INL ꢀs ꢁemperature  
DNL ꢀs ꢁemperature  
Bipolar Zero ꢀs ꢁemperature  
1.0  
0.8  
1.0  
8
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
DD  
REF  
DD  
REF  
DD  
REF  
0.8  
0.6  
6
4
2
0
2
4
6
8
±10V RANGE  
±10V RANGE  
±10V RANGE  
0.6  
0.4  
0.4  
+INL  
–INL  
0.5ppm/°C (TYP)  
0.2  
0.2  
+DNL  
–DNL  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2751 G04  
2751 G05  
2751 G06  
Gain Error ꢀs ꢁemperature  
INL ꢀs V  
DNL ꢀs V  
REF  
REF  
16  
12  
8
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
= 5V  
±5V RANGE  
±5V RANGE  
±10V RANGE  
0.6  
0.6  
0.4  
0.4  
+INL  
–INL  
0.6ppm/°C (TYP)  
4
+INL  
–INL  
0.2  
0.2  
+DNL  
–DNL  
+DNL  
–DNL  
0
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–4  
–8  
–12  
–16  
0
20  
TEMPERATURE (°C)  
40  
–10 –8  
–6  
0
2
4
6
10  
–10 –8 –6  
4
2
V
0
2
4
6
10  
–40  
–20  
60  
80  
4
2
V
8
8
(V)  
(V)  
REF  
REF  
2751 G07  
2751 G08  
2751 G09  
2751f  
6
LTC2751  
TYPICAL PERFORMANCE CHARACTERISTICS ꢁ = ±5°C, unless otherwise noted2  
A
LꢁC±751-16  
INL ꢀs V  
DD  
Settling 0V to 10V  
1.0  
0.8  
UPD  
0.6  
5V/DIV  
0.4  
+INL  
–INL  
0.2  
GATED  
SETTLING  
WAVEFORM  
250μV/DIV  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
2751 G10  
500ns/DIV  
USING LT1469 AMP  
= 12pF  
C
FEEDBACK  
2.5  
3
3.5  
4
4.5  
5
5.5  
0V TO 10V STEP  
V
(V)  
DD  
2751 G09b  
LꢁC±751-14  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
DD  
REF  
DD  
= 5V  
= 5V  
±10V RANGE  
±10V RANGE  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
CODE  
CODE  
2751 G11  
2751 G12  
LꢁC±751-1±  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
DD  
REF  
DD  
= 5V  
= 5V  
±10V RANGE  
±10V RANGE  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
–0.2  
–0.4  
–0.6  
0.8  
–1.0  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
CODE  
CODE  
2751 G13  
2751 G14  
2751f  
7
LTC2751  
TYPICAL PERFORMANCE CHARACTERISTICS ꢁ = ±5°C, unless otherwise noted2  
A
LꢁC±751-1±, LꢁC±751-14, LꢁC±751-16  
Supply Current ꢀs  
Logic Input Voltage  
Midscale Glitch  
12  
10  
UPD  
5V/DIV  
8
6
1nV•s (TYP)  
V
= 5V  
DD  
V
OUT  
2mV/DIV  
4
2
0
2751 G15  
500ns/DIV  
USING AN LT1469  
= 27pF  
V
= 3V  
DD  
V
V
= 5V  
REF  
0V TO 5V RANGE  
DD  
= 5V  
C
FEEDBACK  
0
1
2
3
4
5
LOGIC VOLTAGE (V)  
2751 G16  
ALL DIGITAL PINS TIED TOGETHER  
(EXCEPT READ TIED TO GND)  
Logic ꢁhreshold  
ꢀs Supply Voltage  
Supply Current  
ꢀs Update Frequency  
1000  
100  
10  
2
1.75  
1.5  
RISING  
1.25  
1
FALLING  
1
V
V
= 5V  
= 3V  
DD  
0.75  
0.5  
DD  
0.1  
10  
100  
1k  
10k  
100k  
1M  
2.5  
3.5  
4
4.5  
5
5.5  
3
V
(V)  
UPD FREQUENCY (Hz)  
DD  
2751 G18  
2751 G17  
ALTERNATING ZERO-SCALE/FULL-SCALE  
(LTC2751-16)  
2751f  
8
LTC2751  
PIN FUNCTIONS  
R
(Pin 1): Center Tap Point of R and REF. Iormally  
tied to the negative input of the external reference invert-  
MꢀPAI must be connected either directly to GID (ꢀoft-  
COM  
ꢁI  
ꢀpan configurationꢂ or V (single-span configurationꢂ.  
DD  
ing amplifier.  
