LTC2903CS6-B1#TRMPBF [Linear]

LTC2903-1 - Precision Quad Supply Monitor in 6-Lead SOT-23; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LTC2903CS6-B1#TRMPBF
型号: LTC2903CS6-B1#TRMPBF
厂家: Linear    Linear
描述:

LTC2903-1 - Precision Quad Supply Monitor in 6-Lead SOT-23; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

电源电路 电源管理电路 监视器 光电二极管
文件: 总16页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2903-1  
Precision Quad Supply  
Monitor in 6-Lead SOT-23  
U
FEATURES  
DESCRIPTIO  
The LTC®2903-1 monitors up to four supply voltages. The  
common reset output remains low until all four inputs  
have been in compliance for 200ms. Voltage thresholds  
maintain ±1.5% accuracy over temperature (with respect  
to the monitored voltage). The LTC2903-1 features an  
open-drain RST output with a weak internal pullup.  
Ultralow Voltage Reset: VCC = 0.5V Guaranteed  
Monitor Four Inputs Simultaneously  
3.3V, 2.5V, 1.8V, ADJ (LTC2903-A1)  
5V, 3.3V, 2.5V, 1.8V (LTC2903-B1)  
5V, 3.3V, 1.8V, –5.2V (LTC2903-C1)  
Guaranteed Threshold Accuracy: ±1.5% of  
Monitored Voltage over Temperature  
Internalsupplyvoltage(VCC)isgeneratedfromthegreater  
voltageontheV1,V2inputs.TheRSToutputisguaranteed  
to sink at least 5µA (VOL = 0.15V) for V1, V2 or V3 down  
to 0.5V and will typically conduct current down to 0V.  
Quiescent current is 20µA typical, making the LTC2903-1  
ideal for power conscious systems. The LTC2903-1 is  
available in a 6-lead low profile (1mm) SOT-23 package.  
10% Undervoltage Monitoring  
Low Supply Current: 20µA Typical  
200ms Reset Time Delay  
Active Low Open-Drain RST Output  
Power Supply Glitch Immunity  
Low Profile (1mm) SOT-23 (ThinSOTTM) Package  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
APPLICATIO S  
Multivoltage Systems  
Optical Networking Systems  
Cell Phone Base Stations  
Network Servers  
U
TYPICAL APPLICATIO  
Low Voltage Reset Pull-Down Performance  
vs External Pull-Up Current and Input Supply Voltage  
0.10  
V
= V1 = V2 = V3  
IN  
5V  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3.3V  
DC/DC  
CONVERTER  
SYSTEM  
LOGIC  
2.5V  
1.8V  
20µA  
10µA  
LTC2903-B1  
V1  
RST  
C1  
5µA  
2µA  
0.1µF  
GND  
V2  
V4  
C2  
0.1µF  
V3  
2903 TA01  
1µA  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
, INPUT SUPPLY VOLTAGE (V)  
0
1
V
IN  
2903 TA01b  
29031f  
1
LTC2903-1  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2, 3)  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
V1, V2...................................................... 0.3V to 6.5V  
V3 ................................................. 2.7V or (VCC + 0.3V)  
V4 (LTC2903-A1, LTC2903-B1)................0.3V to 6.5V  
V4 (LTC2903-C1) .................................... 6.5V to 0.3V  
RST ........................................................ 0.3V to 6.5V  
Operating Temperature Range  
V1 1  
GND 2  
V2 3  
6 RST  
5 V4  
4 V3  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 230°C/W  
LTC2903C-X1 .......................................... 0°C to 70°C  
LTC2903I-X1 ...................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART NUMBER  
S6 PART MARKING  
LTC2903CS6-A1  
