LTC2845CG#PBF [Linear]

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C;
LTC2845CG#PBF
型号: LTC2845CG#PBF
厂家: Linear    Linear
描述:

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总20页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2845  
3.3V Software-Selectable  
Multiprotocol Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®2845 is a 5-driver/5-receiver multiprotocol trans-  
ceiver. The LTC2845 and LTC2846 form the core of a  
complete software-selectable DTE or DCE interface port that  
supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36  
or X.21 protocols.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
Operates from Single 3.3V Supply with LTC2846 or  
a Single 5V Supply with 3.3V Logic with LTC2847  
TUV Rheinland of North America Inc. Certified NET1,  
NET2 and TBR2 Compliant,  
Report No.: TBR2/050101/02  
The LTC2845 operates from a 3.3V supply and supplies  
provided by the LTC2846. This part is available in a 36-lead  
SSOPand38-lead(7mmx5mm)QFNpackage.TheLTC2845  
andLTC2847inQFNpackagesofferthesmallestmultiprotocol  
serial port available.  
Complete DTE or DCE Port with LTC2846 or LTC2847  
Available in a 36-Lead Narrow (0.209") SSOP and  
38-Lead (7mm x U5mm) QFN package  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Data Networking  
CSU and DSU  
Data Routers  
U
TYPICAL APPLICATIO  
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
RL TM  
RI  
LL CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC2846  
LTC2845  
D3  
D2  
D1  
D3  
D2  
T
D1  
T
D5  
R5  
D4  
R3  
R2  
R1  
R4  
R3  
T
R2  
T
R1  
T
21  
25  
*
18 13  
5
22  
6
10  
8
23 20 19  
4
1
7
16  
3
9
17  
12  
15 11  
24 14  
2
*OPTIONAL  
DB-25 CONNECTOR  
2845 TA01  
sn2845 2845fs  
1
LTC2845  
W W U W  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Short-Circuit Duration  
VCC ....................................................... –0.3V to 6.5V  
VIN ..................................................................... 0.3V to 6.5V  
VEE ...................................................................... –10V to 0.3V  
VDD ..................................................................... 0.3V to 10V  
Input Voltage  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
Operating Temperature Range  
LTC2845C ............................................... 0°C to 70°C  
LTC2845I........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................. 0.3V to (VIN + 0.3V)  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
V
V
1
2
36 V  
EE  
CC  
38 37 36 35 34 33 32  
35 GND  
34 D1 A  
33 D1 B  
32 D2 A  
31 D2 B  
30 D3/R1 A  
29 D3/R1 B  
28 R2 A  
27 R2 B  
26 R3 A  
25 R3 B  
24 D4 A  
23 R4 A  
22 R5 A  
21 D5 A  
DD  
D1  
D2  
D3  
R1  
R2  
R3  
D4  
R4  
M0  
M1  
1
2
3
4
5
6
7
8
9
31 D1 B  
30 D2 A  
3
D1  
D2  
D3  
LTC2845CUHF  
LTC2845IUHF  
LTC2845CG  
LTC2845IG  
D2  
D3  
4
D2 B  
29  
28  
5
D3/R1 A  
R1  
6
27 D3/R1 B  
R2 A  
R2  
7
R3  
8
26  
39  
D4  
9
25 R2 B  
24 R3 A  
23 R3 B  
22 D4 A  
21 R4 A  
R1  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R2  
R3  
M0  
M1  
UHF PART  
MARKING  
M2 10  
NC 11  
M2  
D4  
D5  
DCE/DTE  
D4ENB  
R4EN  
R5  
20  
DCE/DTE 12  
R5 A  
R4  
R5  
13 14 15 16 17 18 19  
UHF PACKAGE  
2845  
2845I  
20  
19  
V
V
IN  
D5  
CC  
38-LEAD (7mm × 5mm) PLASTIC QFN  
G PACKAGE  
TJMAX = 125°C, θJA = 34°C/ W  
EXPOSED PAD IS VEE (PIN 39)  
MUST BE SOLDERED TO PCB  
36-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 90°C/ W, θJC = 35°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
(Notes 2, 3)  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current (DCE Mode,  
CC  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
2.7  
110  
1
mA  
mA  
mA  
mA  
µA  
CC  
All Digital Pins = GND or V )  
150  
3
IN  
V.28 Mode, Full Load  
1
3
No-Cable Mode  
700  
1400  
sn2845 2845fs  
2
LTC2845  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
SYMBOL  
PARAMETER  
Supply Current (DCE Mode,  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
RS530, RS530-A, X.21 Modes, No Load  
RS530, X.21 Modes, Full Load  
RS530-A, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
2
mA  
mA  
mA  
mA  
mA  
µA  
EE  
EE  
All Digital Pins = GND or V )  
23  
34  
1
IN  
12  
10  
No-Cable Mode  
I
I
V
Supply Current (DCE Mode,  
DD  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
0.3  
0.3  
1
mA  
mA  
mA  
mA  
µA  
DD  