D0-D±(Pins19-±1):LꢁC±751-1±Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
R (Pin±):ꢁnputResistorforExternalReferencenverting  
IN  
Amplifier. Iormally tied to the external reference voltage  
V
15V.  
and to R  
(Pin 37ꢂ. Typically 5V; accepts up to  
REF  
OFꢀ  
D0-D4(Pins19-±3):LꢁC±751-14Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
S± (Pin 3): ꢀpan ꢁ/O Sit 2. Pins ꢀ0, ꢀ1 and ꢀ2 are used to  
program and to read back the output range of the DAC.  
D0-D6(Pins19-±5):LꢁC±751-16Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
I
(Pin 4): DAC Current Output Complement. Tie ꢁ  
OUT2  
OUꢁ±  
to GID.  
NC (Pin 5): Io Connection. Must be tied to GID, provides  
necessary shielding for ꢁ  
NC (Pins ±±-±7): LꢁC±751-1± Only2 Io Connection.  
NC (Pins ±4-±7): LꢁC±751-14 Only2 Io Connection.  
NC (Pins ±6, ±7): LꢁC±751-16 Only2 Io Connection.  
.
OUT2  
D3-D11(Pins6-14):LꢁC±751-1±Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D11 is the MꢀS.  
D/S (Pin ±8): Data/ꢀpan ꢀelect. This pin is used to select  
activation of the data or span ꢁ/O pins (D0 to D15 or ꢀ0  
to ꢀ2, respectivelyꢂ, along with their respective dedicated  
registers, for write or read operations. Update operations  
ignore D/ꢀ, since all updates affect both data and span  
registers. For single-span operation, tie D/ꢀ to GID.  
D5-D13(Pins6-14):LꢁC±751-14Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D13 is the MꢀS.  
D7-D15(Pins6-14):LꢁC±751-16Only2DACnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D15 is the MꢀS.  
READ (Pin ±9): Read Pin. When READ is asserted high,  
the data ꢁ/O pins (D0-D15ꢂ or span ꢁ/O pins (ꢀ0-ꢀ2ꢂ  
output the contents of the selected register (see Table 1ꢂ.  
For single-span operation, readback of the span ꢁ/O pins  
is disabled.  
V
(Pin 15): Positive ꢀupply ꢁnput 2.7V ≤ V ≤ 5.5V.  
DD  
DD  
Requires a 0.1µF bypass capacitor to GID.  
GND (Pin 16): Ground. Tie to ground.  
UPD (Pin 30): Update and Suffer ꢀelect Pin. When READ  
is held low and UPD is asserted high, the contents of the  
input registers (both data and spanꢂ are copied into their  
respectiveDACregisters.TheoutputoftheDACisupdated,  
reflecting the new DAC register values.  
CLR (Pin 17): Asynchronous Clear. When CLR is taken  
to a logic low, the data registers are reset to the zero-volt  
code for the present output range (V  
= 0Vꢂ.  
OUT  
MSPAN(Pin18):ManualpanControlPin.MꢀPAIisused  
to configure the LTC2751 for operation in a single, fixed  
output range. When configured for single-span operation,  
the output range is set via hardware pin strapping. The  
span input and DAC registers are transparent and do not  
respond to write or update commands.  
When READ is held high, the update function is disabled  
and the UPD pin functions as a buffer selector—logic low  
to select the input register, high for the DAC register. ꢀee  
Readback in the Operation section.  
WR (Pin 31): Active Low Write Pin. A Write operation  
copies the data present on the data or span ꢁ/O pins (D0-  
D15 or ꢀ0-ꢀ2, respectivelyꢂ into the input register. When  
READ is high, the Write function is disabled.  
To configure the part for single-span use, tie MꢀPAI  
directly to V . ꢁf MꢀPAI is instead connected to GID  
DD  
(ꢀoftꢀpan configurationꢂ, the output ranges are set and  
verified by using write, update and read operations. ꢀee  
Manual ꢀpan Configuration in the Operation section.  
S0 (Pin 3±): ꢀpan ꢁ/O Sit 0. Pins ꢀ0, ꢀ1 and ꢀ2 are used to  
program and to read back the output range of the DAC.  
2751f  
9
LTC2751  
PIN FUNCTIONS  
S1 (Pin 33): ꢀpan ꢁ/O Sit 1. Pins ꢀ0, ꢀ1 and ꢀ2 are used to  
program and to read back the output range of the DAC.  
R
(Pin 37): Sipolar Offset Ietwork. This pin provides  
OFS  
the translation of the output voltage range for bipolar  
spans. Accepts up to 15V; normally tied to the positive  
reference voltage at R (Pin 2ꢂ.  
R
(Pin 34): DAC Offset Adjust. Iominal input range is  
VOS  
ꢁI  
5V. f not used, R  
should be shorted to ꢁ  
.
VOꢀ  
OUT2  
REF(Pin38):FeedbackResistorfortheReferencenverting  
Amplifier, and Reference ꢁnput for the DAC. Iormally tied  
to the output of the reference inverting amplifier. Typically  
–5V. Accepts up to 15V.  