LTC2903CS6-B1  
LTC2903CS6-C1  
LTC2903IS6-A1  
LTC2903IS6-B1  
LTC2903IS6-C1  
LTAFV  
LTAJN  
LTAJQ  
LTAFW  
LTAJP  
LTAJR  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
(LTC2903-A1) The denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.970  
2.250  
1.620  
0.508  
UNITS  
V
V
V
V
3.3V, 10% Reset Threshold  
2.5V, 10% Reset Threshold  
1.8V, 10% Reset Threshold  
Adjustable Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
2.871  
2.175  
1.566  
0.492  
2.921  
2.213  
1.593  
0.500  
V
V
V
V
RT33  
RT25  
RT18  
RTA  
(LTC2903-B1) The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  
TA = 25°C. VCC = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.500  
2.970  
2.250  
1.620  
UNITS  
V
RT50  
V
RT33  
V
RT25  
V
RT18  
5V, 10% Reset Threshold  
3.3V, 10% Reset Threshold  
2.5V, 10% Reset Threshold  
1.8V, 10% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
4.350  
2.871  
2.175  
1.566  
4.425  
2.921  
2.213  
1.593  
V
V
V
V
(LTC2903-C1) The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  
TA = 25°C. VCC = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.500  
2.970  
1.620  
UNITS  
V
RT50  
V
RT33  
V
RT18  
V
RT52N  
5V, 10% Reset Threshold  
3.3V, 10% Reset Threshold  
1.8V, 10% Reset Threshold  
–5.2V, 10% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
4.350  
2.871  
1.566  
4.425  
2.921  
1.593  
V
V
V
V
–4.524 –4.602 –4.680  
29031f  
2
LTC2903-1  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
I
I
V1 Input Current (Note 4)  
V1 = 3.3V (LTC2903-A1)  
V1 = 5V (LTC2903-B1, LTC2903-C1)  
20  
25  
80  
80  
µA  
µA  
V1  
V2  
V3  
V4  
V2 Input Current (Note 4)  
V3 Input Current  
V2 = 2.5V (LTC2903-A1)  
V2 = 3.3V (LTC2903-B1, LTC2903-C1)  
8
10  
30  
30  
µA  
µA  
V3 = 1.8V (LTC2903-A1, LTC2903-C1)  
V3 = 2.5V (LTC2903-B1)  
6
8
30  
30  
µA  
µA  
V4 Input Current  
V4 = 0.55V (LTC2903-A1)  
V4 = 1.8V (LTC2903-B1)  
V4 = –5.2V (LTC2903-C1)  
±15  
4
–6  
nA  
µA  
µA  
2
–3  
t
t
Reset Time-Out Period  
140  
200  
150  
260  
ms  
RST  
UV  
V Undervoltage Detect to RST  
X
V Less Than Threshold V  
More Than 1%  
by  
µs  
X
RTX  
V
V
Output Voltage High RST (LTC2903-1) (Note 5)  
Output Voltage Low RST (Note 6)  
I
= –1µA  
RST(DN)  
V2 – 1  
V
OH  
OL  
V
V
V
V
= 0.2V, I  
= 0.1µA  
= 5µA  
5
10  
25  
100  
60  
mV  
mV  
mV  
mV  
CC  
CC  
CC  
CC  
RST  
= 0.5V, I  
150  
300  
300  
RST  
= 200µA  
= 2500µA  
= 1V, I  
RST  
RST  
= 3V, I  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 5: The RST output pin on the LTC2903-1 has an internal pull-up to  
V2 of typically 10µA. However, for faster rise times or for V voltages  
OH  
greater than V2, use an external pull-up resistor.  
Note 2: All currents into pins are positive, all voltages are referenced to  
GND unless otherwise noted.  
Note 3: The internal supply voltage (V ) is generated from the greater  
Note 6: At input voltages below 1V on V1 and V2, voltage on V3 assists  
pulling down the RST output.  
CC  
voltage on the V1, V2 inputs.  
Note 4: Under typical operating conditions, quiescent current is drawn  
from the V1 input. When V2 exceeds V1, V2 supplies the quiescent  
current.  
29031f  
3
LTC2903-1  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
5V Threshold Voltage  
vs Temperature  
3.3V Threshold Voltage  
vs Temperature  
2.5V Threshold Voltage  
vs Temperature  
2.975  
2.950  
2.925  
2.900  
2.875  
4.500  
4.475  
4.450  
4.425  
4.400  
4.375  
4.350  
2.250  
2.235  
2.220  
2.205  
2.190  
2.175  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
28031 G01  
28031 G02  
28031 G03  
1.8V Threshold Voltage  
vs Temperature  
ADJ Threshold Voltage  
vs Temperature  
–5.2V Threshold Voltage  
vs Temperature  
1.625  
1.615  
1.605  
1.595  
1.585  
1.575  
1.565  
0.510  
0.505  
0.500  
0.495  
0.490  
–4.530  
–4.555  
–4.580  
–4.605  
–4.630  
–4.655  
–4.680  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
28031 G04  
28031 G05  
28031 G06  
Supply Currents  
vs Temperature (LTC2903A)  
Supply Currents  
vs Temperature (LTC2903B)  
Supply Currents  
vs Temperature (LTC2903C)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V1 = 3.3V  
V2 = 2.5V  
V3 = 1.8V  
V1 = 5V  
V1 = 5V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V2 = 3.3V  
V3 = 1.8V  
V4 = –5.2V  
I
V1  
I
V1  
I
V1  
I
V2  
I
I
V2  
V2  
I
V3  
I
V3  
0
I
I
V4  
V3  
I
V4  
0
0
–5  
–50  
0
25  
50  
75  
100  
–25  
–50  
0
25  
50  
75  
100  
–25  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29031 G07  
29031 G08  
29031 G09  
29031f  
4
LTC2903-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Transient Duration  
Reset Time-Out Period  
vs Temperature  
RST Output Voltage with 10k  
vs Comparator Overdrive  
Pull-Up to V1  
260  
240  
220  
200  
180  
160  
140  
400  
350  
300  
250  
200  
150  
100  
50  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V1 = V2 = V3  
LTC2903B, C  
RESET OCCURS  
ABOVE CURVE  
0
–50  
0
25  
50  
75  
100  
0.1  
1
10  
100  
)
–25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
TEMPERATURE (°C)  
RESET COMPARATOR OVERDRIVE (% OF V  
V1 (V)  
RTX  
29031 G10  
29301 G11  
29031 G12  
Low Voltage Reset Pull-Down  
Performance vs External Pull-Up  
Current and Input Supply Voltage  
RST Output Voltage with  
10k Pull-Up to V1  
RST Current Sink Capability  
vs VCC  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
15  
12  
9
V
= V1 = V2 = V3  
IN  
V
= 0.4V  
OL  
20µA  
10µA  
V
= 0.2V  
OL  
6
3
0
V1 ONLY  
5µA  
2µA  
V1 = V2 = V3  
1µA  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
, INPUT SUPPLY VOLTAGE (V)  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
1
0
0.5  
1
1.5  
2
2.5  
(V)  
3
3.5  
4
4.5  
5
0
V1 (V)  
V
V
IN  
CC  
29301 G13  
29031 G14  
29031 G15  
RST Voltage Output Low  
vs RST Sink Current  
RST Voltage Output Low  
vs RST Sink Current  
1.5  
1.2  
1.5  
1.2  
LTC2903A  
V1 = 3.3V  
V2 = 2.1V  
LTC2903B, C  
V1 = 5V  
V2 = 2.7V  
25°C  
85°C  
25°C  
–45°C  
85°C  
–45°C  
0.9  
0.9  
0.6  
0.3  
0
0.6  
0.3  
0
0
5
10 15 20 25 30 35 40 45  
(mA)  
0
10  
20  
30  
(mA)  
40  
50  
60  
I
I
RST  
RST  
29031 G16  
29031 G16  
29031f  
5
LTC2903-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RST Pull-Up Current vs External  
Pull-Down Voltage on RST  
RST Pull-Up Current vs V2  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–40  
V1, V3, V4 ABOVE THRESHOLD  
–35  
–30  
LTC2903B, C  
LTC2903A  
–25  
–20  
–15  
–10  
–5  
V
V
RT25  
RT33  
3.5  
0
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
5
0.5  
1
2
2.5  
3
3.5  
0
1.5  
V2 (V)  
V
RST  
(V)  
28031 G18  
29031 G19  
U
U
U
PI FU CTIO S  
V1 (Pin 1): Voltage Input 1 (5V, 3.3V). Internal VCC is  
generated from the greater voltage on the V1, V2 inputs.  
Bypass this pin to ground with a 0.1µF (or greater)  
capacitor.  
V3 (Pin 4): Voltage Input 3 (2.5V, 1.8V). This input assists  
the RST pull-down circuitry below 1V.  
V4 (Pin 5): Voltage Input 4 (ADJ, 1.8V, –5.2V). See Table  
1 for recommended ADJ resistor values.  
GND (Pin 2): Ground.  
RST (Pin 6): Reset Logic Output. Pulls low when any volt-  
age input is below reset threshold and held low for 200ms  
after all voltage inputs exceed threshold. The pin contains  
a weak pull-up to V2. Use an external pull-up for faster rise  
times or output voltages greater than V2.  
V2 (Pin 3): Voltage Input 2 (3.3V, 2.5V). Internal VCC is  
generated from the greater voltage on the V1, V2 inputs.  
Bypass this pin to ground with a 0.1µF (or greater)  
capacitor.  
W U  
W
TI I G DIAGRA  
V
RTX  
V
X
t
t
RST  
UV  
1.5V  
RST  
2903 TD  
29031f  
6
LTC2903-1  
W
BLOCK DIAGRA S (LTC2903-A1)  
3.3V  
V1  
V2  
V3  
1
3
4
V1  
V2  
POWER  
DETECT  
V
CC  
+
V2  
10µA  
+
2.5V  
1.8V  
ADJ  
RESET DELAY GENERATOR  
6
RST  
200ms  
DELAY  
+
V1  
LOW VOLTAGE  
V2  
PULL-DOWN  
V3  
+
V4  
5
2
BANDGAP  
REFERENCE  
GND  
2903 BD1  
29031f  
7
LTC2903-1  
W
BLOCK DIAGRA S  
(LTC2903-B1)  
5V  
V1  
V2  
V3  
1
3
4
V1  
V2  
POWER  
DETECT  
V
CC  
+
V2  
10µA  
+
3.3V  
2.5V  
1.8V  
RESET DELAY GENERATOR  
6
RST  
200ms  
DELAY  
+
V1  
LOW VOLTAGE  
V2  
PULL-DOWN  
V3  
+
V4  
5
2
BANDGAP  
REFERENCE  
GND  
2903 BD2  
29031f  
8
LTC2903-1  
W
BLOCK DIAGRA S  
(LTC2903-C1)  
5V  
V1  
V2  
V3  
1
3
4
V1  
V2  
POWER  
DETECT  
V
CC  
+
V2  
10µA  
+
3.3V  
1.8V  
–5.2V  
RESET DELAY GENERATOR  
6
RST  
200ms  
DELAY  
+
V1  
LOW VOLTAGE  
V2  
PULL-DOWN  
V3  
+
V4  
5
2
BANDGAP  
REFERENCE  
GND  
2903 BD3  
29031f  
9
LTC2903-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Power-Up  
Supply Monitoring  
The LTC2903-1 accurately monitors four inputs in a small  
6-lead SOT-23 package. The low voltage reset output  
includes an integrated 200ms reset delay timer. The reset  
line pulls high 200ms after all voltage inputs exceed their  
respective thresholds. The reset output remains low dur-  
ing power-up, power-down and brownout conditions on  
any of the voltage inputs.  
TheLTC2903-1 issuesa logic lowontheRSToutputwhen  
an input supply voltage resides below the prescribed  
threshold voltage. Ideally, the RST logic output would  
remain low with the input supply voltage down to zero  
volts. Most supervisors lack pull-down capability below  
1V.TheLTC2903-1powersupplysupervisorsincorporate  
a new low voltage pull-down circuit that can hold the RST  
line low with as little as 200mV of input supply voltage on  
V1, V2 or V3. The pull-down circuit helps maintain a low  
impedancepathtoground,reducingtheriskoffloatingthe  
RST node to undetermined voltages. Such voltages may  
triggerexternallogiccausingerroneousresetoperation(s).  
Furthermore, a mid-scale voltage could cause external  
circuits to operate in the middle of their voltage transfer  
characteristic, consuming more quiescent current than  
normal. These conditions could cause serious system  
reliability problems.  
Forapplicationsrequiringanadjustabletripthreshold,use  
the V4 input on the LTC2903-A1. Connect the tap point on  
an external resistive divider (R1, R2) placed between the  
positive voltage being sensed and ground, to the high  
impedance input on V4. The LTC2903-A1 compares the  
voltage on the V4 pin to the internal 0.5V reference.  
Figure 3 shows a generic setup for the positive adjustable  
application.  
0.7  
T
= 25°C  
A
When V1, V2 and V3 are ramped simultaneously, the reset  
pull-down current increases up to three times the current  
that may be pulled with a single input. Figure 1 demon-  
strates the reset pin current sinking ability for single  
supply and triple supply-tracking applications. Figure 2  
shows a detailed view of the reset pin voltage with a 10k  
pull-up resistor to V1.  
0.6  
0.5  
COMPETITION  
PART  
0.4  
0.3  
0.2  
0.1  
V1 ONLY  
0.3  
V1 = V2 = V3  
0.6  
The LTC2903-1 supervisors derive their internal supply  
voltage(VCC)automaticallyfromthegreatervoltageonthe  
V1 and V2 inputs. With all supply inputs above threshold,  
the quiescent current drawn from VCC is 20µA (typ).  
0
0
0.5  
0.7  
0.8  
1.0  
0.9  
0.1 0.2  
0.4  
V1 (V)  
39031 F02  
10000  
T
= 25°C  
RST  
A
Figure 2. RST Output Voltage with a 10k Pull-Up to V1  
(Enlarged Area of Detail)  
V
= 0.3V  
CC  
1000  
100  
10  
V
TRIP  
V1 = V2 = V3  
V1 ONLY  
LTC2903-A1  
R1  
1%  
V4  
+
R2  
1%  
+
0.5V  
1
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0  
1.2  
V
CC  
29031 F03  
29031 F01  
Figure 1. RST Pull-Down Current vs VCC  
Figure 3. Setting the Positive Adjustable Trip Point  
29031f  
10  
LTC2903-1  
W U U  
APPLICATIO S I FOR ATIO  
U
supervisor does not exist—the actual reset threshold may  
vary over a specified band (±1.5% for the LTC2903-1 su-  
pervisors). Figure 4 shows the typical relative threshold  
accuracy for all four inputs, over temperature.  
Calculate the trip voltage from:  
R1  
VTRIP = 0.5V 1+  
R2  
With this variation of reset threshold in mind, the nominal  
reset threshold of the supervisor resides below the mini-  
mum supply voltage; just enough so that the reset thresh-  
old band and the power supply tolerance bands do not  
overlap. If the two bands overlap, the supervisor could  
generate a false or nuisance reset when the power supply  
remains within its specified tolerance band (say, at 4.6V).  
Table1containssuggested1%resistorvaluesfortheADJ  
input to obtain nominal –11.5% thresholds.  
Table 1. Suggested 1% Resistor Values for the ADJ Input  
V
(V)  
V
TRIP  
(V)  
R1 (k)  
2050  
1690  
1330  
1240  
976  
R2(k)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
12  
10.75  
8.95  
10  
8
7.15  
Adding half of the reset threshold accuracy spread (1.5%)  
to the ideal 10% thresholds puts the LTC2903-1 thresh-  
olds at 11.5% (typ) below the nominal input voltage. For  
example, the 5V typical threshold is 4.425V, or 75mV  
below the ideal threshold of 4.500V. The guaranteed  
threshold lies in the band between 4.500V and 4.350V  
over temperature.  
7.5  
6
6.7  
5.38  
5
4.435  
2.935  
2.66  
787  
3.3  
3
487  
432  
2.5  
1.8  
1.5  
1.2  
1
2.2  
340  
1.605  
1.325  
1.065  
0.884  
0.795  
221  
The powered system must work reliably down to the  
lowest voltage in the threshold band or risk malfunction  
before the reset line falls. In the 5V example, using the  
1.5% accurate supervisor, the system ICs must work  
downto4.35V.SystemICsworkingwitha±2.5%accurate  
supervisor must operate down to 4.25V, increasing the  
required system voltage margin and the probability of  
system malfunction.  
165  
113  
76.8  
59  
0.9  
Connect unused supervisor inputs to the highest supply  
voltage available (typically V1). On the LTC2903-C1, the  
negative V4 input must always be applied.  
1.5  
1.0  
Implications of Threshold Accuracy  
Specifying system voltage margin for worst-case opera-  
tion requires consideration of three factors: power supply  
tolerance, IC supply voltage tolerance and supervisor re-  
set threshold accuracy. Highly accurate supervisors ease  
the design challenge by decreasing the overall voltage  
margin required for reliable system operation. Consider a  
5V system with a ±10% power supply tolerance band.  
System ICs powered by this supply must operate reliably  
within this band (and a little more, as explained below).  
The bottom of the supply tolerance band, at 4.5V (5V –  
10%), is the exact voltage at which a perfectly accurate  
supervisor generates a reset. Such a perfectly accurate  
0.5  
0
–0.5  
–1.0  
–1.5  
50  
TEMPERATURE (°C)  
75  
–50  
–25  
0
25  
100  
29031 F04  
Figure 4. LTC2903 Typical Threshold Accuracy vs Temperature  
29031f  
11  
LTC2903-1  
W U U  
U
APPLICATIO S I FOR ATIO  
In any supervisory application, supply noise riding on the  
monitored DC voltage can cause spurious resets, particu-  
larly when the monitored voltage approaches the reset  
threshold. A less than desirable but commonly used  
techniqueusedtomitigatethisproblemaddshysteresisto  
the input comparator. The amount of added hysteresis,  
usually specified as a percentage of the trip threshold,  
effectively degrades the advertised accuracy of the part.  
To maintain high accuracy, the LTC2903-1 does not use  
hysteresis.  
drops back below threshold. This reset delay time effec-  
tively provides further filtering of the voltage inputs. A  
noisy input with frequency components of sufficient mag-  
nitude above f = 1/tRST = 5Hz holds the reset line low,  
preventing oscillatory behavior on the reset line.  
Althoughallfourcomparatorshavebuilt-inglitchfiltering,  
use bypass capacitors on the V1 and V2 inputs because  
the greater of V1 or V2 supplies the VCC for the part (a  
0.1µF ceramic capacitor satisfies most applications). Ap-  
ply filter capacitors on the V3 and V4 inputs in extremely  
noisy situations.  
To minimize spurious resets while maintaining threshold  
accuracy, the LTC2903-1 employs two forms of noise  
filtering. The first line of defense incorporates proprietary  
tailoring of the comparator transient response. Transient  
events receive electronic integration in the comparator  
and must exceed a certain magnitude and duration to  
cause the comparator to switch. Figure 5 illustrates the  
typical transient duration versus comparator overdrive  
(as a percentage of the trip threshold VRT) required to trip  
the comparators. Once any comparator is switched, the  
reset line pulls low. The reset time-out counter starts once  
all inputs return above threshold. The nominal reset delay  
time is 200ms. The counter clears whenever any input  
Reset Output Rise and Fall Time Estimation  
The reset output line contains a weak pull-up current  
source to the V2 supply. Use an external pull-up resistor  
when the output needs to pull to another voltage and/or  
when the reset output needs a faster rise time. The open-  
drain output allows for wired-OR connections when more  
than one signal needs to pull down on the reset line.  
Estimate output rise time for the open-drain output with-  
out an external pull-up using:  
tRISE 2.2 • RPU • CLOAD  
where RPU is the on-resistance of the pull-up transistor  
and CLOAD is the external load capacitance on the pin. At  
room temperature, the average RPU is approximately  
50k. When externally pulling up to voltages higher than  
V2, an internal network automatically protects the weak  
pull-up circuitry from reverse currents.  
400  
T
= 25°C  
A
350  
300  
250  
200  
150  
100  
50  
RESET OCCURS  
ABOVE CURVE  
The reset output has very strong pull-down capability.  
Estimate the output fall time using:  
tFALL 2.2 • RPD • CLOAD  
0
where RPD is the on-resistance of the pull-down transistor  
and CLOAD is the external load capacitance on the pin. At  
roomtemperature,theaverageRPD isapproximately40.  
With a 150pF load capacitance the reset line can pull down  
in about 13ns.  
0.1  
1
10  
100  
)
RESET COMPARATOR OVERDRIVE (% OF V  
RTX  
29031 F05  
Figure 5. Typical Transient Duration vs Overdrive  
Required to Trip Comparator  
29031f  
12  
LTC2903-1  
U
TYPICAL APPLICATIO S  
Quad Supply Monitor with Adjustable Input  
1
2
3
6
5
4
3.3V  
V1  
RST  
SYSTEM RESET  
C1  
LTC2903-A1  
R1  
0.1µF  
76.8k  
GND  
V2  
V4  
1V  
R2  
100k  
C2  
0.1µF  
2.5V  
V3  
1.8V  
2903 TA02  
Fixed Quad Supply Monitor with LED Indication on RST  
5V  
1k  
LED  
1
2
3
6
5
4
5V  
V1  
RST  
SYSTEM RESET  
1.8V  
C1  
LTC2903-B1  
0.1µF  
GND  
V2  
V4  
C2  
0.1µF  
3.3V  
V3  
2.5V  
2903 TA05  
29031f  
13  
LTC2903-1  
TYPICAL APPLICATIO S  
U
Quad Supply Monitor with Unused Input Pulled Above Threshold  
1
2
3
6
5
4
5V  
V1  
RST  
SYSTEM RESET  
–5.2V  
C1  
LTC2903-C1  
0.1µF  
GND  
V2  
V4  
C2  
0.1µF  
3.3V  
V3  
2903 TA03  
29031f  
14  
LTC2903-1  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
29031f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2903-1  
U
TYPICAL APPLICATIO  
Quad Supply Monitor with Manual Reset Button  
3.3V  
R3  
10k  
1
6
3.3V  
V1  
RST  
SYSTEM RESET  
12V  
MANUAL  
(V  
= 10.75V)  
TRIP  
LTC2903-A1  
RESET BUTTON  
C1  
R1  
2050k  
R
*
(NORMALLY OPEN)  
ESD  
0.1µF  
10k  
2
3
5
4
GND  
V2  
V4  
R2  
100k  
C2  
0.1µF  
2.5V  
V3  
1.8V  
2903 TA04  
*OPTIONAL RESISTOR RECOMMENDED  
TO EXTEND ESD TOLERANCE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC690  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65 Threshold  
LTC694-3.3  
LTC699  
2.9V Threshold  
4.65 Threshold  
LTC1232  
5V Supply Monitor, Watchdog Timer and Pushbutton Reset  
4.37V/4.62V Threshold  
4.725V, 3.118V, 1V Thresholds (±0.75%)  
LTC1326  
Micropower Precision Triple Supply Monitor for 5V, 3.3V and ADJ  
LTC1326-2.5  
LTC1536  
Micropower Precision Triple Supply Monitor for 2.5V, 3.3V and ADJ 2.363V, 3.118V, 1V Thresholds (±0.75%)  
Precision triple Supply Monitor for PCI Applications  
Micropower Triple Supply Monitor for 2.5V, 3.3V and ADJ  
Micropower Triple Supply Monitor for 5V, 3.3V and ADJ  
Micropower Triple Supply Monitors with Open-Drain Reset  
Meets PCI t  
Timing Specifications  
FAIL  
LTC1726-2.5  
LTC1726-5  
LTC1727-2.5/LTC1727-5  
Adjustable RESET and Watchdog Time Outs  
Adjustable RESET and Watchdog Time Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
LTC1728-1.8/LTC1728-3.3 Micropower Triple Supply Monitors with Open-Drain Reset  
LTC1728-2.5/LTC1728-5  
LTC1985-1.8  
Micropower Triple Supply Monitors with Open-Drain Reset  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Quad Voltage Monitor in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
LTC2900  
16 User Selectable Combinations,  
±1.5% Threshold Accuracy  
LTC2901  
Quad Voltage Monitor with Watchdog  
Quad Voltage Monitor with RST Disable  
Single/Dual Power Supply Margining Controller  
Power Supply Trackers with Input Monitors  
Power Supply Tracking Controller  
16 User Selectable Combinations, Adjustable Timers  
16 User Selectable Combinations, Adjustable Tolerance  
<0.4% Margin Voltage Precision  
LTC2902  
LTC2920-1/LTC2920-2  
LTC2921/LTC2922  
LTC2923  
3 (LTC2921) and 5 (LTC2922) Remote Sense Switches  
Tracks Up and Down, Supply Sequencing  
29031f  
LT/TP 1203 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY