LTC2861IGN [Linear]

20Mbps RS485 Transceivers with Integrated Switchable Termination; 20Mbps的RS485收发器集成可切换端接
LTC2861IGN
型号: LTC2861IGN
厂家: Linear    Linear
描述:

20Mbps RS485 Transceivers with Integrated Switchable Termination
20Mbps的RS485收发器集成可切换端接

文件: 总16页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2859/LTC2861  
20Mbps RS485 Transceivers  
with Integrated Switchable  
Termination  
FEATURES  
DESCRIPTION  
The LTC®2859 and LTC2861 are low power, 20Mbps  
RS485/422 transceivers operating on 5V supplies. The  
receiver includes a logic-selectable 120Ω termination,  
one-eighth unit load supporting up to 256 nodes per bus,  
and a failsafe feature that guarantees a high output state  
under conditions of floating or shorted inputs.  
Integrated, Logic-Selectable 120Ω Termination  
Resistor  
20Mbps Max Data Rate  
No Damage or Latchup to ESD: 1ꢀ5k ꢁHM  
ꢁigh Input Impedance Supports 2ꢀ6 Nodes  
250kbps Low-EMI Mode  
Guaranteed Failsafe Receiver Operation Over the  
The driver features a logic-selectable low-EMI 250kbps  
operating mode, and maintains a high output impedance  
over the entire common mode range when disabled or  
when the supply is removed. Excessive power dissipation  
causedbybuscontentionorafaultispreventedbycurrent  
limiting all outputs and by a thermal shutdown.  
Entire Common Mode Range  
Current Limited Drivers and Thermal Shutdown  
Delayed Micropower Shutdown ꢀ5μA Maxꢁ  
Power Up/Down Glitch-Free Driver Outputs  
Low Operating Current ꢀ900μA Max in Receive Modeꢁ  
Meets All TIA/EIA-485-A Specifications  
EnhancedESDprotectionallowstheLTC2859andLTC2861  
towithstand 15kVhumanbodymodelonthetransceiver  
interface pins without latchup or damage.  
Available in 10-Pin 3mm × 3mm DFN, 12-Pin  
4mm × 3mm DFN and 16-Pin SSOP Packages  
APPLICATIONS  
PRODUCT SELECTION GUIDE  
Low Power RS485/RS422 Transceiver  
Level Translator  
PART NUMHER  
LTC2859  
DUPLEX  
Half  
PACKAGE  
DFN-10  
Backplane Transceiver  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
LTC2861  
Full  
SSOP-16, DFN-12  
TYPICAL APPLICATION  
LTC2859  
LTC2859  
LTC28ꢀ9 at 20Mbps  
RO  
R
R
RO  
RE  
TE  
RE  
TE  
DI  
120Ω  
DE  
DE  
120Ω  
Y
Z
D
D
DI  
DI  
SLO  
SLO  
Y–Z  
2859/61 TA01  
LTC2859  
120Ω  
285961 TA02  
2V/DIV  
20ns/DIV  
R
D
RO RE TE DE DI SLO  
285961fb  
1
LTC2859/LTC2861  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ꢀV ꢁ ................................... –0.3V to 7V  
Logic Input Voltages ꢀRE, DE, DI, TE, SLO... –0.3V to 7V  
Operating Temperature ꢀNote 4ꢁ  
CC  
LTC2859C, LTC2861C .............................. 0°C to 70°C  
LTC2859I, LTC2861I............................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Lead Temperature ꢀSoldering, 10 secꢁ  
Interface I/O:  
A, B, Y, Z...................................... ꢀV –15Vꢁ to +15V  
CC  
ꢀA-Bꢁ or ꢀB-Aꢁ with Terminat or Enabled.................6V  
Receiver Output Voltage ꢀRO........ –0.3V to ꢀV +0.3Vꢁ  
GN Package ...................................................... 300°C  
CC  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RO  
RE  
V
A
B
Z
CC  
RO  
RE  
1
2
3
4
5
6
12  
11  
10  
9
V
A
B
Z
Y
CC  
RO  
RE  
DE  
DI  
1
2
3
4
5
10  
9
V
B
A
CC  
DE  
13  
11  
DE  
DI  
8
DI  
TE  
Y
7
SLO  
TE  
8
TE  
6
GND  
GND  
NC  
NC  
SLO  
NC  
GND  
7
SLO  
DD PACKAGE  
10-LEAD ꢀ3mm × 3mmꢁ PLASTIC DFN  
NC  
DE PACKAGE  
EXPOSED PAD ꢀPIN 11ꢁ PCB GND CONNECTION  
12-LEAD ꢀ4mm × 3mmꢁ PLASTIC DFN  
GN PACKAGE  
16-LEAD ꢀNARROW 0.150ꢁ PLASTIC SSOP  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
EXPOSED PAD ꢀPIN 13ꢁ PCB GND CONNECTION  
θ
= 3°C/W  
JC  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
T
= 125°C, θ = 110°C/W  
JMAX  
JA  
θ
= 4.3°C/W  
JC  
θ
JC  