I
(Pin 35): DAC current output; normally tied to the  
OUꢁ1  
negative input of the ꢁ/V converter amplifier.  
R
(Pin 36): DAC Feedback Resistor; normally tied to  
FB  
the output of the ꢁ/V converter amplifier. The DAC output  
Exposed Pad (Pin 39): Ground. The Exposed Pad must  
be soldered to the PCS.  
current from ꢁ  
to the R pin.  
flows through the feedback resistor  
OUT1  
FS  
2751f  
10  
LTC2751  
BLOCK DIAGRAM  
1
38  
REF  
37  
36  
R
COM  
R
FB  
R
OFS  
R
IN  
R1  
R2  
2
I
I
OUT1  
35  
4
READ  
29  
WR  
31  
UPD  
30  
D/S  
28  
CLR  
17  
MSPAN  
18  
16-BIT DAC WITH SPAN SELECT  
OUT2  
3
16  
DAC  
REGISTER  
DAC  
REGISTER  
CONTROL  
LOGIC  
3
16  
INPUT  
REGISTER  
INPUT  
REGISTER  
I/O  
PORT  
I/O  
PORT  
3
16  
2751 BD  
3, 32, 33  
SPAN I/O  
6-14, 19-25  
DATA I/O  
D15-D0  
S2-S0  
2751f  
11  
LTC2751  
TIMING DIAGRAMS  
Write, Update and Clear ꢁiming  
t
3
t
1
t
2
WR  
I/O  
INPUT  
t
5
t
6
UPD  
t
4
t
7
t
8
D/S  
t
25  
CLR  
2751 TD01  
Readback ꢁiming  
READ  
WR  
t
t
t
14  
24  
13  
t
23  
I/O  
INPUT  
t
15  
I/O  
OUTPUT  
t
17  
t
20  
t
t
22  
19  
UPD  
D/S  
t
18  
2751 TD02  
OPERATION  
Output Ranges  
Digital Section  
The LTC2751 is a current-output, parallel-input precision  
multiplying DAC with software-programmable output  
ranges. ꢀoftꢀpan provides two unipolar output ranges  
(0V to 5V and 0V to 10Vꢂ, and four bipolar ranges ( 2.5V,  
5V, 10V and –2.5V to 7.5Vꢂ. These ranges are obtained  
when an external precision 5V reference is used. When  
a reference voltage of 2V is used, the ꢀoftꢀpan ranges  
become: 0V to 2V, 0V to 4V, 1V, 2V, 4V and –1V to  
3V. The output ranges are linearly scaled for references  
other than 2V and 5V.  
The LTC2751 family has four internal interface registers  
(see Slock Diagramꢂ. Two of these—one input and one  
DAC register—are dedicated to the data ꢁ/O port, and two  
tothespan/Oport. Eachportisthusdouble-buffered. The  
double-bufferedfeatureprovidesthecapabilitytosimulta-  
neously update the span and code, which allows smooth  
voltage transitions when changing output ranges. ꢁt also  
permits the simultaneous updating of multiple DACs.  
2751f  
12  
LTC2751  
OPERATION  
Write and Update Operations  
Table 1 shows the functions of the LTC2751.  
The data input register is loaded directly from a 16-bit  
microprocessor bus by holding the D/ꢀ pin low and then  
pulsing the WR pin low. The second register (DAC regis-  
terꢂ is loaded by pulsing the UPD pin high, which copies  
the data held in the input register into the DAC register.  
Iote that updates always include both data and span; but  
the DAC register values will not change unless the input  
register values have been changed by writing.  
ꢁable 12 Write, Update and Read Functions  
READ D/S WR UPD  
SPAN I/O  
DAꢁA I/O  
0
0
0
0
0
0
0
1
-
-
Write to ꢁnput Register  
Write/Update  
(Transparentꢂ  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
-
-
Update DAC Register Update DAC Register  
Write to ꢁnput Register  
-
-
Write/Update  
(Transparentꢂ  
Loadingthespaninputregisterisaccomplishedinasimilar  
manner, by holding the D/ꢀ pin high and then bringing the  
WR pin low. The span and data register structures are the  
same except for the number of parallel bits—the span  
registers have three bits, while the data registers have  
12, 14, or 16 bits.  
0
0
1
1
1
1
1
1
0
0
1
1
1
1
X
X
X
X
0
1
0
1
0
1
-
-
Update DAC register Update DAC Register  
-
Read ꢁnput Register  
-
Read DAC Register  
Read ꢁnput Register  
Read DAC Register  
-
-
To make both registers transparent for flowthrough  
mode, tie WR low and UPD high. However, this defeats  
the deglitcher operation and output glitch impulse may  
increase. The deglitcher is activated on the rising edge  
of the UPD pin.  