All Digital Pins = GND or V )  
IN  
V.28 Mode, Full Load  
13.5  
10  
No-Cable Mode  
V
Supply Current (DCE Mode,  
IN  
All Modes Except No-Cable Mode  
650  
µA  
VIN  
All Digital Pins = GND or V )  
IN  
P
Internal Power Dissipation (DCE Mode,  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, Full Load  
240  
64  
mW  
mW  
D
All Digital Pins = GND or V )  
IN  
Logic Inputs and Outputs  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
2
V
IH  
IL  
V
= 5V  
0.8  
0.5  
V
V
CC  
R4EN when V = 3.3V  
CC  
I
Logic Input Current  
D1, D2, D3, D4, D5  
±10  
–120  
±10  
µA  
µA  
µA  
IN  
M0, M1, M2, DCE, D4ENB, R4EN = GND  
–30  
–75  
M0, M1, M2, DCE, D4ENB, R4EN = V  
IN  
V
V
Output High Voltage  
I = –3mA  
2.7  
3
V
V
OH  
OL  
O
Output Low Voltage  
I = 1.6mA  
O
0.2  
0.4  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
IN  
±50  
mA  
OSR  
OZR  
O
M0 = M1 = M2 = V , V = GND  
M0 = M1 = M2 = V , V = V  
IN  
–30  
–85  
–160  
±10  
µA  
µA  
IN  
IN  
O
O
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
±5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
L
0.5V  
0.67V  
ODO  
V
V
ODO  
±2  
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OC  
I
I
Short-Circuit Current  
V
= GND  
OUT  
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
LTC2845C (Figures 2, 5)  
LTC2845I (Figures 2, 5)  
2
2
15  
15  
25  
35  
ns  
ns  
r
f
PLH  
PHL  
t
t
LTC2845C (Figures 2, 5)  
LTC28451 (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
LTC2845C (Figures 2, 5)  
LTC2845I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
t  
Input to Output Difference,  
Output to Output Skew  
t
– t  
PHL  
LTC2845C (Figures 2, 5)  
LTC2845I (Figures 2, 5)  
0
0
3
3
12  
17  
ns  
ns  
PLH  
t
(Figures 2, 5)  
3
ns  
SKEW  
sn2845 2845fs  
3
LTC2845  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
–7V V 7V  
–0.2  
0.2  
40  
V
mV  
mA  
kΩ  
ns  
TH  
CM  
V  
–7V V 7V  
15  
TH  
CM  
I
Input Current (A, B)  
Input Impedance  
Rise or Fall Time  
Input to Output  
–10V V 10V  
±0.66  
IN  
A,B  
R
–10V V 10V  
15  
30  
15  
IN  
A,B  
t , t  
r
(Figures 2, 6)  
f
t
LTC2845C C = 50pF (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PLH  
L
LTC2845I C = 50pF (Figures 2, 6)  
L
t
Input to Output  
LTC2845C C = 50pF (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PHL  
L
LTC2845I C = 50pF (Figures 2, 6)  
L
t  
Input to Output Difference,  
t
– t  
PHL  
LTC2845C C = 50pF (Figures 2, 6)  
0
0
4
4
16  
21  
ns  
ns  
PLH  
L
LTC2845I C = 50pF (Figures 2, 6)  
L
V.10 Driver  
V
V
Output Voltage  
Output Voltage  
Open Circuit, R = 3.9k  
±4  
±6  
V
V
O
T
L
R = 450(Figure 3)  
±3.6  
0.9V  
L
R = 450(Figure 3)  
L
O
I
I
Short-Circuit Current  
V = GND  
±150  
±100  
mA  
SS  
OZ  
O
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±0.1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
R = 450, C = 100pF (Figures 3, 7)  
2
1
1
µs  
µs  
µs  
r
f
PLH  
PHL  
L
L
t
t
R = 450, C = 100pF (Figures 3, 7)  
L L  
R = 450, C = 100pF (Figures 3, 7)  
L
L
V.10 Receiver  
V
Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
–0.25  
15  
0.25  
50  
V
mV  
mA  
kΩ  
ns  
TH  
V  
25  
TH  
I
–10V V 10V  
±0.66  
IN  
A
R
–10V V 10V  
30  
15  
IN  
A
t , t  
C = 50pF (Figures 4, 8)  
L
r
f
PLH  
PHL  
t
t
Input to Output  
C = 50pF (Figures 4, 8)  
L
55  
ns  
Input to Output  
C = 50pF (Figures 4, 8)  
L
109  
60  
ns  
t  
Input to Output Difference,  
Output Voltage  
t
– t  
PHL  
C = 50pF (Figures 4, 8)  
L
ns  
PLH  
V.28 Driver  
V
Open Circuit  
R = 3k (Figure 3)  
L
±10  
V
V
O
±5  
±8.5  
±1  
I
I
Short-Circuit Current  
V = GND  
O
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
–0.25V V 0.25V, Power Off or  
µA  
O
No-Cable Mode or Driver Disabled  
SR  
Slew Rate  
R = 3k, C = 2500pF (Figures 3, 7)  
4
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 3, 7)  
1.3  
1.3  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 3, 7)  
µs  
L
L
sn2845 2845fs  
4
LTC2845  
The denotes specifications which apply over the full operating tempera-  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysterisis  
Receiver Input Impedance  
Rise or Fall Time  
0.8  
V
V
THL  
TLH  
2
3
V  
0.1  
5
0.3  
7
V
TH  
R
–15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
C = 50pF (Figures 4, 8)  
L
15  
60  
150  
r
f
PLH  
PHL  
t
t
Input to Output  
C = 50pF (Figures 4, 8)  
L
100  
500  
Input to Output  
C = 50pF (Figures 4, 8)  