= 40°C/W  
ORDER INFORMATION  
LEAD FREE FINISꢁ  
LTC2861CDE#PBF  
LTC2861IDE#PBF  
LTC2861CGN#PBF  
LTC2861IGN#PBF  
LTC2859CDD#PBF  
LTC2859IDD#PBF  
LEAD HASED FINISꢁ  
LTC2861CDE  
TAPE AND REEL  
PART MARKING*  
2861  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2861CDE#TRPBF  
LTC2861IDE#TRPBF  
LTC2861CGN#TRPBF  
LTC2861IGN#TRPBF  
LTC2859CDD#TRPBF  
LTC2859IDD#TRPBF  
TAPE AND REEL  
12-Lead ꢀ4mm × 3mmꢁ Plastic DFN  
12-Lead ꢀ4mm × 3mmꢁ Plastic DFN  
16-Lead Plastic SSOP  
2861  
–40°C to 85°C  
0°C to 70°C  
2861  
2861I  
16-Lead Plastic SSOP  
–40°C to 85°C  
0°C to 70°C  
LBNX  
10-Lead ꢀ3mm × 3mmꢁ Plastic DFN  
10-Lead ꢀ3mm × 3mmꢁ Plastic DFN  
PACKAGE DESCRIPTION  
LBNX  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
2861  
LTC2861CDE#TR  
12-Lead ꢀ4mm × 3mmꢁ Plastic DFN  
12-Lead ꢀ4mm × 3mmꢁ Plastic DFN  
16-Lead Plastic SSOP  
LTC2861IDE  
LTC2861IDE#TR  
2861  
–40°C to 85°C  
0°C to 70°C  
LTC2861CGN  
LTC2861CGN#TR  
LTC2861IGN#TR  
2861  
LTC2861IGN  
2861I  
16-Lead Plastic SSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
285961fb  
2
LTC2859/LTC2861  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 2ꢀ°C, kCC = ꢀk unless otherwise noted (Note 2).  
SYMHOL  
Driver  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
|V  
|
OD  
Differential Driver Output Voltage  
R = ∞, I = 0mA, V = 4.5V ꢀFigure 1ꢁ  
V
V
V
V
V
V
O
CC  
CC  
CC  
CC  
R = 27Ω ꢀRS485ꢁ, V = 4.5V ꢀFigure 1ꢁ  
1.5  
2.0  
CC  
R = 50Ω ꢀRS422ꢁ, V = 4.5V ꢀFigure 1ꢁ  
CC  
Δ|V  
|
OD  
Change in Magnitude of Driver  
Differential Output Voltage for  
Complementary Output States  
R = 27Ω or R = 50Ω ꢀFigure 1ꢁ  
0.2  
V
V
Driver Common Mode Output Voltage  
R = 27Ω or R = 50Ω ꢀFigure 1ꢁ  
R = 27Ω or R = 50Ω ꢀFigure 1ꢁ  
3.0  
0.2  
V
V
OC  
Δ|V  
|
Change in Magnitude of Driver  
Common Mode Output Voltage for  
Complementary Output States  
OC  
I
I
Driver Three-State ꢀHigh Impedanceꢁ  
Output Current on Y and Z  
DE = OV, V = 7V, +12V  
10  
μA  
OZD  
O
LTC2861 Onlyꢁ  
Maximum Driver Short-Circuit Current  
–7V ≤ ꢀY or Zꢁ ≤ 12 ꢀFigure 2ꢁ  
120  
250  
mA  
OSD  
Receiver  
I
Receiver Input Current ꢀA, Bꢁ  
DE = TE = 0V, V = 0V or 5V, V or V =  
125  
0.2  
μA  
μA  
V
IN2  
CC  
A
B
12V, Other at 0V  
DE = TE = 0V, V = 0V or 5V, V or V =  
–100  
2.4  
CC  
A
B
–7V, Other at 0V  
V
Receiver Differential Input Threshold  
Voltage  
–7V ≤ V ≤ 12  
TH  
CM  
ΔV  
Receiver Input Hysteresis  
V
CM  
= 0V  
25  
mV  
V
TH  
V
V
Receiver Output HIGH Voltage  
Receiver Output LOW Voltage  
I = –4mA, V = 200mV, V = 4.5V  
0 ID CC  
OH  
OL  
I = 4mA, V = –200mV, V = 4.5V  
0.4  
1
V
0
ID  
CC  
I
Receiver Three-State ꢀHigh Impedanceꢁ RE = 5V, 0V ≤ V ≤ V  
Output Current on RO  
μA  
OZR  
O
CC  
R
Receiver Input Resistance  
RE = 5V or 0V, DE = TE = 0V  
–7V ≤ V = V ≤ 12V  
96  
125  
120  
kΩ  
Ω
IN  
A
B
R
TERM  
Receiver Input Terminating Resistor  
TE = 5V, V = 2V, V = 7, 0, 10V  
108  
156  
AB  
B
ꢀFigure 7ꢁ  
Logic  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
DE, DI, RE, TE, SLO, V = 4.5V  
2
V
V
IH  
IL  
CC  
DE, DI, RE, TE, SLO, V = 4.5V  
0.8  
10  
CC  
I
DE, DI, RE, TE, SLO  
0
μA  
IN1  
Supplies  
I
I
I
Supply Current in Shutdown Mode  
Supply Current in Receive Mode  
Supply Current in Transmit Mode  
DE = 0V, RE = V , TE = 0V  
0
5
μA  
μA  
μA  
SHDN  
CCR  
CC  
No Load, DE = 0V, RE = 0V, TE = 0V  
540  
630  
900  
1000  
No Load, DE = V , RE = V , SLO = V ,  
CC  
CCT  
CC  
CC  
TE = 0V  
I
I
I
Supply Current in Transmit SLO Mode  
No Load, DE = V , RE = V , SLO = 0V,  
670  
660  
640  
1100  
1100  
1180  
μA  
μA  
μA  
CCTS  
CC  
CC  
TE = 0V  
Supply Current in Loopback Mode ꢀBoth No Load, DE = V , RE= 0V, SLO = V , TE  
Driver and Receiver Enabledꢁ  