X = Don’t Care  
Manual Span Configuration  
Multipleoutputrangesarenotneededinsomeapplications.  
ToconfiguretheLTC2751forsingle-spanoperation,tiethe  
The interface also allows the use of the input and DAC  
registers in a master-slave, or edge-triggered, configura-  
tion. This mode of operation occurs when WR and UPD  
are tied together and driven by a single clock signal. The  
data bits are loaded into the input register on the falling  
edge of the clock and then loaded into the DAC register  
on the rising edge.  
MꢀPAI pin to V and the D/ꢀ pin to GID. The desired  
DD  
output range is then specified by the span ꢁ/O pins (ꢀ0, ꢀ1  
and ꢀ2ꢂ as usual, but the pins are programmed by tying  
directly to GID or V (see Figure 1 and Table 2ꢂ. ꢁn this  
DD  
configuration, the part will initialize to the chosen output  
range at power-up, with V  
= 0V.  
OUT  
The separation of data and span for write and read opera-  
tions makes it possible to control both data and span on  
one 16-bit wide data bus by allowing span pins ꢀ2 to ꢀ0  
to share bus lines with the data LꢀSs (D2 to D0ꢂ. ꢀince  
no write or read operation includes both span and data,  
there cannot be a conflict.  
When configured for manual span operation, span pin  
readback is disabled.  
V
DD  
V
MSPAN  
S2  
DD  
LTC2751-16  
The asynchronous clear pin resets the LTC2751 to 0V  
(zero-, half- or quarter-scale codeꢂ in any output range.  
CLR resets both the input and DAC data registers, while  
leaving the span registers undisturbed.  
S1  
S0  
WR UPD READ  
D/S  
16  
These devices also have a power-on reset. ꢁf configured  
for ꢀoftꢀpan operation, the part initializes to zero scale in  
the 0V to 5V output range. ꢁf configured for single-span  
operation, the part initializes to the zero-volt code in the  
chosen output range.  
2751 F01  
DATA I/O  
Figure 12 Configuring the LꢁC±751 for  
Single-Span Operation (±10V Range)  
2751f  
13  
LTC2751  
OPERATION  
ꢁable ±2 Span Codes  
isatwo-functionpin.Theupdatefunctionisdisabledwhen  
READ is high, and the UPD pin instead selects the input  
or DAC register for readback. Table 1 shows the readback  
functions for the LTC2751.  
S±  
0
S1  
0
S0  
0
SPAN  
Unipolar 0V to 5V  
Unipolar 0V to 10V  
Sipolar –5V to 5V  
Sipolar –10V to 10V  
Sipolar –2.5V to 2.5V  
Sipolar –2.5V to 7.5V  
0
0
1
0
1
0
The most common readback task is to check the contents  
of an input register after writing to it, before updating the  
new data to the DAC register. To do this, bring READ high  
while holding UPD low. The contents of the selected port’s  
input register are output by the data or span ꢁ/O pins.  
0
1
1
1
0
0
1
0
1
Codes not shown are reserved and should not be used.  
To read back the contents of a DAC register, bring READ  
high, then bring UPD high. The contents of the selected  
data or span DAC register are output by the data or span  
ꢁ/O pins. Iote: if no update is desired after the readback  
operation, UPD must be returned low before bringing  
READ low, otherwise the UPD pin will revert to its primary  
function and update the DAC.  
Readback  
The contents of any one of the four interface registers can  
be read back by using the READ pin in conjunction with  
the D/ꢀ and UPD pins.  
AreadbackoperationisinitiatedbybringingREADtologic  
high.The/Opins,whicharehigh-impedancedigitalinputs  
when READ is low, selectively change to low-impedance  
logic outputs during readback.  
System Offset Adjustment  
Many systems require compensation for overall system  
The ꢁ/O pins comprise two ports, data and span. The data  
ꢁ/O port consists of pins D0-D11, D0-D13 or D0-D15  
(LTC2751-12, LTC2751-14 or LTC2751-16, respectivelyꢂ.  
The span ꢁ/O port consists of pins ꢀ0, ꢀ1 and ꢀ2 for all  
parts.  
offset. The R  
offset adjustment pin is provided for this  
VOꢀ  
purpose. For noise immunity and ease of adjustment, the  
control voltage is attenuated to the DAC output:  
V
V
= –0.01 • V(R ꢂ [0V to 5V, 2.5V spansꢄ  
Oꢀ  
VOꢀ  
= –0.02 • V(R ꢂ [0V to 10V, 5V,  
Each ꢁ/O port has one dedicated input register and one  
dedicated DAC register. The register structure is shown  
in the Slock Diagram.  