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: All typicals are given for V = 5V, V = 3.3V, V = 8V, V = 7V  
CC  
IN  
DD  
EE  
for V.28, 5.5V for V.10, V.11 and T = 25°C.  
A
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RS530-A in DCE Mode  
V.28 in DCE Mode  
(Five V.28 Drivers with Full Load)  
IDD vs Data Rate  
RS530, X.21 in DCE Mode  
(Three V.10 Drivers with Full  
Load) IEE vs Data Rate  
(Three V.11, Two V.10 Drivers  
with Full Load) ICC vs Data Rate  
34  
34  
30  
28  
26  
24  
22  
20  
18  
140  
135  
130  
125  
120  
115  
110  
105  
16  
15  
14  
13  
12  
11  
10  
9
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
A
8
7
10  
20  
30 40 50 60 70 80 100  
10  
100  
1000  
10000  
10  
20  
30 40 50 60 70 80 100  
2845 G03  
DATA RATE (kBd)  
2845 G01  
DATA RATE (kBd)  
2845 G02  
DATA RATE (kBd)  
RS530-A in DCE Mode  
(Three V.10 Drivers with Full  
Load) IEE vs Temperature  
V.28 in DCE Mode  
(Five V.28 Drivers with Full Load)  
IDD vs Temperature  
RS530, X.21 in DCE Mode  
(Three V.11, Two V.10 Drivers with  
Full Load) ICC vs Temperature  
125  
120  
115  
110  
105  
100  
95  
34.6  
34.4  
34.2  
34.0  
33.8  
33.6  
33.4  
33.2  
33.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
–40 –20  
0
20  
40  
60  
80  
100  
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80 100  
2845 G04  
2845 G05  
2845 G06  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
sn2845 2845fs  
5
LTC2845  
U
U
U
(G-36/QFN-38 Packages)  
PIN FUNCTIONS  
VCC (Pins 1, 19/Pins 17, 36): Positive Supply for the  
Transceivers. Connect to VCC Pin 8 on LTC2846 or to 5V  
supply. Connect a 1µF capacitor to ground.  
D5 (Pin 18/Pin 16): TTL Level Driver 5 Input.  
VIN (Pin 20/Pin 18): Positive Supply for the Receiver  
Outputs. 3V VIN 3.6V. Connect a 1µF capacitor to  
ground.  
VDD (Pin 2/Pin 37): Positive Supply Voltage for V.28.  
Connect to VDD Pin 7 on LTC2846 or 8V supply. Connect  
a 1µF capacitor to ground.  
D5 A (Pin 21/Pin 19): Driver 5 Inverting Output.  
R5 A (Pin 22/Pin 20): Receiver 5 Inverting Input.  
R4 A (Pin 23/Pin 21): Receiver 4 Inverting Input.  
D4 A (Pin 24/Pin 22): Driver 4 Inverting Input.  
R3 B (Pin 25/Pin 23): Receiver 3 Noninverting Input.  
R3 A (Pin 26/Pin 24): Receiver 3 Inverting Input.  
R2 B (Pin 27/Pin 25): Receiver 2 Noninverting Input.  
R2 A (Pin 28/Pin 26): Receiver 2 Inverting Input.  
D1 (Pin 3/Pin 38): TTL Level Driver 1 Input.  
D2 (Pin 4/Pin 1): TTL Level Driver 2 Input.  
D3 (Pin 5/Pin 2): TTL Level Driver 3 Input.  
R1 (Pin 6/Pin 3):CMOS Level Receiver 1 Output. Receiver  
outputs have a weak pull up to VIN when high impedance.  
R2 (Pin 7/Pin 4): CMOS Level Receiver 2 Output.  
R3 (Pin 8/Pin 5): CMOS Level Receiver 3 Output.  
D4 (Pin 9/Pin 6): TTL Level Driver 4 Input.  
D3/R1 B (Pin 29/Pin 27): Receiver 1 Noninverting Input  
and Driver 3 Noninverting Output.  
R4 (Pin 10/Pin 7): CMOS Level Receiver 4 Output.  
D3/R1 A (Pin 30/Pin 28): Receiver 1 Inverting Input and  
Driver 3 Inverting Output.  
M0 (Pin 11/Pin 8): TTL Level Mode Select Input 0. Mode  
select inputs pull up to VIN.  
D2 B (Pin 31/Pin 29): Driver 2 Noninverting Output.  
D2 A (Pin 32/Pin 30): Driver 2 Inverting Output.  
D1 B (Pin 33/Pin 31): Driver 1 Noninverting Output.  
D1 A (Pin 34/Pin 32): Driver 1 Inverting Output.  
GND (Pin 35/Pin 33): Ground.  
M1 (Pin 12/Pin 9): TTL Level Mode Select Input 1.  
M2 (Pin 13/Pin 10): TTL Level Mode Select Input 2.  
DCE/DTE (Pin 14/Pin 12): TTL Level Mode Select Input.  
Logic high enables Driver 3. Logic low enables Receiver 1.  
D4ENB (Pin 15/Pin 13): TTL Level Enable Input. Logic low  
enables Driver 4. Pulls up to VIN.  
VEE (Pin 36/Pins 34, 35): Negative Supply Voltage. Con-  
nect to VEE Pin 31 on LTC2846 or to –7V supply. Connect  
a 1µF capacitor to ground.  
R4EN (Pin 16/Pin 14): TTL Level Enable Input. Logic high  
enables Receiver 4. Pulls up to VIN.  
EXPOSED Pad VEE (Pin 39): Must be Soldered to PCB.  
R5 (Pin 17/Pin 15): CMOS Level Receiver 5 Output.  
sn2845 2845fs  
6
LTC2845  
W
BLOCK DIAGRA  
TEST CIRCUITS  
A
V
CC  
1
36 V  
EE  
R
R
L
V
2
35 GND  
34 D1A  
DD  
V
OD  
D1  
D2  
3
4
D1  
D2  
V
OC  
L
D1B  
33  
32 D2A  
2845 F01  
B
Figure 1. V.11 Driver Test Circuit  
D2B  
31  
30 D3/R1 A  
D3  
5
D3  
20k  
20k  
10k  
10k  
6k  
S3  
C
L
B
A
100pF  
B
A
R
R
29 D3/R1 B  
28 R2A  
L
100Ω  
R1  
R2  
6
7
R1  
C
L
100pF  
C
L
20k  
6k  