CCL  
CC  
CC  
= 0V  
DE = 0V, RE = V , TE = V , SLO = V  
CC  
Supply Current in Termination Mode  
CCRT  
CC  
CC  
285961fb  
3
LTC2859/LTC2861  
SWITCHING CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢀ°C, kCC = ꢀk, TE = 0 unless otherwise noted (Note 2).  
SYMHOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Driver in Normal Mode (SLO ꢁIGꢁ)  
f
t
Maximum Data Rate  
Note 3  
20  
Mbps  
ns  
MAX  
, t  
Driver Input to Output  
R
DIFF  
DIFF  
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
10  
1
50  
6
PLHD PHLD  
L
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
ns  
PD  
L
|t  
-t  
|
PLHD PHLD  
t
t
Driver Output Y to Output Z  
Driver Rise or Fall Time  
R
R
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
1
4
6
12.5  
70  
ns  
ns  
ns  
SKEWD  
DIFF  
L
, t  
RD FD  
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
L
DIFF  
t
t
, t , t  
,
Driver Enable or Disable Time  
R = 500Ω, C = 50pF, RE = 0 ꢀFigure 4ꢁ  
L L  
ZLD ZHD LZD  
HZD  
t
, t  
Driver Enable from Shutdown  
Time to Shutdown  
R = 500Ω, C = 50pF, RE = V ꢀFigure 4ꢁ  
8
μs  
ns  
ZHSD ZLSD  
L
L
CC  
t
ꢀDE = , RE = V ꢁ or ꢀDE = 0, RE ꢁ  
100  
SHDN  
CC  
ꢀFigure 4ꢁ  
Driver in SLO Mode (SLO LOW)  
f
t
Maximum Data Rate  
Note 3  
250  
kbps  
μs  
MAXS  
t
Driver Input to Output  
R
R
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
0.95  
50  
1.5  
PLHDS, PHLDS  
DIFF  
L
Δt  
Driver Input to Output Difference  
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
500  
ns  
PDS  
DIFF  
L
|t  
-t  
|
PLHR PHLR  
t
t
t
t
t
t
Driver Output A to Output B  
Driver Rise or Fall Time  
Driver Enable Time  
R
R
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
200  
0.9  
500  
1.5  
300  
70  
ns  
μs  
ns  
ns  
μs  
ns  
SKEWDS  
DIFF  
L
t
= 54Ω, C = 100pF ꢀFigure 3ꢁ  
L
RDS, FDS  
DIFF  
t
R = 500Ω, C = 50pF, RE = 0 ꢀFigure 4ꢁ  
L L  
ZHDS, ZLDS  
t
Driver Disable Time  
R = 500Ω, C = 50pF, RE = 0 ꢀFigure 4ꢁ  
L L  
LZDS, HZDS  
t
Driver Enable from Shutdown  
Time to Shutdown  
R = 500Ω, C = 50pF, RE = V ꢀFigure 4ꢁ  
L
8
ZHSDS, ZLSDS  
L
CC  
ꢀDE = 0, RE = ꢁ or ꢀDE = , RE = V  
ꢀFigure 4ꢁ  
CC  
500  
SHDNS  
Receiver  
t
t
t
, t  
Receiver Input to Output  
Differential Receiver Skew  
C = 15pF, V = 1.5V, |V | = 1.5V, t and  
F
50  
1
70  
6
ns  
ns  
PLHR PHLR  
L
CM  
AB  
R
t < 4ns ꢀFigure 5ꢁ  
C = 15pF ꢀFigure 5ꢁ  
L
SKEWR  
|t  
-t  
|
PLHR PHLR  
, t  
Receiver Output Rise or Fall Time  
Receiver Enable/Disable  
C = 15pF ꢀFigure 5ꢁ  
L
3
12.5  
50  
ns  
ns  
RR FR  
t
t
, t , t  
,
R = 1kΩ, C =15pF, DE = V ꢀFigure 6ꢁ  
ZLR ZHR LZR  
HZR  
L
L
CC  
CC  
DI = 0 or V  
t
, t  
Receiver Enable from Shutdown  
R = 1kΩ, C = 15pF, DE = 0V ꢀFigure 6ꢁ  
8
μs  
μs  
ZHSR ZLSR  
L
L
DI = 0 or V  
CC  
t
, t  
Termination Enable or Disable Time  
V = 0V, V = 2V, RE = V , DE = 0V  
100  
RTEN RTZ  
B
AB  
CC  
ꢀFigure 7ꢁ  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime..  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 4: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 3: Maximum data rate is guaranteed by other measured parameters  
and is not tested directly.  
285961fb  
4
LTC2859/LTC2861  
TEST CIRCUITS  
Y
Z
Y
R
R
I
GND  
OR  
CC  
OSD  
+
OD  
GND  
OR  
DI  
V
DI  
DRIVER  
DRIVER  
V
V
CC  
Z
+
OC  
+
–7V to +12V  
V
2859/61 F01-2  
Figure 1. Driver DC Characteristics  
Figure 2. Driver Output Short-Circuit Current  
V
CC  
t
t
,
t
t
,
PHLD  
PHLDS  
PLHD  
DI  
Y
PLHDS  
OV  
C
C
L
L
DI  
t
, t  
SKEWD SKEWDS  
DRIVER  
R
DIFF  
1/2 V  
O
V
Y, Z  
O
Z
90%  
10%  
90%  
10%  
(Y-Z)  
0
0
t
t
,
t
t
,
RD  
RDS  
FD  
FDS  
2859/61 F03  
Figure 3. Driver Timing Measurement  
R
L
V
GND  
OR  
CC  
CC  
t
t
t
t
,
ZLD  