Oꢀ  
VOꢀ  
–2.5V to 7.5V spansꢄ  
V
Oꢀ  
= –0.04 • V(R ꢂ [ 10V spanꢄ  
VOꢀ  
The D/ꢀ pin is used to select which ꢁ/O port (data or spanꢂ  
is configured to read back the contents of its registers.  
The unselected ꢁ/O port’s pins remain high-impedance  
inputs.  
The nominal input range of this pin is 5V; other refer-  
ence voltages of up to 15V may be used if needed. The  
VOꢀ  
R
pin has an input impedance of 1MΩ. To preserve the  
settling performance of the LTC2751, this pin should be  
driven with a Thevenin-equivalent impedance of 10kΩ or  
Once the ꢁ/O port is selected, its input or DAC register is  
selected for readback by using the UPD pin. Iote that UPD  
less. ꢁf not used, R  
should be shorted to ꢁ  
.
VOꢀ  
OUT2  
2751f  
14  
LTC2751  
OPERATIONEXAMPLES  
1. Load 5V range with the output at 0V. Iote that since span and code are updated together, the output, if started at  
0V, will stay there.  
WR  
SPAN I/O  
INPUT  
010  
DATA I/O  
INPUT  
8000  
H
UPD  
UPDATE  
(±5V RANGE, V  
= 0V)  
OUT  
D/S  
READ = LOW  
2751 TD03  
2. Load 10V range with the output at 5V, changing to –5V.  
WR  
SPAN I/O  
INPUT  
011  
DATA I/O  
INPUT  
C000  
4000  
H
H
UPD  
UPDATE (5V)  
UPDATE (–5V)  
D/S  
READ = LOW  
2751 TD04  
3. Write and update midscale code in 0V to 5V range (V  
and DAC registers before updating.  
= 2.5Vꢂ using readback to check the contents of the input  
OUT  
WR  
HI-Z  
DATA I/O  
INPUT  
8000  
H
HI-Z  
DATA I/O  
OUTPUT  
8000  
0000  
H
H
INPUT REGISTER  
DAC REGISTER  
UPD  
D/S  
UPDATE (2.5V)  
READ  
2751 TD05  
2751f  
15  
LTC2751  
APPLICATIONS INFORMATION  
Op Amp Selection  
programmed in a unipolar or bipolar output range. These  
are the changes the op amp can cause to the ꢁIL, DIL,  
unipolaroffset,unipolargainerror,bipolarzeroandbipolar  
gain error. Tables 3 and 4 can also be used to determine  
the effects of op amp parameters on the LTC2751-14  
and the LTC2751-12. However, the results obtained from  
Tables 3 and 4 are in 16-bit LꢀSs. Divide these results  
by 4 (LTC2751-14ꢂ and 16 (LTC2751-12ꢂ to obtain the  
correct LꢀS sizing.  
Secause of the extremely high accuracy of the 16-bit  
LTC2751-16, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
ꢁIL and DIL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 3 and 4 contain equations for evaluating the effects  
of op amp parameters on the LTC2751’s accuracy when  
Table 5 contains a partial list of LTC precision op amps  
recommended for use with the LTC2751. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
the system’s specified error budget. ꢀelect the amplifier  
from Table 5 and insert the specified op amp parameters  
in Table 4. Add up all the errors for each category to de-  
termine the effect the op amp has on the accuracy of the  
part.Arithmeticsummationgivesan(unlikelyworst-case  
effect. A root-sum-square (RMꢀꢂ summation produces a  
more realistic estimate.  
ꢁable 32 Variables for Each Output Range ꢁhat Adjust the  
Equations in ꢁable 4  
OUꢁPUꢁ RANGE  
A1  
1.1  
2.2  
2
A±  
2
A3  
1
A4  
A5  
1
5V  
10V  
3
0.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
10V  
4
4
0.83  
1.4  
0.7  
2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
0.5  
1.5  
ꢁable 42 Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1)2 Subscript 1  
Refers to Output Amp, Subscript ± Refers to Reference Inꢀerting Amp2  
UNIPOLAR  
OFFSET (LSB)  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
DNL (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
V
• 3.2 •  
V
• 0.82 •  
A3 • V  
OS1  
• 13.2 •  
A3 • V  
• 19.8 •  
V
• 13.2 •  
V
I
• 13.2 •  
OS1  
)
)
)
)
)
)
)
)
(V  
(V  
(V  
(V  
(V  
(V  
OS1  
OS1  
OS1  
OS1  
OS1  
5V  
5V  
5V  
5V  
5V  
5V  
I
(nA)  
I
• 0.0003 •  
I
• 0.00008 •  
I
• 0.13 •  
I
• 0.13 •  
0
I
B1  
• 0.0018 •  
• 0.0018 •  
(V  
(V  
B1  
B1  
B1  
B1  
B1  
B1  
)
(V  
(V  
(V  
(V  
)
)
)
REF  
REF  
REF  
REF  
REF  
REF  
( 16.5k)  
1.5k  
VOL1  
131k  
VOL1  
131k  
VOL1  
A
VOL1  
(V/V)  
(mV)  
A1 •  
A2 •  
0
0
0
0
A5 •  
A5 •  
)
A
(A  
)
)
(A  
(A  
VOL1  
5V  
5V  
5V  
V
0
0
0
0
0
0
A4 • V  
• 13.1 •  
V
• 26.2 •  
V
• 26.2 •  
OS2  
OS2  
OS2  
OS2  
(V  
)
(V  
(V  
(
))  
))  
)
REF  
REF  
REF  
5V  
5V  
REF  
5V  
(V  
I
(mV)  
A4 • I • 0.13 •  
I
• 0.26 •  
I
B2  
• 0.26 •  
131k  
B2  
B2  
B2  
(
(V  
REF  
)
)
(V  
REF  
66k  
VOL2  
131k  
(A  
A
VOL2  
(V/V)  
A4 •  
(A  
)
(A  
)
)
VOL2  
VOL2  
ꢁable 52 Partial List of LꢁC Precision Amplifiers Recommended for Use with the LꢁC±751 with Releꢀant Specifications  
AMPLIFIER SPECIFICAꢁIONS  
VOLꢁAGE CURRENꢁ  
SLEW  
RAꢁE  
V/µs  
GAIN BANDWIDꢁH  
PRODUCꢁ  
MHz  
t
POWER  
SEꢁꢁLING  
V
I
A
VOL  
NOISE  
NOISE  
with LꢁC±751 DISSIPAꢁION  
OS  
B
AMPLIFIER  
LT1001  
µV  
nA  
V/mV  
nV/Hz  
pA/Hz  
µs  
120  
120  
115  
19  
mW  
46  
25  
2
800  
10  
14  
14  
2.7  
5
0.12  
0.008  
0.008  
0.3  
0.25  
0.2  
0.16  
4.5  
22  
0.8  
0.7  
0.75  
12.5  
90  
LT1097  
50  
0.35  
0.25  
20  
1000  
1500  
4000  
5000  
2000  
11  
LT1112 (Dualꢂ  
LT1124 (Dualꢂ  
LT1468  
60  
10.5/Op Amp  
69/Op Amp  
117  
70  
75  
10  
0.6  
2
LT1469 (Dualꢂ  
125  
10  
5
0.6  
22  
90  
2
123/Op Amp  
2751f  
16  
LTC2751  
APPLICATIONS INFORMATION  
Op amp offset will contribute mostly to output offset and  
gain error and has minimal effect on ꢁIL and DIL. For  
the LTC2751-16, a 250µV op amp offset will cause about  
0.8LꢀS ꢁIL degradation and 0.2LꢀS DIL degradation  
with a 5V reference. For the LTC2751 programmed in 5V  
unipolar mode, the same 250µV op amp offset will cause  
a 3.3LꢀS zero-scale error and a 3.3LꢀS gain error.  
DAC output voltage along its transfer characteristic will  
be very dependent on ambient conditions. Minimizing  
the error due to reference temperature coefficient can be  
achieved by choosing a precision reference with a low  
output voltage temperature coefficient and/or tightly con-  
trolling the ambient temperature of the circuit to minimize  
temperature gradients.  
As precision DAC applications move to 16-bit and higher  
performance, referenceoutputvoltagenoisemaycontrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practi-  
cal for the system resolution desired. Precision voltage  
references, like the LT1236, produce low output noise in  
the 0.1Hz to 10Hz region, well below the 16-bit LꢀS level  
in 5V or 10V full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimize output noise.  
While not directly addressed by the simple equations in  
Tables 3 and 4, temperature effects can be handled just as  
easily for unipolar and bipolar applications. First, consult  
an op amp’s data sheet to find the worst-case V and ꢁ  
Oꢀ  
S
over temperature. Then, plug these numbers in the V  
Oꢀ  
and ꢁ equations from Table 4 and calculate the tempera-  
S
ture-induced effects.  
For applications where fast settling time is important,  
Application Iote 74, “Component and Measurement  
Advances Ensure 16-Sit DAC ꢀettling Time,” offers a  
thorough discussion of 16-bit DAC settling time and op  
amp selection.  
ꢁable 62 Partial List of LꢁC Precision References Recommended  
for Use with the LꢁC±751 with Releꢀant Specifications  
Precision Voltage Reference Considerations  
INIꢁIAL  
ꢁOLERANCE  
ꢁEMPERAꢁURE  
DRIFꢁ  
021Hz to 10Hz  
NOISE  
REFERENCE  
Much in the same way selecting an operational amplifier  
for use with the LTC2751 is critical to the performance  
of the system, selecting a precision voltage reference  
also requires due diligence. The output voltage of the  
LTC2751 is directly affected by the voltage reference;  
thus, any voltage reference error will appear as a DAC  
output voltage error.  
LT1019A-5,  
LT1019A-10  
0.05ꢃ  
0.05ꢃ  
0.075ꢃ  
0.05ꢃ  
5ppm/°C  
5ppm/°C  
10ppm/°C  
10ppm/°C  
12µV  
P-P  
LT1236A-5,  
LT1236A-10  
3µV  
P-P  
LT1460A-5,  
LT1460A-10  
20µV  
P-P  
P-P  
LT1790A-2.5  
12µV  
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit appli-  
cations: output voltage initial tolerance, output voltage  
temperature coefficient and output voltage noise.  
Grounding  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding techniques should be used. ꢁ  
must be tied  
OUT2  
ꢁnitial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( 0.05ꢃꢂ,minimizesthegainerrorcausedbythereference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
to the star ground with as low a resistance as possible.  
When it is not possible to locate star ground close to  
, a low resistance trace should be used to route this  
OUT2  
pin to star ground. This minimizes the voltage drop from  
this pin to ground caused by the code dependent current  
flowing to ground. When the resistance of this circuit  
board trace becomes greater than 1Ω, a force/sense am-  
plified configuration should be used to drive this pin (see  
Figure 2ꢂ. This preserves the excellent accuracy (1LꢀS  
Areference’soutputvoltagetemperaturecoefficientaffects  
not only the full-scale error, but can also affect the circuit’s  
ꢁIL and DIL performance. ꢁf a reference is chosen with  
a loose output voltage temperature coefficient, then the  
ꢁIL and DILꢂ of the LTC2751-16.  
2751f  
17  
LTC2751  
APPLICATIONS INFORMATION  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
6
I
OUT2  
200  
200  
2
6
1000pF  
LT1468  
1
2
+ 3  
+
2
3
ZETEX  
BAT54S  
6
I
LT1001  
OUT2  
3
1
2
REF  
5V  
ZETEX*  
BAT54S  
5
3
7
1/2 LT®1469  
6
C2**  
150pF  
+
*SCHOTTKY BARRIER DIODE  
2
R
1
R
38 37  
REF  
36  
C1  
R
FB  
OFS  
15pF  
R
IN  
R1  
COM  
R2  
15V 0.1  
F
LTC2751-16  
8
I
I
OUT1 35  
2
3
31  
30  
29  
28  
17  
18  
WR  
UPD  
READ  
D/S  
WR  
UPD  
1
16-BIT DAC WITH SPAN SELECT  
V
OUT  
1/2 LT1469  
+
OUT2  
GND  
4
READ  
D/S  
0.1  
F
16  
4
CLR  
CLR  
3
16  
–15V  
15  
V
5V  
DD  
MSPAN  
C3  
R
VOS  
34  
0.1  
F
3, 33, 32  
SPAN I/O  
S2-S0  
**FOR MULTIPLYING APPLICATIONS C2 = 15pF  
6-14, 19-25  
DATA I/O  
D15-D0  
2751 F02  
Figure ±2 Basic Connections for SoftSpan V  
DAC with ꢁwo Optional Circuits  
OUꢁ  
for Driꢀing I  
from GND with a Force/Sense Amplifier  
OUꢁ±  
TYPICAL APPLICATIONS  
16-Bit DAC with Software-Selectable Ranges  
REF  
5V  
5
7
1/2 LT1469  
6
C2**  
150pF  
+
2
R
1
38 37  
REF  
36  
R
R
COM  
R
IN  
FB  
OFS  
C1  
15pF  
R1  
R2  
0.1  
F
F
15V  
8
LTC2751-16  
I
I
OUT1 35  
2
31  
WR  
UPD  
READ  
D/S  
WR  
1
30  
29  
28  
17  
18  
16-BIT DAC WITH SPAN SELECT  
V
OUT  
1/2 LT1469  
UPD  
READ  
D/S  
OUT2  
GND  
4
3 +  
16  
4
–15V  
5V  
CLR  
CLR  
0.1  
3
16  
15  
V
DD  
MSPAN  
C3  
0.1  
R
VOS  
F
3, 33, 32  
SPAN I/O  
S2-S0  
6-14, 19-25  
34  
2751 TA02  
DATA I/O  
D15-D0  
**FOR MULTIPLYING APPLICATIONS C2 = 15pF  
2751f  
18  
LTC2751  
PACKAGE DESCRIPTION  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701ꢂ  
0.70 ± 0.05  
5.50 ± 0.05  
(2 SIDES)  
4.10 ± 0.05  
(2 SIDES)  
3.15 ± 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
5.15 ± 0.05 (2 SIDES)  
6.10 ± 0.05 (2 SIDES)  
7.50 ± 0.05 (2 SIDES)  
RECOMMENDED SOLDER PAD LAYOUT  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
3.15 ± 0.10  
(2 SIDES)  
0.75 ± 0.05  
5.00 ± 0.10  
(2 SIDES)  
37 38  
0.00 – 0.05  
0.40 ±0.10  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
1
2
5.15 ± 0.10  
(2 SIDES)  
7.00 ± 0.10  
(2 SIDES)  
0.40 ± 0.10  
0.200 REF 0.25 ± 0.05  
R = 0.115  
TYP  
(UH) QFN 0205  
0.50 BSC  
0.200 REF  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
2751f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2751  
TYPICAL APPLICATION  
Offset and Gain ꢁrim Circuits2 Powering V from Lꢁ10±7 Ensures Quiet Supply  
DD  
+
V
IN  
OUT  
U3  
LT1027  
+
2
6
5
2
1
V
C13  
8
2
3
2
10 F  
TRIM  
R2  
10k  
3
R1  
10k  
C20  
10 F  
GND  
4
U2A  
1
GND  
LT®1469  
1
C23  
0.1 F  
+
C22  
0.001 F  
4
V
GND  
GND  
GND  
C1  
30pF  
15  
2
1
38  
37 36  
6
7
8
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
V
R
R
REF  
R R  
OFS FB  
DD  
IN  
COM  
35  
9
6
5
I
I
OUT1  
OUT2  
10  
11  
12  
13  
14  
19  
20  
21  
22  
23  
24  
25  
U2B  
LT1469  
7
V
OUT  
4
+
U1  
LTC2751-16  
34  
DATA I/O  
R
VOS  
GND  
D4  
D3  
D2  
D1  
D0  
3
33  
32  
S2  
S1  
SPAN I/O  
S0 D/S READ UPD WR CLR  
MSPAN NC GND GND  
2751 TA03  
28 29 30 31 17  
18  
5
16  
39  
D/S READ UPD WR CLR  
GND  
RELATED PARTS  
PARꢁ NUMBER  
LT1027  
DESCRIPꢁION  
COMMENꢁS  
Precision Reference  
Precision Reference  
1ppm/°C Maximum Drift  
LT1236A-5  
LT1468  
0.05ꢃ Maximum Tolerance, 1ppm 0.1Hz to 10Hz Ioise  
90MHz GSW, 22V/µs ꢀlew Rate  
16-Sit Accurate Op-Amp  
LT1469  
Dual 16-Sit Accurate Op-Amp  
90MHz GSW, 22V/µs ꢀlew Rate  
LTC1588/LTC1589/ ꢀerial 12-/14-/16-Sit ꢁ  
LTC1592  
ꢀingle DACs  
ꢀoftware-ꢀelectable (ꢀoftꢀpanꢂ Ranges, 1LꢀS ꢁIL, DIL, 16-Lead ꢀꢀOP Package  
OUT  
LTC1591/LTC1597 Parallel 14-/16-Sit ꢁ  
ꢀingle DAC  
ꢁntegrated 4-Quadrant Resistors  
OUT  
LTC1821  
Parallel 16-Sit V  
ꢀingle DAC  
1LꢀS ꢁIL, DIL, 0V to 10V, 0V to –10V, 10V Output Ranges  
OUT  
LTC2601/LTC2611/ ꢀerial 12-/14-/16-Sit V  
LTC2621  
ꢀingle DACs  
ꢀingle DACs, ꢀPꢁ-Compatible, ꢀingle ꢀupply, 0V to 5V Outputs in 3mm × 3mm  
DFI-10 Package  
OUT  
2
LTC2606/LTC2616/ ꢀerial 12-/14-/16-Sit V  
LTC2626  
ꢀingle DACs  
ꢀingle DACs, ꢁ C-Compatible, ꢀingle ꢀupply, 0V to 5V Outputs in 3mm × 3mm  
OUT  
DFI-10 Package  
LTC2641/LTC2642 ꢀerial 12-/14-/16-Sit Unbuffered V  
DACs  
ꢀingle  
2LꢀS ꢁIL, 1LꢀS DIL, 1µs ꢀettling, Tiny MꢀOP-10, 3mm × 3mm DFI-10  
Packages  
OUT  
LTC2704  
ꢀerial 12-/14-/16-Sit V  
Quad DACs  
ꢀoftware-ꢀelectable (ꢀoftꢀpanꢂ Ranges, ꢁntegrated Amplifiers  
OUT  
2751f  
LT 0907 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Slvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408ꢂ 432-1900 FAX: (408ꢂ 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY