LTC2844IG#TRPBF [Linear]

LTC2844 - 3.3V Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC2844IG#TRPBF
型号: LTC2844IG#TRPBF
厂家: Linear    Linear
描述:

LTC2844 - 3.3V Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总20页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2844  
3.3V Software-Selectable  
Multiprotocol Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®2844 is a 4-driver/4-receiver multiprotocol trans-  
ceiver. The LTC2844 and LTC2846 form the core of a  
complete software-selectable DTE or DCE interface port that  
supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36  
or X.21 protocols.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
Operates from Single 3.3V Supply with LTC2846  
TUV Rheinland of North America Inc. Certified NET1,  
NET2 and TBR2 Compliant,  
Report No.: TBR2/051501/02  
The LTC2844 operates from a 3.3V supply and supplies  
provided by the LTC2846. The part is available in a 28-lead  
SSOP surface mount package.  
Complete DTE or DCE Port with LTC2846  
28-Lead SSOP Surface Mount Package  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Data Networking  
CSU and DSU  
Data Routers  
U
TYPICAL APPLICATIO  
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
LL  
CTS  
R3  
DSR  
R2  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC2846  
LTC2844  
D3  
D4  
D2  
D1  
D3  
D2  
T
D1  
T
R4  
R1  
R3  
T
R2  
T
R1  
T
18  
13  
5
22  
6
10  
8
23 20 19  
4
1
7
16  
3
9
17  
12 15 11 24 14  
2
DB-25 CONNECTOR  
2844 TA01  
sn2844 2844fs  
1
LTC2844  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
Supply Voltage  
TOP VIEW  
ORDER PART  
NUMBER  
VCC ....................................................... –0.3V to 6.5V  
VIN ..................................................................... 0.3V to 6.5V  
VEE ...................................................................... –10V to 0.3V  
VDD ..................................................................... 0.3V to 10V  
Input Voltage  
V
1
2
3
4
5
6
7
8
9
28 V  
EE  
CC  
V
27 GND  
DD  
D1  
D2  
D3  
R1  
R2  
R3  
D4  
26 D1 A  
25 D1 B  
24 D2 A  
23 D2 B  
22 D3/R1 A  
21 D3/R1 B  
20 R2 A  
19 R2 B  
18 R3 A  
17 R3 B  
16 D4/R4 A  
LTC2844CG  
LTC2844IG  
D1  
D2  
D3  
Transmitters ............................ 0.3V to (VCC + 0.3V)  
Receivers................................................18V to 18V  
Logic Pins ............................... 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................. 0.3V to (VIN + 0.3V)  
Short-Circuit Duration  
R1  
R2  
R3  
R4 10  
M0 11  
D4  
R4  
M1 12  
M2 13  
Transmitter Output ...................................... Indefinite  
Receiver Output........................................... Indefinite  
VEE................................................................... 30 sec  
Operating Temperature Range  
DCE/DTE 14  
15 V  
IN  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 90°C/ W, θJC = 35°C/ W  
LTC2844CG ............................................. 0°C to 70°C  
LTC2844IG ......................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
(Notes 2, 3)  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
V
Supply Current (DCE Mode,  
CC  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
2.7  
95  
1
1
600  
mA  
mA  
mA  
mA  
µA  
CC  
All Digital Pins = GND or V )  
120  
2
2
IN  
1200  
V
Supply Current (DCE Mode Unless  
RS530, RS530-A, X.21 Modes, No Load  
1.6  
14  
25  
1
7.5  
10  
mA  
mA  
mA  
mA  
mA  
µA  
EE  
EE  
Otherwise Noted, All Digital Pins = GND or V ) RS530, X.21 Modes, Full Load (DTE Mode)  
IN  
RS530-A, Full Load (DTE Mode)  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
I
I
V
Supply Current (DCE Mode,  
DD  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
0.2  
0.2  
1
8
10  
mA  
mA  
mA  
mA  
µA  
DD  
All Digital Pins = GND or V )  
IN  
V
Supply Current (DCE Mode,  
IN  
All Modes Except No-Cable Mode  
490  
µA  
VIN  
All Digital Pins = GND or V )  
IN  
sn2844 2844fs  
2
LTC2844  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
P
Internal Power Dissipation (DCE Mode,  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, Full Load  
210  
54  
mW  
mW  
D
All Digital Pins = GND or V )  
IN  
Logic Inputs and Outputs  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
2
V
V
IH  
IL  
0.8  
I
D1, D2, D3, D4  
M0, M1, M2, DCE = GND  
M0, M1, M2, DCE = V  
±10  
–120  
±10  
µA  
µA  
µA  
IN  
30  
75  
IN  
V
V
Output High Voltage  
I = –3mA  
2.7  
3
V
V
OH  
OL  
O
Output Low Voltage  
I = 1.6mA  
O
0.2  
0.4  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
IN  
±50  
mA  
OSR  
OZR  
O
M0 = M1 = M2 = V , V = 0V  
M0 = M1 = M2 = V , V = V  
30  
85  
160  
±10  
µA  
µA  
IN  
O
IN  
O
IN  
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
±5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
L
0.5V  
±2  
0.67V  
ODO  
V
V
ODO  
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OC  
I
I
Short-Circuit Current  
V
= GND  
OUT  
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
LTC2844C (Figures 2, 5)  
LTC2844I (Figures 2, 5)  
2
2
15  
15  
25  
35  
ns  
ns  
r
f
PLH  
PHL  
t
t
LTC2844C (Figures 2, 5)  
LTC28441 (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
LTC2844C (Figures 2, 5)  
LTC2844I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
t  
Input to Output Difference,  
Output to Output Skew  
t
– t  
PHL  
LTC2844C (Figures 2, 5)  
LTC2844I (Figures 2, 5)  
0
0
3
3
12  
17  
ns  
ns  
PLH  
t
(Figures 2, 5)  
3
ns  
SKEW  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
–7V V 7V  
0.2  
15  
0.2  
40  
V
mV  
mA  
kΩ  
ns  
TH  
CM  
V  
–7V V 7V  
15  
TH  
CM  
I
Input Current (A, B)  
Input Impedance  
Rise or Fall Time  
Input to Output  
–10V V 10V  
±0.66  
IN  
A,B  
R
–10V V 10V  
30  
15  
IN  
A,B  
t , t  
r
(Figures 2, 6)  
f
t
LTC2844C C = 50pF (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PLH  
L
LTC2844I C = 50pF (Figures 2, 6)  
L
sn2844 2844fs  
3
LTC2844  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
SYMBOL  
PARAMETER  
CONDITIONS  
LTC2844C C = 50pF (Figures 2, 6)  
MIN  
TYP  
MAX  
UNITS  
t
Input to Output  
50  
50  
80  
90  
ns  
ns  
PHL  
L
LTC2844I C = 50pF (Figures 2, 6)  
L
t  
Input to Output Difference,  
t
– t  
PHL  
LTC2844C C = 50pF (Figures 2, 6)  
0
0
4
4
16  
21  
ns  
ns  
PLH  
L
LTC2844I C = 50pF (Figures 2, 6)  
L
V.10 Driver  
V
V
Output Voltage  
Output Voltage  
Open Circuit, R = 3.9k  
±4  
±3.6  
0.9V  
±6  
V
V
O
T
L
R = 450(Figure 3)  
L
R = 450(Figure 3)  
L
O
I
I
Short-Circuit Current  
V = GND  
±150  
±100  
mA  
SS  
OZ  
O
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±0.1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
R = 450, C = 100pF (Figures 3, 7)  
2
1
1
µs  
µs  
µs  
r
f
PLH  
PHL  
L
L
t
t
R = 450, C = 100pF (Figures 3, 7)  
L L  
R = 450, C = 100pF (Figures 3, 7)  
L
L
V.10 Receiver  
V
Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
–0.25  
15  
0.25  
50  
V
mV  
mA  
kΩ  
ns  
TH  
V  
25  
TH  
I
–10V V 10V  
±0.66  
IN  
A
R
–10V V 10V  
30  
15  
IN  
A
t , t  
C = 50pF (Figures 4, 8)  
L
r
f
PLH  
PHL  
t
t
Input to Output  
C = 50pF (Figures 4, 8)  
L
55  
ns  
Input to Output  
C = 50pF (Figures 4, 8)  
L
109  
60  
ns  
t  
Input to Output Difference,  
t
– t  
PHL  
C = 50pF (Figures 4, 8)  
L
ns  
PLH  
V.28 Driver  
V
Output Voltage  
Open Circuit  
R = 3k (Figure 3)  
L
±10  
V
V
O
±5  
±8.5  
±1  
I
I
Short-Circuit Current  
V = GND  
O
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
µA  
O
No-Cable Mode or Driver Disabled  
SR  
Slew Rate  
R = 3k, C = 2500pF (Figures 3, 7)  
4
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 3, 7)  
1.3  
1.3  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 3, 7)  
µs  
L
L
V.28 Receiver  
V
V
Input Low Threshold Voltage  
0.8  
V
V
THL  
TLH  
Input High Threshold Voltage  
Receiver Input Hysterisis  
Receiver Input Impedance  
Rise or Fall Time  
2
3
V  
0.1  
5
0.3  
7
V
TH  
R
–15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
C = 50pF (Figures 4, 8)  
L
15  
60  
150  
r
f
PLH  
PHL  
t
t
Input to Output  
C = 50pF (Figures 4, 8)  
L
100  
500  
Input to Output  
C = 50pF (Figures 4, 8)  
L
sn2844 2844fs  
4
LTC2844  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: All typicals are given for V = 5V, V = 3.3V, V = 8V, V = 7V  
CC IN DD EE  
of a device may be impaired.  
for V.28, 5.5V for V.10, V.11 and T = 25°C.  
A
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RS530-A in DTE Mode  
V.28 in DCE Mode  
(Three V.28 Drivers with Full  
Load) IDD vs Data Rate  
RS530, X.21 in DCE Mode  
(Three V.11 Drivers with Full  
Load) ICC vs Data Rate  
(Two V.10 Drivers with Full Load)  
IEE vs Data Rate  
26  
24  
22  
20  
18  
16  
14  
125  
120  
115  
110  
105  
100  
95  
10  
9
T
= 25°C  
T = 25°C  
A
T
= 25°C  
A
A
8
7
6
5
90  
4
10  
100  
1000  
10000  
10  
20  
30 40 50 60 70 80 100  
10  
20  
30 40 50 60 70 80 100  
DATA RATE (kBd)  
DATA RATE (kBd)  
DATA RATE (kBd)  
2844 G02  
2844 G03  
2844 G01  
RS530-A in DTE Mode  
(Two V.10 Drivers with Full Load)  
IEE vs Temperature  
V.28 in DCE Mode  
(Three V.28 Drivers with Full  
Load) IDD vs Temperature  
RS530, X.21 in DCE Mode  
(Three V.11 Drivers with Full  
Load) ICC vs Temperature  
105  
100  
95  
23.5  
25.4  
25.3  
25.2  
25.1  
25.0  
24.9  
24.8  
24.7  
24.6  
24.5  
8.20  
8.15  
8.10  
8.05  
8.00  
7.95  
7.90  
7.85  
7.80  
90  
85  
80  
–40 –20  
0
20  
40  
60  
80  
100  
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2844 G04  
2844 G05  
2844 G06  
sn2844 2844fs  
5
LTC2844  
U
U
U
PI FU CTIO S  
VCC (Pin 1):Positive Supply for the Transceivers. Connect  
to VCC Pin 8 on LTC2846 or to 5V supply. Connect a 1µF  
capacitor to ground.  
VIN (Pin 15): Positive Supply for the Receiver Outputs.  
3V VIN 3.6V. Connect a 1µF capacitor to ground.  
D4/R4 A (Pin 16): Receiver 4 Inverting Input and Driver 4  
Inverting Output.  
V
DD (Pin 2): Positive Supply Voltage for V.28. Connect to  
VDD Pin 7 on LTC2846 or 8V supply. Connect a 1µF  
R3 B (Pin 17): Receiver 3 Noninverting Input.  
R3 A (Pin 18): Receiver 3 Inverting Input.  
R2 B (Pin 19): Receiver 2 Noninverting Input.  
R2 A (Pin 20): Receiver 2 Inverting Input.  
capacitor to ground.  
D1 (Pin 3): TTL Level Driver 1 Input.  
D2 (Pin 4): TTL Level Driver 2 Input.  
D3 (Pin 5): TTL Level Driver 3 Input.  
D3/R1 B (Pin 21): Receiver 1 Noninverting Input and  
Driver 3 Noninverting Output.  
R1 (Pin 6): CMOS Level Receiver 1 Output. Receiver  
outputs have a weak pull up to VIN when high impedance.  
D3/R1 A (Pin 22): Receiver 1 Inverting Input and Driver 3  
Inverting Output.  
R2 (Pin 7): CMOS Level Receiver 2 Output.  
R3 (Pin 8): CMOS Level Receiver 3 Output.  
D4 (Pin 9): TTL Level Driver 4 Input.  
D2 B (Pin 23): Driver 2 Noninverting Output.  
D2 A (Pin 24): Driver 2 Inverting Output.  
D1 B (Pin 25): Driver 1 Noninverting Output.  
D1 A (Pin 26): Driver 1 Inverting Output.  
GND (Pin 27): Ground.  
R4 (Pin 10): CMOS Level Receiver 4 Output.  
M0 (Pin 11): TTL Level Mode Select Input 0. Mode select  
inputs pull up to VIN.  
M1 (Pin 12): TTL Level Mode Select Input 1.  
M2 (Pin 13): TTL Level Mode Select Input 2.  
DCE/DTE (Pin 14): TTL Level Mode Select Input.  
V
EE (Pin 28): Negative Supply Voltage. Connect to VEE  
Pin 31 on LTC2846 or to 7V supply. Connect a 1µF  
capacitor to ground.  
sn2844 2844fs  
6
LTC2844  
W
BLOCK DIAGRA  
TEST CIRCUITS  
A
V
V
1
2
28 V  
EE  
CC  
R
R
27 GND  
26 D1A  
L
DD  
V
OD  
D1  
3
4
D1  
D2  
V
OC  
L
D1B  
25  
2844 F01  
B
24 D2A  
D2  
D3  
Figure 1. V.11 Driver Test Circuit  
D2B  
23  
25 D3/R1 A  
5
D3  
20k  
20k  
10k  
6k  
C
L
B
A
100pF  
B
A
R
R
L
S3  
100Ω  
C
L
100pF  
C
L
10k  
21 D3/R1 B  
20 R2A  
R1  
R2  
6
7
R1  
2844 F02  
Figure 2. V.11 Driver/Receiver AC Test Circuit  
20k  
6k  
S3  
10k  
R2  
10k  
20k  
D
A
R2B  
19  
R
C
L
L
18 R3A  
20k  
10k  
6k  
S3  
2844 F03  
R3  
D4  
8
9
R3  
Figure 3. V.10/V.28 Driver Test Circuit  
10k  
20k  
R3B  
17  
D4  
16 D4/R4 A  
D
A
A
R
20k  
C
L
10k  
6k  
R4 10  
R4  
S3  
2844 F04  
Figure 4. V.10/V.28 Receiver Test Circuit  
M0 11  
M1 12  
M2 13  
MODE  
SELECTION  
LOGIC  
DCE/DTE  
V
IN  
14  
15  
2844 BD  
sn2844 2844fs  
7
LTC2844  
W
U
ODE SELECTIO  
(Note 1) (Note 1) (Note 1)  
MODE NAME  
M2  
M1  
M0  
DCE  
/DTE  
D1  
D2  
D3  
D4  
D1  
D2  
D3  
D4A  
A
B
A
B
A
B
Not Used  
(Default V.11)  
RS530A  
RS530  
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Not Used  
(Default V.11)  
RS530A  
RS530  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
X
X
X
X
X
X
X
X
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
Z
V.11  
V.11  
Z
V.11  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
X
X
X
X
X
X
X
X
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
Z
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Note 1: Driver inputs are TTL level compatible.  
(Note 2)  
R1  
(Note 2)  
R2  
(Note 2)  
R3  
(Note 2) (Note 3) (Note 3) (Note 3)  
MODE NAME  
M2  
M1  
M0  
DCE  
/DTE  
R4A  
R1  
R2  
R3  
R4  
A
B
A
B
A
B
Not Used  
(Default V.11)  
RS530A  
RS530  
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Not Used  
(Default V.11)  
RS530A  
RS530  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
30k  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
30k  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
30k  
Z
Z
Z
Z
Z
Z
Z
Z
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
CMOS CMOS  
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Note 2: Unused receiver inputs are terminated with 30k to ground.  
Note 3: Receiver outputs are CMOS level compatible and have a weak pull-up to V when Z.  
IN  
sn2844 2844fs  
8
LTC2844  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
V
= V(A) – V(B)  
DIFF  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
A
V
O
B
t
t
2844 F05  
SKEW  
SKEW  
Figure 5. V.11, V.35 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.65V  
1.65V  
V
OL  
2844 F06  
Figure 6. V.11, V.35 Receiver Propagation Delays  
3V  
0V  
D
A
1.5V  
t
1.5V  
PHL  
3V  
t
PLH  
V
O
3V  
2844 F07  
0V  
0V  
–3V  
–3V  
–V  
O
t
t
r
f
Figure 7. V.10, V.28 Driver Propagation Delays  
V
IH  
RECEIVER THRESHOLD  
A
RECEIVER THRESHOLD  
V
IL  
t
PHL  
t
PLH  
V
OH  
1.65V  
1.65V  
R
2844 F08  
V
OL  
Figure 8. V.10, V.28 Receiver Propagation Delays  
sn2844 2844fs  
9
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
Overview  
A complete DCE-to-DTE interface operating in EIA530  
mode is shown in Figure 9. The LTC2846 of each port is  
used to generate the clock and data signals. The LTC2844  
is used to generate the control signals along with LL (local  
loop-back). Cable termination is used only for the clock  
and data signals. The control signals do not need any  
external resistors.  
The LTC2846/LTC2844 form the core of a complete soft-  
ware-selectable DTE or DCE interface port that supports  
the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21  
protocols.  
DTE  
DCE  
SERIAL  
CONTROLLER  
LTC2846  
LTC2846  
SERIAL  
CONTROLLER  
103Ω  
103Ω  
R3  
D1  
D2  
D3  
TXD  
TXD  
TXD  
SCTE  
R2  
R1  
SCTE  
SCTE  
D3  
TXC  
RXC  
RXD  
R1  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
R2  
R3  
D2  
D1  
RXD  
LTC2844  
R3  
LTC2844  
D1  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
DCD  
DSR  
D2  
D1  
CTS  
LL  
CTS  
LL  
CTS  
LL  
D4  
R4  
R4  
D4  
2844 F09  
Figure 9. Complete Multiprotocol Interface in EIA530 Mode  
sn2844 2844fs  
10  
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
Mode Selection  
The interface protocol may be selected simply by plug-  
ging the appropriate interface cable into the connector.  
The mode pins are routed to the connector and are left  
unconnected (1) or wired to ground (0) in the cable as  
shown in Figure 10.  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see the Mode Selection table).  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1=0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
The internal pull-up current sources will ensure a binary 1  
when a pin is left unconnected and that the LTC2846/  
LTC2844 enter the no-cable mode when the cable is  
removed. In the no-cable mode the LTC2846/LTC2844  
supply current drops to less than 900µA and all driver  
outputs are forced into a high impedance state.  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VIN.  
CONNECTOR  
(DATA)  
15  
M0  
16  
LTC2846  
M1  
M2  
18  
19  
NC  
DCE/DTE  
NC  
CABLE  
LTC2844  
14  
13  
12  
11  
DCE/DTE  
M2  
M1  
M0  
2844 F10  
(DATA)  
Figure 10. Single Port DCE V.35 Mode Selection in the Cable  
sn2844 2844fs  
11  
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
The V.10 receiver configuration in the LTC2844 is shown  
in Figure 13. In V.10 mode switch S3 inside the LTC2844  
isturnedoff.Thenoninvertinginputisdisconnectedinside  
the LTC2844 receiver and connected to ground. The cable  
termination is then the 30k input impedance to ground of  
the LTC2844 V.10 receiver.  
Cable Termination  
Traditional implementations have included switching  
resistors with expensive relays, or required the user to  
change termination modules every time the interface  
standard has changed. Custom cables have been used  
withtheterminationinthecableheadorseparatetermina-  
tions are built on the board and a custom cable routes the  
signals to the appropriate termination. Switching the  
termination with FETs is difficult because the FETs must  
remain off even though the signal voltage is beyond the  
supply voltage for the FET drivers or the power is off.  
I
Z
3.25mA  
Using the LTC2846/LTC2844 solves the cable termination  
switching problem. Via software control, appropriate ter-  
minationfortheV.10(RS423),V.11(RS422),V.28(RS232)  
and V.35 electrical protocols is chosen.  
–10V  
–3V  
V
Z
3V  
10V  
V.10 (RS423) Interface  
A typical V.10 unbalanced interface is shown in Figure 11.  
A V.10 single-ended generator output A with ground C is  
2844 F12  
–3.25mA  
connected to a differential receiver with inputs A  
' con-  
nected to A, and input C connected to the signal return  
'
ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 12.  
Figure 12. V.10 Receiver Input Impedance  
A
'
LTC2844  
R5  
20k  
BALANCED  
R8  
6k  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
R6  
10k  
RECEIVER  
CABLE  
TERMINATION  
S3  
RECEIVER  
A
A'  
R7  
10k  
R4  
20k  
B
'
2844 F11  
2844 F13  
C
'
C
C'  
GND  
Figure 13. V.10 Receiver Configuration  
Figure 11. Typical V.10 Interface  
sn2844 2844fs  
12  
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
V.11 (RS422) Interface  
V.28 (RS232) Interface  
A typical V.11 balanced interface is shown in Figure 14. A A typical V.28 unbalanced interface is shown in Figure 16.  
V.11 differential generator with outputs A and B with A V.28 single-ended generator output A with ground C is  
ground C is connected to a differential receiver with connected to a single-ended receiver with input A  
'
con-  
groundC',inputsA'connectedtoA,B'connectedtoB.The nected to A, ground C' connected via the signal return  
V.11 interface has a differential termination at the receiver ground C.  
end that has a minimum value of 100. The termination  
In V.28 mode all switches are off except S3 inside the  
LTC2846/LTC2844 which connects a 6k (R8) impedance  
to ground in parallel with 20k (R5) plus 10k (R6) for a  
combined impedance of 5k as shown in Figure 17. The  
noninverting input is disconnected inside the LTC2846/  
LTC2844 receiver and connected to a TTL level reference  
resistor is optional in the V.11 specification, but for the  
highspeedclockanddatalines,theterminationisrequired  
to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 12.  
In V.11 mode, all switches are off except S1 of the voltage for a 1.4V receiver trip point.  
LTC2846’s receivers which connects a 103differential  
termination impedance to the cable as shown in Figure  
151. The LTC2844 only handles control signals, so no  
terminationotherthanitsV.11receivers30kinputimped-  
ance is necessary.  
A'  
LTC2846  
BALANCED  
INTERCONNECTING  
CABLE  
R5  
20k  
R1  
R8  
6k  
LOAD  
51.5Ω  
GENERATOR  
R6  
10k  
RECEIVER  
CABLE  
TERMINATION  
RECEIVER  
S1  
S2  
S3  
R3  
124Ω  
A
A'  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
100Ω  
MIN  
B'  
B
C
B'  
C'  
C'  
2844 F15  
2844 F14  
GND  
Figure 15. V.11 Receiver Configuration  
Figure 14. Typical V.11 Interface  
A'  
LTC2844  
BALANCED  
INTERCONNECTING  
CABLE  
R5  
20k  
R8  
6k  
LOAD  
GENERATOR  
R6  
10k  
RECEIVER  
CABLE  
S3  
TERMINATION  
RECEIVER  
A
A'  
R7  
10k  
R4  
20k  
B'  
C'  
2844 F16  
2844 F17  
C
C'  
GND  
Figure 16. Typical V.28 Interface  
Figure 17. V.28 Receiver Configuration  
1Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination  
networks on the LTC2846 can be treated identically if it is assumed that an S1 switch exists and is  
always closed on the R2 and R3 receivers.  
sn2844 2844fs  
13  
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
V.35 Interface  
No-Cable Mode  
A typical V.35 balanced interface is shown in Figure 18. A  
V.35 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
The no-cable mode (M0 = M1 = M2 = 1) is intended for the  
case when the cable is disconnected from the connector.  
The bias circuitry, drivers and receivers are turned off, the  
driver outputs are forced into a high impedance state, and  
the supply current drops to less than 600µA.  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.35 interface requires a T or delta network termination at  
the receiver end and the generator end. The receiver  
differentialimpedancemeasuredattheconnectormustbe  
100Ω ±10, and the impedance between shorted termi-  
LTC2846 Supplies  
The LTC2846 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 21. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generatesabout7.5VforVEE.Three1µFsurfacemounted  
tantalumorceramiccapacitorsarerequiredforC1, C2and  
C3. The VEE capacitor C4 should be a minimum of 3.3µF.  
All capacitors are 16V and should be placed as close as  
possible to the LTC2846 to reduce EMI.  
nals (A' and B') and ground C' must be 150Ω ±15.  
InV.35mode,bothswitchesS1andS2insidetheLTC2846  
are on, connecting the T network impedance as shown in  
Figure 19. The 30k input impedance of the receiver is  
placed in parallel with the T network termination, but does  
not affect the overall input impedance significantly.  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground C must be 150Ω ±15. For the  
generator termination, switches S1 and S2 are both on as  
shown in Figure 20.  
The LTC2846 has an internal boost switching regulator  
which generates a 5V output from the 3.3V supply as  
showninFigure22.The5VVCC suppliesitsinternalcharge  
pump and transceivers as well as its companion chip.  
BALANCED  
A
'
LTC2846  
INTERCONNECTING  
CABLE  
GENERATOR  
LOAD  
R5  
R1  
R8  
6k  
20k  
CABLE  
TERMINATION  
51.5Ω  
RECEIVER  
R6  
RECEIVER  
10k  
A
'
A
S1  
S2  
S3  
R3  
124Ω  
50Ω  
50Ω  
125Ω  
125Ω  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
50Ω  
50Ω  
B
'
B'  
B
C
2844 F19  
GND  
C'  
C
'
2844 F18  
Figure 19. V.35 Receiver Configuration  
Figure 18. Typical V.35 Interface  
A
7
6
5
8
33  
32  
31  
30  
LTC2846  
+
V
C2  
C2  
DD  
+
C2  
C3  
1µF  
51.5Ω  
1µF  
C1  
C1  
V
C1  
1µF  
LTC2846  
S1  
V.35 DRIVER  
124Ω  
S2  
V
EE  
C4  
3.3µF  
+
51.5Ω  
GND  
5V  
CC  
C5  
10µF  
B
2844 F21  
C
2844 F20  
Figure 21. Charge Pump  
Figure 20. V.35 Driver  
sn2844 2844fs  
14  
LTC2844  
U
W U U  
APPLICATIONS INFORMATION  
L1  
mode,theTXDsignalisroutedtoPins2and14viaDriver 1  
intheLTC2846.InDCEmode,Driver1nowroutestheRXD  
signal to Pins 2 and 14.  
D1  
5.6µH  
V
CC  
V
IN  
5V  
3.3V  
480mA  
3
36  
SW  
V
R1  
13k  
C6  
IN  
BOOST  
10µF  
Multiprotocol Interface with RL, LL, TM and a DB-25  
Connector  
SWITCHING  
REGULATOR  
C5  
10µF  
35  
4
SHDN  
SHDN  
FB  
R2  
4.3k  
GND  
2, 34  
IftheRL,LLandTMsignalsareimplemented,therearenot  
enough drivers and receivers available in the LTC2846/  
LTC2844. In Figure 25, the required control signals are  
handled by the LTC2845. The LTC2845 has an additional  
single-endeddriver/receiverpairthatcanhandletwomore  
optional control signals such as TM and LL.  
C1,C2: TAIYO YUDEN X5R JMK316BJ106ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-5R6  
2844 F22  
Figure 22. Boost Switching Regulator  
Receiver Fail-Safe  
Cable-Selectable Multiprotocol Interface  
All LTC2846/LTC2844 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
shorted together by a termination resistor, the receiver  
output will always be forced to a logic high.  
A cable-selectable multiprotocol DTE/DCE interface is  
shown in Figure 26. The select lines M0, M1 and DCE/DTE  
are brought out to the connector. The mode is selected by  
the cable by wiring M0 (connector Pin 18) and M1 (con-  
nector Pin 21) and DCE/DTE (connector Pin 25) to ground  
(connector Pin 7) or letting them float. If M0, M1 or DCE/  
DTE is floating, internal pull-up current sources will pull  
the signals to VIN. The select bit M2 is floating and  
therefore, internally pulled high. When the cable is pulled  
out, the interface will go into the no-cable mode.  
DTE vs DCE Operation  
The DCE/DTE pin acts as an enable for Driver 3/Receiver 1  
in the LTC2846, and Driver 3/Receiver 1 and Receiver 4/  
Driver 4 in the LTC2844.  
The LTC2846/LTC2844 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC2846/LTC2844  
using a dedicated DTE cable or dedicated DCE cable.  
Compliance Testing  
The LTC2846/LTC2844 chipset has been tested by TUV  
Rheinland of North America Inc. and passed the NET1,  
NET2andTBR2requirements.Copiesofthetestreportare  
availablefromLTCorTUVRheinlandofNorthAmericaInc.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure23.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VIN  
or GND on the mode select pins.  
The title of the report is Test Report No. TBR2/051501/02  
The address of TUV Rheinland of North America Inc. is:  
TUV Rheinland of North America Inc.  
1775, Old Highway 8 NW, Suite 107  
St. Paul, MN 55112  
Tel. (651) 639-0775  
Fax (651) 639-0873  
A port with one DB-25 connector, but can be configured  
for either DTE or DCE operation is shown in Figure 24. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
sn2844 2844fs  
15  
LTC2844  
U
TYPICAL APPLICATIO S  
D1  
MBR0520  
L1  
5.6µH  
V
V
CC  
5V  
IN  
3.3V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
C3  
1µF  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
CC  
5V  
+
3.3µF  
30  
29  
LTC2846  
2
TXD A (103)  
9
TXD  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
SCTE A (113)  
10  
11  
SCTE  
11  
26  
SCTE B  
25  
15  
TXC A (114)  
12  
13  
14  
TXC  
RXC  
RXD  
R1  
R2  
R3  
24  
23  
12  
17  
TXC B  
RXC A (115)  
T
T
22  
21  
9
3
RXC B  
RXD A (104)  
16  
7
20  
15  
16  
18  
19  
RXD B  
SG  
M0  
M1  
M2  
17  
1
V
IN  
SHIELD  
DCE/DTE  
3.3V  
C7  
1µF  
C8  
1µF  
DB-25 MALE  
CONNECTOR  
28  
27  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
4
RTS A (105)  
RTS B  
3
4
5
RTS  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC2844  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DSR  
CTS  
LL  
DSR A (107)  
22  
DSR B  
5
18  
17  
CTS A (106)  
CTS B  
13  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
V
IN  
3.3V  
M0  
M1  
M2  
M0  
M1  
M2  
V
IN  
C10  
1µF  
DCE/DTE  
2844 F23  
Figure 23. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
sn2844 2844fs  
16  
LTC2844  
U
TYPICAL APPLICATIO S  
D1  
MBR0520  
L1  
5.6µH  
V
V
IN  
3.3V  
CC  
5V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
C3  
1µF  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
CC  
+
3.3µF  
30  
29  
5V  
DTE  
DCE  
LTC2846  
2
TXD A  
RXD A  
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
SCTE A RXC A  
10  
11  
11  
26  
SCTE B RXC B  
15  
25  
TXC A  
TXC A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
TXC B  
TXC B  
RXC A  
SCTE A  
T
T
22  
21  
9
3
SCTE B  
TXD A  
RXC B  
RXD A  
16  
7
20  
TXD B  
RXD B  
SG  
15  
16  
18  
19  
M0  
M1  
M2  
17  
1
V
IN  
3.3V  
SHIELD  
DCE/DTE  
C7  
1µF  
C8  
1µF  
DB-25  
CONNECTOR  
28  
27  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
4
RTS A  
CTS A  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
25  
24  
23  
19  
20  
RTS B  
DTR A  
DTR B  
CTS B  
DSR A  
DSR B  
23  
LTC2844  
8
10  
6
22  
21  
20  
19  
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
6
7
8
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_LL/DCE_LL  
R1  
R2  
R3  
R4  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
18  
LL A  
LL A  
D4  
11  
12  
13  
14  
15  
V
IN  
3.3V  
M0  
M1  
M0  
M1  
M2  
V
IN  
C10  
1µF  
M2  
DCE/DTE  
DCE/DTE  
2844 F25  
Figure 24. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
sn2844 2844fs  
17  
LTC2844  
U
TYPICAL APPLICATIO S  
D1  
MBR0520  
L1  
5.6µH  
V
V
CC  
5V  
IN  
3.3V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
C3  
1µF  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
LTC2846  
DTE  
TXD A  
DCE  
RXD A  
2
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
SCTE A RXC A  
10  
11  
26  
11  
SCTE B RXC B  
15  
25  
TXC A  
TXC B  
RXC A  
TXC A  
TXC B  
SCTE A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
T
T
9
3
22  
21  
RXC B  
RXD A  
SCTE B  
TXD A  
20  
16  
7
RXD B  
SG  
TXD B  
15  
16  
18  
19  
M0  
M1  
M2  
1
SHIELD  
17  
V
IN  
3.3V  
DCE/DTE  
C7  
1µF  
C8  
1µF  
36  
35  
DB-25  
CONNECTOR  
1, 19  
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
34  
4
19  
20  
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
33  
32  
RTS B  
DTR A  
DTR B  
23  
31  
LTC2845  
8
30  
29  
28  
27  
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
6
7
R1  
R2  
R3  
10  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
6
22  
DSR B  
CTS A  
DTR B  
RTS A  
5
13  
18  
26  
8
9
DTE_CTS/DCE_RTS  
DTE_LL/DCE_RI  
DTE_RI/DCE_LL  
25  
24  
CTS B  
LL  
RTS B  
RI  
D4  
R4  
10  
23  
*
RI  
LL  
25  
21  
17  
18  
22  
21  
DTE_TM/DCE_RL  
DTE_RL/DCE_TM  
R5  
TM  
RL  
RL  
TM  
D5  
11  
12  
13  
14  
20  
15  
V
IN  
M0  
M1  
M0  
M1  
M2  
V
IN  
3.3V  
*OPTIONAL  
C10  
1µF  
D4ENB  
2844 F26  
M2  
16  
NC  
DCE/DTE  
R4EN  
DCE/DTE  
Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector  
sn2844 2844fs  
18  
LTC2844  
U
TYPICAL APPLICATIO S  
D1  
L1  
MBR0520  
5.6µH  
V
V
IN  
3.3V  
CC  
5V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
1µF  
C3  
32  
31  
1µF  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
DTE  
DCE  
LTC2846  
2
TXD A  
RXD A  
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
RXC A  
SCTE A  
10  
11  
11  
26  
SCTE B  
RXC B  
25  
15  
TXC A  
TXC A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
TXC B  
RXC A  
TXC B  
SCTE A  
T
T
9
3
22  
21  
SCTE B  
TXD A  
RXC B  
RXD A  
16  
7
20  
RXD B  
SG  
15  
16  
18  
19  
TXD B  
M0  
M1  
M2  
NC  
1
17  
V
IN  
3.3V  
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
C7  
C8  
1µF  
25  
21  
18  
28  
27  
DCE/DTE  
M1  
M0  
1µF  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
4
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
LTC2844  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A  
DCD B  
DSR A  
DSR B  
DCD A  
DCD B  
DTR A  
DTR B  
R1  
R2  
R3  
R4  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
5
18  
17  
RTS A  
RTS B  
CTS A  
CTS B  
13  
CABLE WIRING FOR MODE SELECTION  
10  
9
16  
MODE  
V.35  
RS449, V.36  
RS232  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
NC  
D4  
11  
12  
13  
14  
15  
PIN 7  
V
IN  
3.3V  
M0  
M1  
M2  
V
IN  
C10  
1µF  
CABLE WIRING FOR  
DTE/DCE SELECTION  
NC  
MODE  
DTE  
DCE  
PIN 25  
PIN 7  
NC  
DCE/DTE  
2844 F27  
Figure 26. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
sn2844 2844fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2844  
U
PACKAGE DESCRIPTIO  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
1.25 ±0.12  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
5.00 – 5.60**  
(.197 – .221)  
2.0  
(.079)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
(.002)  
NOTE:  
G28 SSOP 0802  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1343  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543 (Not Needed with LTC1546)  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Terminated with LTC1344A for Data and Clock Signals, Companion to  
LTC1544 or LTC1545 for Control Signals  
LTC1544  
LTC1545  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Companion to LTC1546 or LTC1543 for Control Signals Including LL  
5-Driver/5-Receiver Companion to LTC1546 or LTC1543  
for Control Signals Including LL, TM and RL  
LTC1546  
LTC2845  
Software-Selectable Multiprotocol Transceiver  
3-Driver/3-Receiver with Termination for Data and Clock Signals  
3.3V Software-Selectable Multiprotocol Transceiver  
3.3V Supply, 5-Driver/5-Receiver Companion to LTC2846 for Control  
Signals Including LL, TM and RL  
LTC2846  
3.3V Software-Selectable Multiprotocol Transceiver  
3.3V Supply, 3-Driver/3-Receiver with Termination for Data and Clock  
Signals, Generates the Required 5V and ±8V Supplies for LTC2846 and  
Companion Parts  
sn2844 2844fs  
LT/TP 0503 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2845

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845CG

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845CG#PBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC2845CUHF

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845CUHF#PBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: 0°C to 70°C
Linear

LTC2845CUHF#TR

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: 0°C to 70°C
Linear

LTC2845IG

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845IG#PBF

暂无描述
Linear

LTC2845IG#TR

暂无描述
Linear

LTC2845IG#TRPBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC2845IUHF

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845IUHF#TR

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C
Linear