1/2 V  
CC  
,
,
DE  
ZLDS  
ZLSD  
ZLSDS  
Y
Z
V
OV  
C
L
L
t
,
V
OR  
GND  
LZD  
CC  
V
CC  
t
DI  
DRIVER  
LZDS  
Y or Z  
Z or Y  
1/2 V  
1/2 V  
V
CC  
CC  
O
0.5V  
0.5V  
V
V
OL  
OH  
R
L
V
CC  
DE  
OR  
GND  
t
t
t
t
,
HZD  
C
OV  
HZDS,  
SHDN,  
SHDNS  
t
t
t
t
,
ZHD  
,
,
ZHDS  
ZHSD  
ZHSDS  
2859/61 F04  
Figure 4. Driver Enable and Disable Timing Measurement  
285961fb  
5
LTC2859/LTC2861  
TEST CIRCUITS  
V
AB  
A-B  
RO  
0V  
V
/2  
/2  
AB  
A
B
–V  
V
AB  
CC  
t
RO  
PLHR  
t
PHLR  
90%  
10%  
V
CM  
RECEIVER  
90%  
10%  
V
1/2 V  
CC  
1/2 V  
t
O
CC  
C
L
V
AB  
0V  
t
FR  
RR  
t
t
– t  
SKEWR = PLHR PHLR  
2859/61 F05  
Figure ꢀ. Receiver Propagation Delay Measurements  
V
CC  
t
t
,
RE  
ZLR  
ZLSR  
1/2 V  
CC  
0V OR V  
A
B
CC  
R
V
L
0V  
CC  
RO  
t
LZR  
OR  
RECEIVER  
RE  
V
CC  
GND  
RO  
RO  
V
1/2 V  
1/2 V  
C
L
O
CC  
V
OR 0V  
0.5V  
0.5V  
CC  
V
OL  
OH  
V
CC  
DI = 0V OR V  
CC  
0V  
t
t
,
t
HZR  
ZHR  
ZHSR  
2859/61 F06  
Figure 6. Receiver Enable/Disable Time Measurements  
V
AB  
R
=
TERM  
I
V
A
CC  
A
B
TE  
1/2 V  
CC  
RO  
+
RECEIVER  
V
V
0V  
AB  
t
RTEN  
t
RTZ  
90%  
I
A
10%  
+
TE  
B
2859/61 F07  
Figure 7. Termination Resistance and Timing Measurements  
285961fb  
6
LTC2859/LTC2861  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 2ꢀ°C, kCC = ꢀk, unless otherwise noted.  
Receiver S5ew  
vs Temperature  
Driver Propagation Delay  
vs Temperature  
Driver S5ew vs Temperature  
18  
3
2
V
C
= 1.5V  
R
C
= 54Ω  
R
C
= 54Ω  
DIFF  
L
AB  
L
DIFF  
L
= 15pF  
= 100pF  
= 100pF  
16  
14  
2
1
0
SLO = V  
SLO = V  
CC  
CC  
12  
10  
8
1
0
6
–1  
–40 –20  
4
60 80  
20 40  
TEMPERATURE ꢀ°Cꢁ  
–40 –20  
0
100 120  
60 80  
20 40  
TEMPERATURE ꢀ°Cꢁ  
–40 –20  
0
20 40 60 80 100 120  
0
100 120  
TEMPERATURE ꢀ°Cꢁ  
285961 G01  
285961 G02  
285961 G03  
Driver Output Low/ꢁigh koltage  
vs Output Current  
Driver Differential Output koltage  
vs Temperature  
RTERM vs Temperature  
5
4
3
2
1
0
5
4
3
135  
130  
125  
120  
115  
110  
105  
100  
95  
V
R =  
OH  
R = 100Ω  
R = 54Ω  
2
1
0
V
OL  
0
10  
20  
30  
40  
50  
60  
70  
40  
TEMPERATURE ꢀ°Cꢁ  
–40 –20  
0
20  
60 80 100 120  
40 60  
TEMPERATURE ꢀ°Cꢁ  
–40 –20  
0
20  
80 100 120  
OUTPUT CURRENT ꢀmAꢁ  
285961 G05  
285961 G06  
285961 G04  
Receiver Output koltage vs  
Output Current (Source and Sin5)  
Receiver Propagation Delay  
vs Temperature  
Supply Current vs Data Rate  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
C
= 1.5V  
AB  
L
SOURCE  
= 15pF  
R = 54Ω  
R = 100Ω  
R =  
SINK  
40 60  
20  
TEMPERATURE ꢀ°Cꢁ  
0
1
2
3
4
5
–40 –20  
0
80 100 120  
1
10  
0.1  
100  
DATA RATE ꢀMbpsꢁ  
OUTPUT CURRENT ꢀmAꢁ  
285961 G09  
285961 G07  
285961 G08  
285961fb  
7
LTC2859/LTC2861  
PIN FUNCTIONS  
(DD/DE/GN)  
RO(Pin1):ReceiverOutput.Ifthereceiveroutputisenabled  
RE lowꢁ and A > B by 200mV, then RO will be high. If A  
< B by 200mV, then RO will be low. If the receiver inputs  
are open, shorted, or terminated without a valid signal, RO  
will be high.  
TE (Pin ꢀ): Internal Termination Resistance Enable. A high  
input will connect a termination resistor ꢀ120Ω typicalꢁ  
between pins A and B.  
GND (Pins 6,11/6,13/6): Ground. Pins 11 and 13 are  
backside thermal pad, connected to Ground.  
RE (Pin 2): Receiver Enable. A low enables the receiver.  
A high input forces the receiver output into a high imped-  
ance state.  
SLO (Pins 7/7/11): Driver Slew Rate Control. A low input  
will force the driver into a reduced slew rate mode.  
Y (Pins -/8/12): Positive Driver Output for LTC2861.  
Z (Pins -/9/13): Negative Driver Output for LTC2861.  
DE (Pin 3): Driver Enable. A high on DE enables the driver.  
A low input will force the driver outputs into a high imped-  
ance. If RE is high with DE and TE LOW, the part will enter  
a low power shutdown state.  
H (Pins 9/10/14): Negative Receiver Input ꢀand Negative  
Driver Output for LTC2859ꢁ.  
DI (Pin 4): Driver Input. If the driver outputs are enabled  
ꢀDE HIGHꢁ, then a low on DI forces the driver positive  
output LOW and negative output HIGH. A high on DI,  
with the driver outputs enabled, forces the driver positive  
output HIGH and negative output LOW.  
A (Pins 8/11/1ꢀ): Positive Receiver Input ꢀand Positive  
Driver Output for LTC2859ꢁ.  
k
(Pins 10/12/16): Positive Supply. 4.5V < V < 5.5V.  
CC  
CC  
Bypass with 0.1μF ceramic capacitor.  
285961fb  
8
LTC2859/LTC2861  
FUNCTION TABLES  
LTC28ꢀ9  
LOGIC INPUTS  
DE  
0
RE  
0
TE  
0
MODE  
Receive  
A, H  
RO  
TERMINATOR  
R
IN  
R
IN  
R
IN  
R
IN  
Enabled  
Enabled  
Hi-Z  
Off  
On  
Off  
On  
Off  
On  
0
0
1
Receive with Term  
Shutdown  
0
1
0
0
1
1
Term Only  
Hi-Z  
1
0
0
Transmit with Receive  
Driven  
Driven  
Enabled  
Enabled  
1
0
1
Transmit with Receive  
and Term  
1
1
1
1
0
1
Transmit  
Driven  
Driven  
Hi-Z  
Hi-Z  
Off  
On  
Transmit with Term  
LTC2861  
LOGIC INPUTS  
DE  
0
RE  
0
TE  
0
MODE  
Receive  
A, H  
Y, Z  
Hi-Z  
RO  
TERMINATOR  
R
R
R
R
R
R
Enabled  
Enabled  
Hi-Z  
Off  
On  
Off  
On  
Off  
On  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
1
Receive with Term  
Shutdown  
Hi-Z  
0
1
0
Hi-Z  
0
1
1
Term Only  
Hi-Z  
Hi-Z  
1
0
0
Transmit with Receive  
Driven  
Driven  
Enabled  
Enabled  
1
0
1
Transmit with Receive  
and Term  
1
1
1
1
0
1
Transmit  
R
R
Driven  
Driven  
Hi-Z  
Hi-Z  
Off  
On  
IN  
IN  
Transmit with Term  
BLOCK DIAGRAMS  
LTC28ꢀ9  
LTC2861  
A
A
ꢀ15kVꢁ  
ꢀ15kVꢁ  
RE  
RE  
SLEEP/SHUTDOWN  
LOGIC AND DELAY  
SLEEP/SHUTDOWN  
LOGIC AND DELAY  
120Ω  
120Ω  
DE  
DE  
TE  
TE  
RO  
SLO  
DI  
RO  
SLO  
DI  
RECEIVER  
RECEIVER  
B
B
ꢀ15kVꢁ  
ꢀ15kVꢁ  
Z
ꢀ15kVꢁ  
DRIVER  
DRIVER  
Y
ꢀ15kVꢁ  
2859/61 BD  
285961fb  
9
LTC2859/LTC2861  
APPLICATIONS INFORMATION  
Driver  
The LTC2859/LTC2861 also feature thermal shutdown  
protectionthatdisablesthedriver, terminator, andreceiver  
in case of excessive power dissipation.  
The driver provides full RS485 and RS422 compatibility.  
When enabled, if DI is high, Y-Z is positive for the full  
duplex device ꢀLTC2861ꢁ and A-B is positive for the half-  
duplex device ꢀLTC2859ꢁ.  
SLO Mode: Slew Limiting for EMI Emissions Control  
The LTC2859/LTC2861 feature a logic-selectable reduced-  
slew mode ꢀSLO modeꢁ that softens the driver output  
edges to control the high frequency EMI emissions from  
equipment and data cables. The reduced slew rate mode  
is entered by taking the SLO pin low, where the data rate is  
limited to about 250kbps. Slew limiting also mitigates the  
adverse effects of imperfect transmission line termination  
caused by stubs or mismatched cables.  
When the driver is disabled, both outputs are high-  
impedance. For the full duplex LTC2861, the leakage on  
the driver output pins is guaranteed to be less than 10μA  
over the entire common mode range of –7V to +12V. On  
the half-duplex LTC2859, the impedance is dominated by  
the receiver input resistance, R .  
IN  
Driver Overvoltage and Overcurrent Protection  
Figures 8a and 8b show the LTC2861 driver outputs in  
normalandSLOmodewiththeircorrespondingfrequency  
spectrums operating at 250kbps. SLO mode significantly  
reduces the high frequency harmonics.  
The driver outputs are protected from short circuits to  
any voltage within the Absolute Maximum range of ꢀV  
CC  
–15Vꢁ to +15V. The maximum current in this condition is  
250mA.Ifthepinvoltageexceedsabout 10V,currentlimit  
folds back to about half of the peak value to reduce overall  
power dissipation and avoid damaging the part.  
Y, Z  
Y–Z  
Y–Z  
285961 F08a  
1V/DIV  
2μs/DIV  
10dB/DIV  
1.25MHz/DIV  
Driver Output at 12ꢀ5ꢁz into 100Ω Resistor  
Frequency Spectrum of the Same Signal  
Figure 8a. Driver Output in Normal Mode  
Y, Z  
Y–Z  
Y–Z  
285961 F08b  
1V/DIV  
2μs/DIV  
10dB/DIV  
1.25MHz/DIV  
Driver Output at 12ꢀ5ꢁz into 100Ω Resistor  
Frequency Spectrum of the Same Signal  
Figure 8b. Driver Output in SLO Mode  
285961fb  
10  
LTC2859/LTC2861  
APPLICATIONS INFORMATION  
Receiver and Failsafe  
one-eighth unit load. This, in turn, means that 8X the  
standard number of receivers, or 256 total, can be con-  
nected to a line without loading it beyond what is called  
out in the RS485 standard. The input resistance of the  
receivers is unaffected by enabling/disabling the receiver  
andbypowering/unpoweringthepart.Theequivalentinput  
resistance looking into A and B is shown in Figure 9. The  
termination resistor cannot be enabled by TE if the device  
is unpowered or in thermal shutdown mode.  
With the receiver enabled, when the absolute value of the  
differentialvoltagebetweentheAandBpinsisgreaterthan  
200mV, the state of RO will reflect the polarity of ꢀA-Bꢁ.  
The LTC2859/LTC2861 have a failsafe feature that guaran-  
tees the receiver output to be in a logic HIGH state when  
the inputs are either shorted, left open, or terminated  
ꢀexternally or internallyꢁ, but not driven for more than  
about 3μs. The delay prevents signal zero crossings from  
being interpreted as shorted inputs and causing RO to go  
high inadvertently. This failsafe feature is guaranteed to  
work for inputs spanning the entire common mode range  
of –7V to +12V.  
Switchable Termination  
Proper cable termination is very important for good  
signal fidelity. If the cable is not terminated with its char-  
acteristic impedance, reflections will result in distorted  
waveforms.  
The receiver output is internally driven high ꢀto V ꢁ or  
CC  
lowtogroundwithnoexternalpull-upneeded. Whenthe  
receiver is disabled the RO pin becomes Hi-Z with leakage  
of less than 1μA for voltages within the supply range.  
The LTC2859/LTC2861 are the first RS485 transceivers to  
offer integrated switchable termination resistors on the  
receiver input pins. This provides the tremendous advan-  
tage of being able to easily change, through logic control,  
the proper line termination for optimal performance when  
configuring transceiver networks.  
Receiver Input Resistance  
The receiver input resistance from A or B to ground is  
guaranteed to be greater than 96k when the termina-  
tion is disabled. This is 8X higher than the requirements  
for RS485 standard and thus this receiver represents a  
When the TE pin is high, the termination resistor is en-  
abled and the differential resistance from A to B is 120Ω.  
Figure 10 shows the I/V characteristics between pins A  
and B with the termination resistor enabled and disabled.  
A
>96k  
60Ω  
TE  
60Ω  
B
2859/61 F09  
>96k  
Figure 9. Equivalent Input Resistance into A and H  
(on the LTC28ꢀ9, kalid if Driver is Disabled)  
Figure 10. Curve Trace Hetween A and H  
with Termination Enabled and Disabled  
285961fb  
11  
LTC2859/LTC2861  
APPLICATIONS INFORMATION  
TheresistanceismaintainedovertheentireRS485common  
mode range of –7V to +12V as shown in Figure 11.  
150  
140  
130  
120  
110  
The integrated termination resistor has a high frequency  
responsewhichdoesnotlimitperformanceatthemaximum  
specified data rate. Figure 12 shows the magnitude and  
phase of the termination impedance vs frequency.  
Supply Current  
The unloaded static supply currents in the LTC2859/  