S3  
10k  
2845 F02  
R2  
Figure 2. V.11 Driver/Receiver AC Test Circuit  
10k  
20k  
R2B  
27  
26 R3A  
20k  
10k  
6k  
S3  
R3  
D4  
8
9
R3  
D
A
10k  
20k  
R3B  
25  
R
C
L
L
D4  
24 D4A  
23 R4A  
2845 F03  
20k  
20k  
10k  
10k  
6k  
R4 10  
R4  
Figure 3. V.10/V.28 Driver Test Circuit  
S3  
DCE/DTE  
14  
15  
16  
D4ENB  
R4EN  
22 R5A  
6k  
R5 17  
R5  
S3  
D
A
A
R
D5 18  
D5  
21 D5A  
C
L
M0 11  
M1 12  
M2 13  
2845 F04  
MODE  
SELECTION  
LOGIC  
Figure 4. V.10/V.28 Receiver Test Circuit  
V
V
20  
19  
IN  
CC  
2845 BD  
sn2845 2845fs  
7
LTC2845  
W
U
ODE SELECTIO  
(Note 1)  
(Note 4) (Note 1)  
(Note 4)  
D4A  
MODE NAME  
M2  
M1  
M0  
DCE  
/DTE  
D1, D2,  
D4, D5  
D3  
D1  
D2  
D3  
D5A  
A
B
A
B
A
B
Not Used  
(Default V.11)  
RS530A  
RS530  
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Not Used  
(Default V.11)  
RS530A  
RS530  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
X
X
X
X
X
X
X
X
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
Z
V.11  
V.11  
Z
V.11  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
Z
V.11  
V.11  
Z
V.11  
Z
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
Z
V.11  
Z
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
(Note 2)  
(Note 3)  
(Note 2)  
R1  
A
(Note 2)  
R2  
A
(Note 2)  
R3  
A
(Note 5) (Note 3) (Note 5)  
MODE NAME  
M2  
M1  
M0  
DCE  
/DTE  
R4A  
R5A  
R1  
R2, R3  
R4, R5  
B
B
B
Not Used  
(Default V.11)  
RS530A  
RS530  
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Not Used  
(Default V.11)  
RS530A  
RS530  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
30k  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
30k  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Z
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Z
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
30k  
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
30k  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
30k  
V.11  
V.11  
V.11  
V.11  
30k  
V.11  
30k  
30k  
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
30k  
Z
Z
Z
Z
Z
Z
Z
Z
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Z
X.21  
V.35  
RS449/V.36  
V.28/RS232  
No Cable  
Note 1: Driver inputs are TTL level compatible.  
Note 2: Unused receiver inputs are terminated with 30k to ground.  
Note 3: Receiver outputs are CMOS level compatible and have a weak pull-up to V when Z.  
IN  
Note 4: Driver 4 is enabled by D4ENB=0 (Pin 15).  
Note 5: Receiver 4 is enabled by R4EN=1 (Pin 16).  
sn2845 2845fs  
8
LTC2845  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
V
= V(B) – V(A)  
DIFF  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
r
f
A
V
O
B
t
t
2845 F05  
SKEW  
SKEW  
Figure 5. V.11 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.65V  
1.65V  
V
OL  
2845 F06  
Figure 6. V.11 Receiver Propagation Delays  
3V  
0V  
D
1.5V  
t
1.5V  
PHL  
3V  
t
PLH  
V
O
3V  
2845 F07  
0V  
0V  
A
–3V  
–3V  
–V  
O
t
t
f
r
Figure 7. V.10, V.28 Driver Propagation Delays  
V
IH  
RECEIVER THRESHOLD  
A
RECEIVER THRESHOLD  
V
IL  
t
PHL  
t
PLH  
V
OH  
1.65V  
1.65V  
R
2845 F08  
V
OL  
Figure 8. V.10, V.28 Receiver Propagation Delays  
sn2845 2845fs  
9
LTC2845  
U
W U U  
APPLICATIONS INFORMATION  
A complete DCE-to-DTE interface operating in EIA530  
mode is shown in Figure 9. The LTC2846 of each port is  
used to generate the clock and data signals. The LTC2845  
isusedtogeneratethecontrolsignalsalongwithLL(Local  
Loop-Back), RL (Remote Loop-Back), TM (Test Mode)  
and RI (Ring Indicate). Cable termination is used only for  
theclockanddatasignalsbecausetheymustsupportV.11  
cable termination. The control signals do not need any  
external resistors.  
Overview  
The LTC2846/LTC2845 or LTC2847/LTC2845 form the  
core of a complete software-selectable DTE or DCE inter-  
faceportthatsupportstheRS232,RS449,EIA530,EIA530-  
A, V.35, V.36 or X.21 protocols. Cable termination is  
provided on-chip, eliminating the need for discrete de-  
signs.  
DTE  
DCE  
SERIAL  
CONTROLLER  
LTC2846  
LTC2846  
SERIAL  
CONTROLLER  
103R3  
D1  
D2  
D3  
TXD  
TXD  
TXD  
SCTE  
103R2  
SCTE  
SCTE  
R1  
D3  
TXC  
RXC  
RXD  
R1  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
R2  
R3  
D2  
D1  
RXD  
LTC2845  
D1  
LTC2845  
R3  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
CTS  
DCD  
DSR  
D2  
D1  
CTS  
CTS  
LL  
LL  
LL  
D4  
R4  
R4  
D4  
TM  
TM  
TM  
RI  
RI  
R5  
D5  
RI  
D5  
R5  
RL  
RL  
RL  
2845 F09  
Figure 9. Complete Multiprotocol Interface in EIA530 Mode  
sn2845 2845fs  
10  
LTC2845  
U
W U U  
APPLICATIONS INFORMATION  
Mode Selection  
Cable Termination  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see the Mode Selection table).  
Traditional implementations have included switching  
resistors with expensive relays, or required the user to  
change termination modules every time the interface  
standard has changed. Custom cables have been used  
withtheterminationinthecableheadorseparatetermina-  
tions are built on the board and a custom cable routes the  
signals to the appropriate termination. Switching the  
termination with FETs is difficult because the FETs must  
remain off even though the signal voltage is beyond the  
supply voltage for the FET drivers or the power is off.  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1=0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
Theinterfaceprotocolmaybeselectedsimplybyplugging  
the appropriate interface cable into the connector. The  
mode pins are routed to the connector and are left uncon-  
nected (1) or wired to ground (0) in the cable as shown in  
Figure 10.  
Using the LTC2846/LTC2845 solves the cable termination  
switching problem. Via software control, appropriate ter-  
minationfortheV.10(RS423),V.11(RS422),V.28(RS232)  
and V.35 electrical protocols is chosen.  
The internal pull-up current sources will ensure a binary 1  
when a pin is left unconnected and that the LTC2846/  
LTC2845 enters the no-cable mode when the cable is  
removed. In the no-cable mode the LTC2846/LTC2845  
supply current drops to less than 1000µA and all driver  
outputs are forced into a high impedance state.  
V.10 (RS423) Interface  
A typical V.10 unbalanced interface is shown in Figure 11.  
A V.10 single-ended generator output A with ground C is  
connected to a differential receiver with inputs A  
nected to A, and input C connected to the signal return  
ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 12.  
' con-  
'
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VIN.  
(DATA)  
M0  
CONNECTOR  
LTC2846  
M1  
M2  
NC  
NC  
DCE/DTE  
CABLE  
V
IN  
DCE/DTE  
M2  
M1  
M0  
D4ENB  
R4EN  
LTC2845  
3.3k  
(DATA)  
2845 F10  
Figure 10. Single Port DCE V.35 Mode Selection in the Cable  
sn2845 2845fs  
11  
LTC2845  
U
W U U  
APPLICATIONS INFORMATION  
The V.10 receiver configuration in the LTC2845 is shown  
in Figure 13. In V.10 mode switch S3 inside the LTC2845  
is turned off. The noninverting input is disconnected  
inside the LTC2845 receiver and connected to ground.The  
cable termination is then the 30k input impedance to  
ground of the LTC2845 V.10 receiver.  
V.11 (RS422) Interface  
A typical V.11 balanced interface is shown in Figure 14. A  
V.11 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.11 interface has a differential termination at the receiver  
end that has a minimum value of 100. The termination  
resistor is optional in the V.11 specification, but for the  
highspeedclockanddatalines,theterminationisrequired  
to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 12.  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
In V.11 mode, all switches are off except S1 of the  
LTC2846’s receivers which connects a 103differential  
termination impedance to the cable as shown in Fig-  
ure 151. The LTC2845 only handles control signals, so no  
terminationotherthanitsV.11receivers30kinputimped-  
ance is necessary.  
2845 F11  
C
C'  
Figure 11. Typical V.10 Interface  
I
Z
3.25mA  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
–10V  
–3V  
A
A'  
V
Z
100  
MIN  
3V  
10V  
B
C
B'  
C'  
2845 F14  
Figure 14. Typical V.11 Interface  
2845 F12  
–3.25mA  
Figure 12. V.10 Receiver Input Impedance  
A'  
LTC2846  
R5  
20k  
R1  
51.5Ω  
R8  
6k  
A'  
LTC2845  
R6  
RECEIVER  
10k  
R5  
20k  
S1  
S2  
R8  
6k  
S3  
R3  
124Ω  
R6  
10k  
RECEIVER  
S3  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
B'  
R7  
10k  
R4  
20k  
C'  
2845 F15  
GND  
B'  
C'  
Figure 15. V.11 Receiver Configuration  
GND  
2845 F13  
1Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination  
networks on the LTC2846 can be treated identically if it is assumed that an S1 switch exists and is  
always closed on the R2 and R3 receivers.  
Figure 13. V.10 Receiver Configuration  
sn2845 2845fs  
12  
LTC2845  
U
W U U  
APPLICATIONS INFORMATION  
V.28 (RS232) Interface  
ground C is connected to a differential receiver with  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
A typical V.28 unbalanced interface is shown in Figure 16.  
A V.28 single-ended generator output A with ground C is  
V.35 interface requires a T or delta network termination at  
the receiver end and the generator end. The receiver  
differentialimpedancemeasuredattheconnectormustbe  
100Ω ±10, and the impedance between shorted termi-  
connected to a single-ended receiver with input A  
'
con-  
nected to A, ground C  
ground C.  
' connected via the signal return  
nals (A' and B') and ground C' must be 150Ω ±15.  
In V.28 mode, all switches are off except S3 inside the  
LTC2846/LTC2845 which connects a 6k (R8) impedance  
to ground in parallel with 20k (R5) plus 10k (R6) for a  
combined impedance of 5k as shown in Figure 17. The  
noninverting input is disconnected inside the LTC2846/  
LTC2845 receiver and connected to a TTL level reference  
voltage for a 1.4V receiver trip point.  
InV.35mode,bothswitchesS1andS2insidetheLTC2846  
are on, connecting the T network impedance as shown in  
Figure 19. The 30k input impedance of the receiver is  
placed in parallel with the T network termination, but does  
not affect the overall input impedance significantly.  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground C must be 150Ω ±15. For the  
generator termination, switches S1 and S2 are both on as  
shown in Figure 20.  
V.35 Interface  
A typical V.35 balanced interface is shown in Figure 18. A  
V.35 differential generator with outputs A and B with  
BALANCED  
INTERCONNECTING  
CABLE  
GENERATOR  
LOAD  
BALANCED  
CABLE  
TERMINATION  
INTERCONNECTING  
RECEIVER  
CABLE  
LOAD  
GENERATOR  
A'  
A
CABLE  
TERMINATION  
RECEIVER  
50Ω  
50Ω  
125Ω  
125Ω  
A
A'  
50Ω  
50Ω  
B
'
B
C
C'  
2845 F16  
C
C'  
2845 F18  
Figure 16. Typical V.28 Interface  
Figure 18. Typical V.35 Interface  
A'  
A
'
LTC2845  
LTC2846  
R5  
20k  
R5  
20k  
R1  
R8  
6k  
R8  
6k  
51.5Ω  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S3  
S1  
S2  
S3  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B'  
C'  
B
'
2845 F19  
GND  
GND  
C
'
2845 F17  
Figure 17. V.28 Receiver Configuration  
Figure 19. V.35 Receiver Configuration  
sn2845 2845fs  
13  
LTC2845  
U
W U U  
APPLICATIONS INFORMATION  
A
LTC2846  
DTE vs DCE Operation  
51.5  
The DCE/DTE pin acts as an enable for Driver 3/Receiver 1  
in the LTC2846, and Driver 3/Receiver 1 in the LTC2845.  
S1  
V.35 DRIVER  
124Ω  
S2  
The LTC2846/LTC2845 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender, or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC2846/LTC2845  
using a dedicated DTE cable or dedicated DCE cable.  
51.5Ω  
B
C
2845 F20  
Figure 20. V.35 Driver  
No-Cable Mode  
A dedicated DTE port using a DB-25 male connector is  
showninFigure23.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VIN  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 24.  
A port with one DB-25 connector, can be configured for  
either DTE or DCE operation is shown in Figure 25. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode,theTXDsignalisroutedtoPins2and14viaDriver 1  
intheLTC2846.InDCEmode,Driver1nowroutestheRXD  
signal to Pins 2 and 14.  
The no-cable mode (M0=M1=M2=D4ENB=1, R4EN = 0)  
is intended for the case when the cable is disconnected  
from the connector. The bias circuitry, drivers and receiv-  
ers are turned off, the driver outputs are forced into a high  
impedancestate, andthesupplycurrentdropstolessthan  
700µA.  
LTC2846 and LTC2847 Supplies  
The LTC2846 and LTC2847 use an internal capacitive  
charge pump to generate VDD and VEE as shown in Figure  
21. A voltage doubler generates about 8V on VDD and a  
voltage inverter generates about 7.5V for VEE. Three 1µF  
surface mounted tantalum or ceramic capacitors are re-  
quired for C1, C2 and C3. The VEE capacitor C4 should be  
a minimum of 3.3µF. All capacitors are 16V and should be  
placed as close as possible to the LTC2846 to reduce EMI.  
The LTC2846 has an internal boost switching regulator  
which generates a 5V output from the 3.3V supply as  
showninFigure22.The5VVCC suppliesitsinternalcharge  
pump and transceivers as well as its companion chip. The  
LTC2847 requires an external 5V supply.  
Compliance Testing  
The LTC2846/LTC2845 chipset has been tested by TUV  
Rheinland of North America Inc. and passed the NET1,  
NET2andTBR2requirements.Copiesofthetestreportare  
availablefromLTCorTUVRheinlandofNorthAmericaInc.  
The title of the report is Test Report No.TBR2/050101/02  
The address of TUV Rheinland of North America Inc. is:  
TUV Rheinland of North America Inc.  
1775, Old Highway 8 NW, Suite 107  
St. Paul, MN 55112  
Tel. (651) 639-0775  
Fax (651) 639-0873  
Receiver Fail-Safe  
All LTC2846/LTC2845 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
shorted together by a termination resistor, the receiver  
output will always be forced to a logic high.  
L1  
5.6µH  
D1  
V
CC  
V
IN  
3.3V  
5V  
480mA  
+
V
C2  
C2  
V
DD  
+
V
SW  
R1  
13k  
C6  
10µF  
IN  
C2  
1µF  
C3  
1µF  
BOOST  
SWITCHING  
REGULATOR  
C5  
10µF  
C1  
C1  
V
LTC2846  
OR  
LTC2847  
C1  
1µF  
SHDN  
SHDN  
FB  
R2  
4.3k  
EE  
GND  
C4  
3.3µF  
+
GND  
5V  
CC  
C1,C2: TAIYO YUDEN X5R JMK316BJ106ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-5R6  
C5  
10µF  
2845 F22  
2845 F21  
Figure 21. Charge Pump  
Figure 22. LTC2846 Boost Switching Regulator  
sn2845 2845fs  
14  
LTC2845  
U
TYPICAL APPLICATIONS  
L1  
5.6µH  
D1 MBR0520  
V
V
CC  
5V  
IN  
3.3V  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
C5  
10µF  
SHDN  
R2  
4.3k  
V
8V  
DD  
C2  
C3  
1µF  
1µF  
C1  
1µF  
V
EE  
CHARGE  
PUMP  
–7.5V  
C4  
V
CC  
+
3.3µF  
5V  
LTC2846  
2
TXD A (103)  
TXD  
D1  
D2  
D3  
T
T
T
14  
TXD B  
24  
SCTE A (113)  
SCTE  
11  
SCTE B  
15  
TXC A (114)  
TXC  
RXC  
RXD  
R1  
R2  
R3  
12  
17  
TXC B  
RXC A (115)  
T
T
9
3
RXC B  
RXD A (104)  
16  
7
RXD B  
SG  
M0  
M1  
M2  
V
IN  
3.3V  
1
DCE/DTE  
SHIELD  
DB-25 MALE  
CONNECTOR  
V
V
EE  
GND  
CC  
C9  
1µF  
C7  
1µF  
V
DD  
C8  
1µF  
4
RTS A (105)  
RTS B  
RTS  
D1  
D2  
D3  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC2845  
8
10  
6
DCD A (109)  
DCD B  
R1  
R2  
R3  
DCD  
DSR  
DSR A (107)  
DSR B  
22  
5
CTS A (106)  
CTS B  
CTS  
LL  
13  
18  
*
D4  
LL (141)  
RI (125)  
R4  
R5  
RI  
25  
21  
TM (142)  
RL (140)  
TM  
RL  
D5  
V
IN  
M0  
M1  
M2  
M0  
M1  
M2  
V
IN  
D4ENB  
3.3V  
C10  
1µF  
*OPTIONAL  
NC  
DCE/DTE R4EN  
2845 F23  
Figure 23. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
sn2845 2845fs  
15  
LTC2845  
U
TYPICAL APPLICATIONS  
L1  
5.6µH  
D1 MBR0520  
V
V
CC  
5V  
IN  
3.3V  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
C5  
10µF  
SHDN  
R2  
4.3k  
V
8V  
DD  
C2  
C3  
1µF  
1µF  
C1  
1µF  
V
CHARGE  
PUMP  
EE  
–7.5V  
C4  
V
+
CC  
3.3µF  
5V  
LTC2846  
2
RXD A (104)  
RXD  
RXC  
D1  
D2  
D3  
T
T
T
14  
RXD B  
24  
RXC A (115)B  
11  
RXC B  
15  
TXC A (114)  
TXC  
SCTE  
TXD  
R1  
R2  
R3  
12  
24  
TXC B  
SCTE A (113)  
T
T
11  
2
SCTE B  
TXD A (103)  
14  
7
TXD B  
M0  
M1  
M2  
V
IN  
SG (102)  
3.3V  
1
DCE/DTE  
NC  
SHIELD (101)  
DB-25 FEMALE  
CONNECTOR  
V
V
EE  
GND  
CC  
C9  
1µF  
C7  
1µF  
V
DD  
C8  
1µF  
5
CTS A (106)  
CTS B  
CTS  
D1  
D2  
D3  
13  
6
DSR A (107)  
DSR B  
22  
DSR  
LTC2845  
8
10  
20  
23  
DCD A (109)  
DCD B  
R1  
R2  
R3  
DCD  
DTR  
DTR A (108)  
DTR B  
4
RTS A (105)  
RTS B  
RTS  
RI  
19  
*
D4  
RI (125)  
LL (141)  
18  
R4  
R5  
LL  
21  
25  
RL (140)  
TM (142)  
RL  
D5  
TM  
V
IN  
M0  
M1  
M2  
M0  
M1  
M2  
V
IN  
D4ENB  
3.3V  
C10  
1µF  
*OPTIONAL  
DCE/DTE R4EN  
NC  
NC  
2845 F24  
Figure 24. Controller-Selectable DCE Port with DB-25 Connector  
sn2845 2845fs  
16  
LTC2845  
U
TYPICAL APPLICATIONS  
L1  
5.6µH  
D1 MBR0520  
V
V
CC  
5V  
IN  
3.3V  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
C5  
10µF  
SHDN  
R2  
4.3k  
V
8V  
DD  
C2  
C3  
1µF  
1µF  
C1  
1µF  
V
CHARGE  
PUMP  
EE  
–7.5V  
C4  
V
+
CC  
3.3µF  
5V  
DTE  
DCE  
LTC2846  
2
14  
TXD A  
RXD A  
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
TXD B  
RXD B  
RXC A  
24  
SCTE A  
11  
SCTE B  
RXC B  
15  
TXC A  
TXC A  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
TXC B  
RXC A  
TXC B  
SCTE A  
T
T
9
3
RXC B  
RXD A  
SCTE B  
TXD A  
16  
7
RXD B  
SG  
TXD B  
M0  
M1  
M2  
V
IN  
3.3V  
1
DCE/DTE  
SHIELD  
DB-25  
CONNECTOR  
V
V
EE  
GND  
CC  
C9  
1µF  
C7  
1µF  
V
DD  
C8  
1µF  
4
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
19  
20  
23  
RTS B  
DTR A  
DTR B  
LTC2845  
8
10  
6
DCD A  
DCD B  
DCD A  
DCD B  
R1  
R2  
R3  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DSR A  
DSR B  
CTS A  
CTS B  
DTR A  
DTR B  
RTS A  
RTS B  
22  
5
DTE_CTS/DCE_RTS  
DTE_LL/DCE_RI  
DTE_RI/DCE_LL  
13  
18  
*
D4  
LL  
RI  
RI  
R4  
R5  
LL  
25  
21  
TM  
RL  
RL  
DTE_TM/DCE_RL  
DTE_RL/DCE_TM  
D5  
TM  
V
IN  
M0  
M1  
M0  
M1  
M2  
V
IN  
D4ENB  
3.3V  
C10  
1µF  
M2  
NC  
*OPTIONAL  
DCE/DTE  
DCE/DTE R4EN  
2845 F25  
Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
sn2845 2845fs  
17  
LTC2845  
U
PACKAGE DESCRIPTION  
G Package  
36-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
12.50 – 13.10*  
(.492 – .516)  
1.25 ±0.12  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
0.65 BSC  
5
7
8
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
6
9 10 11 12 13 14 15 16 17 18  
5.00 – 5.60**  
(.197 – .221)  
2.0  
(.079)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
(.0035 – .010)  
0.55 – 0.95  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
(.002)  
G36 SSOP 0802  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
sn2845 2845fs  
18  
LTC2845  
U
PACKAGE DESCRIPTIO  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701)  
0.70 ± 0.05  
5.50 ± 0.05  
(2 SIDES)  
4.10 ± 0.05  
(2 SIDES)  
3.20 ± 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
5.20 ± 0.05 (2 SIDES)  
6.10 ± 0.05 (2 SIDES)  
7.50 ± 0.05 (2 SIDES)  
RECOMMENDED SOLDER PAD LAYOUT  
3.15 ± 0.10  
(2 SIDES)  
0.75 ± 0.05  
5.00 ± 0.10  
(2 SIDES)  
0.435 0.18  
0.18  
37 38  
0.00 – 0.05  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
1
2
0.23  
5.15 ± 0.10  
(2 SIDES)  
7.00 ± 0.10  
(2 SIDES)  
0.40 ± 0.10  
0.200 REF 0.25 ± 0.05  
R = 0.115  
TYP  
(UH) QFN 0303  
0.50 BSC  
0.200 REF  
0.75 ± 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
sn2845 2845fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2845  
U
TYPICAL APPLICATIO  
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
RL TM  
RI  
LL CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC2846  
LTC2845  
D3  
D2  
D1  
D3  
D2  
T
D1  
T
D5  
R5  
D4  
R3  
R2  
R1  
R4  
R3  
T
R2  
T
R1  
T
21  
25  
*
18 13  
5
10  
8
22  
6
23 20 19  
4
1
7
16  
3
9
17  
12  
15 11  
24 14  
2
*OPTIONAL  
DB-25 CONNECTOR  
2845 TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1343  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543 (Not Needed with LTC1546)  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Terminated with LTC1344A for Data and Clock Signals, Companion to  
LTC1544 or LTC1545 for Control Signals  
LTC1544  
LTC1545  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Companion to LTC1546 or LTC1543 for Control Signals Including LL  
5-Driver/5-Receiver Companion to LTC1546 or LTC1543  
for Control Signals Including LL, TM and RL  
LTC1546  
LTC2844  
Software-Selectable Multiprotocol Transceiver  
3-Driver/3-Receiver with Termination for Data and Clock Signals  
3.3V Software-Selectable Multiprotocol Transceiver  
3.3V Supply, 4-Driver/4-Receiver Companion to LTC2846 for Control  
Signals Including LL  
LTC2846  
LTC2847  
3.3V Software-Selectable Multiprotocol Transceiver  
3.3V Supply, 3-Driver/3-Receiver with Termination for Data and Clock  
Signals, Generates the Required 5V and ±8V Supplies for LTC2846 and  
Companion Parts  
Software-Selectable Multiprotocol Transceiver  
with 3.3V Digital Interface  
3-Driver/3-Receiver with Termination for Data and Clock Signals.  
Seperate Supply for Digital Interface Works Down to 3.3V  
sn2845 2845fs  
LT/TP 0703 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2845CUHF

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845CUHF#PBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: 0°C to 70°C
Linear

LTC2845CUHF#TR

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: 0°C to 70°C
Linear

LTC2845IG

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845IG#PBF

暂无描述
Linear

LTC2845IG#TR

暂无描述
Linear

LTC2845IG#TRPBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC2845IUHF

3.3V Software-Selectable Multiprotocol Transceiver
Linear

LTC2845IUHF#TR

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C
Linear

LTC2845IUHF#TRPBF

LTC2845 - 3.3V Software-Selectable Mutiprotocol Transceiver; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C
Linear

LTC2846

3.3V Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC2846CG

3.3V Software-Selectable Multiprotocol Transceiver with Termination
Linear