LTC2861areverylowtypicallyunder700μAforallmodes  
of operation without the internal terminator enabled. In  
applications with resistively terminated cables, the supply  
currentisdominatedbythedriverload.Forexample,when  
usingtwo120Ωterminatorswithadifferentialdriveroutput  
voltage of 2V, the DC current is 33mA, which is sourced  
by the positive voltage supply. This is true whether the  
terminatorsareexternalorinternalsuchasintheLTC2859/  
LTC2861. Power supply current increases with toggling  
data due to capacitive loading and this term can increase  
significantly at high data rates. Figure 13 shows supply  
current vs data rate for two different capacitive loads ꢀfor  
the circuit configuration of Figure 3ꢁ.  
–10  
–5  
0
5
10  
15  
COMMON MODE VOLTAGE ꢀVꢁ  
285961 F11  
Figure 11. Termination Resistance  
vs Common Mode koltage  
140  
120  
0
MAGNITUDE  
–5  
100  
80  
–10  
–15  
–20  
–25  
PHASE  
60  
40  
20  
0
ꢁigh Speed Considerations  
A ground plane layout is recommended for the LTC2859/  
LTC2861. A 0.1μF bypass capacitor less than one quarter  
–1  
0
1
2
10  
10  
10  
10  
FREQUENCY ꢀMHzꢁ  
285961 F12  
inch away from the V pin is also recommended. The PC  
CC  
Figure 12. Termination Magnitude  
and Phase vs Frequency  
board traces connected to signals A/B and Z/Y ꢀLTC2861ꢁ  
shouldbesymmetricalandasshortaspossibletomaintain  
good differential signal integrity. To minimize capacitive  
effects,thedifferentialsignalsshouldbeseparatedbymore  
than the width of a trace and should not be routed on top  
of each other if they are on different signal planes.  
75  
70  
65  
60  
55  
50  
45  
R
DIFF  
= 54Ω  
Care should be taken to route outputs away from any  
sensitive inputs to reduce feedback effects that might  
cause noise, jitter, or even oscillations. For example, in  
the full duplex LTC2861, DI and A/B should not be routed  
near the driver or receiver outputs.  
C
= 1000pF  
L
C
= 100pF  
L
The logic inputs of the LTC2859/LTC2861 have 50mV of  
hysteresis to provide noise immunity. Fast edges on the  
outputscancauseglitchesinthegroundandpowersupplies  
whichareexacerbatedbycapacitiveloading.Ifalogicinput  
is held near its threshold ꢀtypically 1.5Vꢁ, a noise glitch  
2
3
4
5
10  
10  
10  
10  
DATA RATE ꢀkbpsꢁ  
285961 F13  
Figure 13. Supply Current vs Data Rate  
285961fb  
12  
LTC2859/LTC2861  
APPLICATIONS INFORMATION  
from a driver transition may exceed the hysteresis levels  
on the logic and data inputs pins causing an unintended  
state change. This can be avoided by maintaining normal  
logic levels on the pins and by slewing inputs through  
their thresholds by faster than 1V/μs when transitioning.  
Good supply decoupling and proper line termination also  
reduces glitches caused by driver transitions.  
represents the specified maximum data rate in the RS485  
standard. The dashed lines at 250kbps and 20Mbps show  
the maximum data rates of the LTC2859/LTC2861 in Low-  
EMI and normal modes, respectively.  
10k  
LOW-EMI MODE  
MAX DATA RATE  
1k  
100  
10  
Cable Length vs Data Rate  
For a given data rate, the maximum transmission distance  
isboundedbythecableproperties. Atypicalcurveofcable  
length vs data rate compliant with the RS485 standard is  
shown in Figure 14. Three regions of this curve reflect  
different performance limiting factors in data transmis-  
sion. In the flat region of the curve, maximum distance is  
determinedbyresistivelossesinthecable. Thedownward  
sloping region represents limits in distance and data  
rate due to AC losses in the cable. The solid vertical line  
NORMAL  
MODE MAX  
DATA RATE  
RS485 MAX  
DATA RATE  
10k  
100k  
1M  
10M  
100M  
DATA RATE ꢀbpsꢁ  
285961 F14  
Figure 14. Cable Length vs Data Rate  
(RS48ꢀ Standard Shown in Solid Lines)  
PACKAGE DESCRIPTION  
DD Pac5age  
10-Lead Plastic DFN (3mm × 3mm)  
ꢀReference LTC DWG # 05-08-1699ꢁ  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.25 ± 0.05  
0.200 REF  
0.75 ±0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION  
OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS  
OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
285961fb  
13  
LTC2859/LTC2861  
PACKAGE DESCRIPTION  
DE/UE Pac5age  
12-Lead Plastic DFN (4mm × 3mm)  
ꢀReference LTC DWG # 05-08-1695ꢁ  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
0.70 ±0.05  
R = 0.05  
TYP  
3.30 ±0.10  
3.30 ±0.05  
3.60 ±0.05  
3.00 ±0.10  
2.20 ±0.05  
(2 SIDES)  
1.70 ± 0.10  
1.70 ± 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
PACKAGE  
OUTLINE  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
2.50 REF  
0.50 BSC  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
GN Pac5age  
16-Lead Plastic SSOP (Narrow .1ꢀ0 Inch)  
ꢀReference LTC DWG # 05-08-1641ꢁ  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
3. DRAWING NOT TO SCALE  
285961fb  
14  
LTC2859/LTC2861  
TYPICAL APPLICATIONS  
Multi-Node Networ5 with End Termination Using LTC28ꢀ9  
TE = 0V  
TE = 0V  
D
D
R
R
LTC2859  
LTC2859  
LTC2859  
LTC2859  
R
R
TE = 5V  
TE = 5V  
D
D
2859/61 TA04  
285961fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC2859/LTC2861  
TYPICAL APPLICATION  
Failsafe “0” Application (Idle State = Logic “0”)  
V
CC  
100kΩ  
LTC2859  
R
RO  
DI  
I1  
B
A
"A"  
"B"  
120Ω  
D
I2  
2859/61 TA03  
RELATED PARTS  
PART NUMHER  
DESCRIPTION  
COMMENTS  
LTC485  
Low Power RS485 Interface Transceiver  
Differential Driver and Receiver Pair  
3.3V Ultralow Power RS485 Transceiver  
I
I
= 300μA ꢀTypꢁ  
= 300μA  
CC  
CC  
LTC491  
LTC1480  
LTC1483  
LTC1485  
LTC1487  
3.3V Operation  
Ultralow Power RS485 Low EMI Transceiver  
Differential Bus Transceiver  
Controlled Driver Slew Rate  
10Mbaud Operation  
Ultralow Power RS485 with Low EMI, Shutdown and High  
Input Impedance  
Up to 256 Transceivers on the Bus  
LTC1520  
LTC1535  
LTC1685  
LT1785  
50Mbps Precision Quad Line Receiver  
Isolated RS485 Full-Duplex Transceiver  
52Mbps RS485 Transceiver with Precision Delay  
60V Fault Protected RS485 Transceiver  
Channel-to-Channel Skew 400ps ꢀTypꢁ  
2500V  
Isolation in Surface Mount Package  
RMS  
Propagation Delay Skew 500ps ꢀTypꢁ  
60V Tolerant, 15kV ESD  
285961fb  
LT 0108 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
ꢀ408ꢁ 432-1900 FAX: ꢀ408ꢁ 434-0507 www.linear.com  

相关型号:

LTC2861IGN#TR

LTC2861 - 20Mbps RS485 Transceivers with Integrated Switchable Termination; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2861IGN#TRPBF

LTC2861 - 20Mbps RS485 Transceivers with Integrated Switchable Termination; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2861IGN-PBF

20Mbps RS485 Transceivers with Integrated Switchable Termination
Linear

LTC2861IGN-TR

20Mbps RS485 Transceivers with Integrated Switchable Termination
Linear

LTC2861IGN-TRPBF

20Mbps RS485 Transceivers with Integrated Switchable Termination
Linear

LTC2861_15

20Mbps RS485 Transceivers with Integrated Switchable Termination
Linear

LTC2862

Complete Isolated RS485/RS422 μModule
Linear

LTC2862A

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceiver with Level 4 IEC ESD
Linear

LTC2862A

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceiver with Level 4 IEC ESD
ADI

LTC2862A-1

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceiver with Level 4 IEC ESD
ADI

LTC2862A-2

±60V Fault Protected 3V to 5.5V RS485/RS422 Transceiver with Level 4 IEC ESD
ADI

LTC2862CDD-1#PBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear