LTC2905CDDBTRMPBF [Linear]

Precision Dual Supply Monitors with Pin-Selectable Thresholds; 精密双电源监视器与引脚可选门限
LTC2905CDDBTRMPBF
型号: LTC2905CDDBTRMPBF
厂家: Linear    Linear
描述:

Precision Dual Supply Monitors with Pin-Selectable Thresholds
精密双电源监视器与引脚可选门限

监视器
文件: 总16页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2904/LTC2905  
Precision Dual Supply  
Monitors with Pin-Selectable  
Thresholds  
FEATURES  
DESCRIPTION  
The LTC®2904/LTC2905 are dual supply monitors in-  
tended for systems with two supply voltages. The dual  
supply monitors have a common reset output with delay  
(200ms for the LTC2904 and adjustable using an exter-  
nal capacitor for the LTC2905). This product provides a  
precise, space-conscious and micropower solution for  
supply monitoring.  
n
Monitors Two Inputs Simultaneously  
n
Nine Threshold Combinations  
n
Three Supply Tolerances (5%, 7.5%, 10%)  
n
Guaranteed Threshold Accuracy: 1.5% of  
Monitored Voltage Over Temperature  
n
Internal V Auto Select  
CC  
n
Power Supply Glitch Immunity  
n
200ms Reset Time Delay (LTC2904 Only)  
The LTC2904/LTC2905 feature a tight 1.5% threshold  
accuracyoverthewholeoperatingtemperaturerange,and  
glitch immunity to ensure reliable reset operation without  
false triggering. The open drain RST output is guaranteed  
to be in the correct state for inputs down to 1V.  
n
Adjustable Reset Time Delay (LTC2905 Only)  
n
Open Drain RST Output  
n
Guaranteed RST for V1 ≥ 1V or V2 ≥ 1V  
n
Low Profile (1mm) SOT-23 (ThinSOT™) and  
Plastic (3mm × 2mm) DFN Packages  
The LTC2904/LTC2905 also feature three programming  
inputpins,whichprogramthethresholdandtolerancelevel  
without requiring any external components. These three  
programming pins provide a total of 27 different voltage  
level and tolerance combinations, eliminating the need to  
have different parts for development and implementation  
of different systems with different voltage levels requiring  
monitoring function.  
APPLICATIONS  
n
Desktop and Notebook Computers  
n
Handheld Devices  
n
Network Servers  
n
Core, I/O Monitor  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
5V, 3.3V Dual Supply Monitor with 5% Tolerance  
Table 1. Voltage Threshold Programming  
V1  
5.0  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
V2  
3.3  
2.5  
1.8  
1.5  
1.2  
1.8  
1.5  
1.2  
1.0  
S1  
V1  
S2  
V1  
5V  
DC/DC  
SYSTEM  
LOGIC  
3.3V  
CONVERTER  
Open  
V1  
GND  
Open  
V1  
V1  
V2  
TMR  
GND  
RST  
LTC2905  
0.1μF  
0.1μF  
22nF  
Open  
Open  
GND  
GND  
GND  
V1  
S1  
Open  
GND  
Open  
V1  
S2  
TOL  
29045 TA01  
GND  
29045fd  
1
LTC2904/LTC2905  
ABSOLUTE MAXIMUM RATINGS (Note 1, 2)  
Terminal Voltages  
Operating Temperature Range  
V1, V2...................................................... –0.3V to 7V  
LTC2904C/LTC2905C .............................. 0°C to 70°C  
LTC2904I/LTC2905I.............................–40°C to 85°C  
LTC2905H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
TSOT Lead Temperature (Soldering, 10 sec).........300°C  
S1, S2, TOL................................–0.3V to (V +0.3V)  
CC  
RST.......................................................... –0.3V to 7V  
RST (LTC2904)........................................ –0.3V to 7V  
TMR (LTC2905)....................................... –0.3V to 7V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
GND  
RST  
1
2
3
4
8
7
6
5
TOL  
S1  
V2 1  
RST/TMR* 2  
RST 3  
8 V1  
7 S2  
6 S1  
5 TOL  
9
RST/TMR*  
V2  
S2  
V1  
GND 4  
TS8 PACKAGE  
DDB8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
8-LEAD (3mm s 2mm) PLASTIC DFN  
EXPOSED PAD IS GND (PIN 9),  
MUST BE SOLDERED TO PCB  
* RST FOR LTC2904  
* RST FOR LTC2904  
TMR FOR LTC2905  
T
= 150°C, θ = 195°C/W  
JA  
JMAX  
TMR FOR LTC2905  
T
JMAX  
= 150°C, θ = 76°C/W  
JA  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC2904CDDB#TRMPBF  
LTC2904IDDB#TRMPBF  
LTC2905CDDB#TRMPBF  
LTC2905HDDB#TRMPBF  
LTC2905IDDB#TRMPBF  
LTC2904CTS8#TRMPBF  
LTC2904ITS8#TRMPBF  
LTC2905CTS8#TRMPBF  
LTC2905HTS8#TRMPBF  
LTC2905ITS8#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LBCZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2904CDDB#TRPBF  
LTC2904IDDB#TRPBF  
LTC2905CDDB#TRPBF  
LTC2905HDDB#TRPBF  
LTC2905IDDB#TRPBF  
LTC2904CTS8#TRPBF  
LTC2904ITS8#TRPBF  
LTC2905CTS8#TRPBF  
LTC2905HTS8#TRPBF  
LTC2905ITS8#TRPBF  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead Plastic TSOT-23  
LBDB  
–40°C to 85°C  
0°C to 70°C  
LAJF  
LBCY  
–40°C to 125°C  
–40°C to 85°C  
0°C to 70°C  
LBCY  
LTBCJ  
LTBCK  
LTAJD  
8-Lead Plastic TSOT-23  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic TSOT-23  
LTAJE  
8-Lead Plastic TSOT-23  
–40°C to 125°C  
–40°C to 85°C  
LTAJE  
8-Lead Plastic TSOT-23  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
29045fd  
2
LTC2904/LTC2905  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V1 = 2.5V, V2 = 1V, S1 = TOL = V1, S2 = 0V, unless otherwise noted.  
(Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
V
V
V
V
V
V
5V, 5% Reset Threshold  
5V, 7.5% Reset Threshold  
5V, 10% Reset Threshold  
3.3V, 5% Reset Threshold  
3.3V, 7.5% Reset Threshold  
3.3V, 10% Reset Threshold  
2.5V, 5% Reset Threshold  
2.5V, 7.5% Reset Threshold  
2.5V, 10% Reset Threshold  
1.8V, 5% Reset Threshold  
1.8V, 7.5% Reset Threshold  
1.8V, 10% Reset Threshold  
1.5V, 5% Reset Threshold  
1.5V, 7.5% Reset Threshold  
1.5V, 10% Reset Threshold  
1.2V, 5% Reset Threshold  
1.2V, 7.5% Reset Threshold  
1.2V, 10% Reset Threshold  
1V, 5% Reset Threshold  
1V, 7.5% Reset Threshold  
1V, 10% Reset Threshold  
V1 Input Threshold  
4.600  
4.475  
4.350  
3.036  
2.954  
2.871  
2.300  
2.238  
2.175  
1.656  
1.611  
1.566  
1.380  
1.343  
1.305  
1.104  
1.074  
1.044  
0.920  
0.895  
0.870  
4.675  
4.550  
4.425  
3.086  
3.003  
2.921  
2.338  
2.275  
2.213  
1.683  
1.638  
1.593  
1.403  
1.365  
1.328  
1.122  
1.092  
1.062  
0.935  
0.910  
0.885  
4.750  
4.625  
4.500  
3.135  
3.053  
2.970  
2.375  
2.313  
2.250  
1.710  
1.665  
1.620  
1.425  
1.388  
1.350  
1.140  
1.110  
1.080  
0.950  
0.925  
0.900  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
μA  
μA  
RT50  
RT33  
RT25  
RT18  
RT15  
RT12  
RT10  
CCMIN  
l
l
l
V1, V2 Input Threshold  
V1, V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
Minimum Internal Operating Voltage (Note 2) RST in Correct Logic State  
V1 Input Current  
V2 Input Current  
1
130  
1.0  
I
I
Includes Input Current to Three-State Pins  
65  
0.4  
V1  
V2  
l
I
I
TMR Pull-Up Current  
TMR Pull-Down Current  
LTC2905  
LTC2905  
LTC2905H  
V
= 0V  
= 1.4V  
–1.5  
1.5  
1.4  
–2.1  
2.1  
2.0  
–2.7  
2.7  
2.7  
μA  
μA  
μA  
TMR(UP)  
TMR  
l
l
V
TMR  
TMR(DOWN)  
l
t
t
Reset Timeout Period  
Reset Timeout Period  
LTC2904  
140  
200  
260  
ms  
RST  
l
l
LTC2905  
LTC2905H  
C
= 22nF  
140  
140  
200  
260  
295  
ms  
ms  
RST  
TMR  
t
Vx Undervoltage Detect to  
RST or RST  
Vx Less than Reset Threshold V  
by More than 1%  
150  
μs  
UV  
RTX  
l
l
V
OL  
V
OH  
Output Voltage Low RST, RST  
I = 2.5mA  
0.15  
0.05  
0.4  
0.3  
V
V
V
I = 100μA; V1 = 1V (RST Only)  
l
Output Voltage High RST, RST  
(Notes 2, 5)  
I = –1μA  
V
–1  
CC  
Three-State Inputs S1, S2, TOL  
l
l
l
V
V
V
Low Level Input Voltage  
High Level Input Voltage  
Pin Voltage When Left in Open State  
0.4  
1.1  
V
V
V
V
V
V
V
V
IL  
IH  
Z
1.4  
0.7  
I = –10μA  
I = 0μA  
0.9  
0.9  
l
l
I = 10μA  
2905H  
I = –10μA  
I = 0μA  
I = 10μA  
0.65  
l
l
1.15  
25  
I
Programming Input Current (Note 6)  
μA  
VPG  
29045fd  
3
LTC2904/LTC2905  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The output pins RST and RST have an internal pull-up to V of  
typically –6μA. However, an external pull-up resistor may be used when  
CC  
faster rise time is required or for V voltages greater than V  
.
CC  
OH  
Note 6: The input current to the three-state input pins are the pull-up  
and the pull-down current when the pins are either set to V1 or GND  
respectively. In the open state, the maximum leakage current to V1 or GND  
permissible is 10μA.  
Note 2: The greater of V1, V2 is the internal supply voltage (V ).  
CC  
Note 3: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 4: For reset thresholds test conditions refer to the voltage threshold  
programming table in the Applications Information section.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
5V Threshold Voltage  
vs Temperature  
3.3V Threshold Voltage  
vs Temperature  
2.5V Threshold Voltage  
vs Temperature  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
3.120  
3.070  
3.020  
2.970  
2.920  
2.870  
2.375  
2.325  
2.275  
2.225  
2.175  
5%  
5%  
5%  
7.5%  
7.5%  
10%  
7.5%  
10%  
10%  
25  
50  
–50  
–25  
0
75  
100  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
29045 G01  
29045 G02  
29045 G03  
1.8V Threshold Voltage  
vs Temperature  
1.5V Threshold Voltage  
vs Temperature  
1.2V Threshold Voltage  
vs Temperature  
1.705  
1.685  
1.665  
1.645  
1.625  
1.605  
1.585  
1.565  
1.135  
1.125  
1.115  
1.105  
1.095  
1.085  
1.075  
1.065  
1.055  
1.045  
1.425  
1.405  
1.385  
1.365  
1.345  
1.325  
1.305  
5%  
5%  
5%  
7.5%  
7.5%  
10%  
7.5%  
10%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
29045 G04  
29045 G05  
29045 G06  
29045fd  
4
LTC2904/LTC2905  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
1V Threshold Voltage  
vs Temperature  
IV1 vs Temperature  
IV2 vs Temperature  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
0.950  
0.940  
0.930  
0.920  
0.910  
0.900  
0.890  
0.880  
0.870  
1.8  
V1 = 5V  
V1 = 5V  
V2 = 3.3V  
V2 = 3.3V  
5%  
S1 S2  
=
S1 S2  
= = TOL = 1.4V  
= TOL = 1.4V  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
7.5%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
29045 G07  
29045 G08  
29045 G09  
Typical Transient Duration  
vs Comparator Overdrive (V1, V2)  
Reset Time Out Period (tRST  
)
IV2 vs Temperature  
vs Capacitance (CTMR  
)
700  
600  
500  
400  
300  
200  
100  
0
10000  
1000  
100  
10  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
V1 = 2.5V  
V2 = 3.3V  
S1 = S2 = TOL = 1.4V  
RESET OCCURS  
ABOVE CURVE  
1
0.1  
0.1  
1
10  
100  
25  
50  
–50  
–25  
0
75  
100  
10p  
100p  
1n  
10n  
(FARAD)  
100n  
1M  
COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
C
TEMPERATURE (oC)  
RTX  
TMR  
29045 G12  
29045 G11  
29045 G10  
Reset Timeout Period (tRST  
)
vs Temperature  
RST Output Voltage vs V1  
RST Output Voltage vs V1  
5
4
5
4
235  
230  
225  
220  
215  
210  
205  
200  
195  
CRT = 22nF  
(FILM)  
V2 = S1 = S2 = TOL = V1  
10k PULL-UP RESISTOR  
V2 = S1 = S2 = TOL = V1  
10k PULL-UP RESISTOR  
3
3
2
2
1
1
0
0
–1  
–1  
25  
50  
–50  
–25  
0
75  
100  
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
V1 (V)  
TEMPERATURE (oC)  
29045 G13  
29045 G15  
29045 G14  
29045fd  
5
LTC2904/LTC2905  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Pull-Down Current (IRST  
)
RST Pull-Down Current (IRST  
)
RST Output Voltage vs V1  
vs Supply Voltage (VCC  
)
vs Supply Voltage (VCC  
)
5
4
S1  
= V2 = V1  
TOL = S2 = GND  
NO PULL-UP R  
V2 = S1 = S2 = TOL = V1  
10pF CAPACITOR AT RST  
V2 = S1 = S2 = TOL = V1  
NO PULL-UP R  
5
4
3
2
1
0
5
4
3
2
1
0
3
RST AT 150mV  
RST AT 50mV  
RST AT 150mV  
2
1
RST AT 50mV  
0
–1  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
29045 G16  
29045 G17  
29045 G18  
RST Output Voltage Low (VOL  
)
RST Output Voltage Low (VOL  
)
RST Pull-Up Current (IRST  
)
vs RST Pull-Down Current (IRST  
)
vs RST Pull-Down Current (IRST  
)
vs Supply Voltage (VCC  
)
–18  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
TOL = GND  
V1 = 5V  
V1 = 5V  
25oC  
–16  
–14  
–12  
–10  
–8  
V2 = 3V  
S1 = S2 = TOL = V1  
NO PULL-UP R  
V2 = 3.3V  
85oC  
25oC  
85oC  
S1 = S2 = TOL = V1  
NO PULL-UP R  
–40oC  
–40oC  
–6  
–4  
–2  
V
V
V
RT50  
RT25  
2.5  
RT33  
0
2.0  
3.0  
3.5  
5.0  
4.0  
4.5  
0
10  
30  
40  
50  
(mA)  
60  
0
10  
30  
40  
50  
(mA)  
60  
20  
20  
SUPPLY VOLTAGE, V (V)  
RST PULL-DOWN CURRENT, I  
RST PULL-DOWN CURRENT, I  
CC  
RST  
RST  
29045 G21  
29045 G19  
29045 G20  
RST Pull-Up Current (IRST  
)
RST Output Voltage High (VOH  
)
RST Output Voltage High (VOH)  
vs RST Output Source Current (IRST)  
vs Supply Voltage (VCC  
)
vs RST Output Source Current (IRST  
)
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
–16  
–14  
–12  
–10  
–8  
V1 = 3.3V  
V1 = 3.3V  
TOL = V1  
V2 = 1.8V  
V2 = 1.5V  
S1 = TOL =V1  
S2 = OPEN  
NO PULL-UP R  
S1 = TOL = V1  
S2 = OPEN  
NO PULL-UP R  
–40oC  
85oC  
–6  
85oC  
–4  
–40oC  
25oC  
25oC  
–2  
V
V
V
RT25  
RT33  
RT50  
0
2.0  
2.5  
3.0  
3.5  
5.0  
–12  
–8  
–6  
–4  
–2  
(MA)  
0
–8 –7 –6 –5 –4 –3 –2  
OUTPUT SOURCE CURRENT, I  
0
4.0  
4.5  
–10  
–1  
(MA)  
OUTPUT SOURCE CURRENT, I  
SUPPLY VOLTAGE, V (V)  
CC  
RST  
RST  
29045 G22  
29045 G23  
29045 G24  
29045fd  
6
LTC2904/LTC2905  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
IS1, IS2, ITOL vs Temperature  
IS1, IS2, ITOL vs Temperature  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
S1 = S2 = TOL = GND  
S1 = S2 = TOL = 3.3V  
25  
50  
–50  
–25  
0
75  
100  
25  
50  
–50  
–25  
0
75  
100  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
29045 G26  
29045 G25  
PIN FUNCTIONS (TS8/DDB8)  
V2 (Pin 1/Pin 4): Voltage Input 2. Input for V2 monitor.  
Select from 3.3V, 2.5V, 1.8V, 1.5V, 1.2V or 1.0V. Refer to  
Table 1 for details. The greater of V1, V2 is also the internal  
are above threshold. This pin has a weak pull-up to V  
CC  
and may be pulled above V using an external pull-up.  
CC  
GND (Pin 4/Pin 1, Pin 9): Ground.  
supplyvoltage,V .Bypassthispintogroundwitha0.1μF  
CC  
TOL (Pin 5/Pin 8): Three-state Input for Supply Tolerance  
Selection (5%, 7.5% or 10%). See the Applications Infor-  
mation section for tolerance selection chart (Table 2).  
(or greater) capacitor.  
RST (Pin 2/Pin 3): (LTC2904 Only) Reset Logic Output.  
When all voltage inputs are above the reset threshold for  
atleasttheprogrammeddelaytime, thispinpullslow. This  
S1 (Pin 6/Pin 7): Voltage Threshold Select Three-State  
Input. Connect to V1, GND or leave unconnected in open  
state (See Table 1).  
pin has a weak pull-up to V and may be pulled above  
CC  
V
CC  
using an external pull-up.  
S2 (Pin 7/Pin 6): The Second Voltage Threshold Select  
Three-State Input. Connect to V1, GND or leave uncon-  
nected in open state (See Table 1).  
TMR (Pin 2/Pin 3): (LTC2905 Only) Reset Delay Time  
Programming Pin. Attach an external capacitor (C ) to  
GND to set a reset delay time of 9ms/nF. Leaving the pin  
opengeneratesaminimumdelayofapproximately200μs.A  
22nF capacitor will generate a 200ms reset delay time.  
TMR  
V1 (Pin 8/Pin 5): Voltage Input 1. Input for V1 monitor.  
Select from 5V, 3.3V, or 2.5V. See Table 1 for details.  
The greater of V1, V2 is also the internal supply voltage,  
RST (Pin 3/Pin 2): Inverted Reset Logic Output. Pulls low  
when any voltage input is below the reset threshold and is  
heldlowforprogrammeddelaytimeafterallvoltageinputs  
V . Bypass this pin to ground with a 0.1μF (or greater)  
CC  
capacitor.  
29045fd  
7
LTC2904/LTC2905  
BLOCK DIAGRAM  
V
LTC2904  
CC  
6μA  
+
RST  
V1  
V
CC  
200ms  
RESET PULSE  
GENERATOR  
POWER  
DETECT  
RESISTOR  
NETWORK  
V
CC  
6μA  
+
V2  
RST  
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
GND  
2904 BD  
S1  
S2  
TOL  
LTC2905  
+
TMR  
RST  
GND  
V
CC  
V1  
V2  
V
CC  
6μA  
POWER  
DETECT  
RESISTOR  
NETWORK  
RESET PULSE  
GENERATOR  
+
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
2905 BD  
S1  
S2  
TOL  
29045fd  
8
LTC2904/LTC2905  
TIMING DIAGRAM  
VX Monitor Timing  
V
RTX  
V
X
t
t
UV  
RST  
RST  
1V  
1V  
RST  
29045 TD  
APPLICATIONS INFORMATION  
Supply Monitoring  
Power-Up  
The greater of V1, V2 is the internal supply voltage (V ).  
The LTC2904/LTC2905 are low power, high accuracy dual  
supplymonitorswithacommonresetoutputandselectable  
thresholds. Reset delay is set to a nominal of 200ms for  
the LTC2904 and is adjustable using an external capacitor  
for the LTC2905.  
CC  
V
powers the drive circuits for the RST pin. Therefore as  
CC  
soon as V1 or V2 reaches 1V during power-up, the RST  
output asserts low.  
V
also powers the drive circuits for the RST pin in the  
CC  
The two 3-state input pins (S1 and S2) select one of nine  
possible threshold voltage combinations. Another three-  
state input pin sets the supply tolerance (5%, 7.5% or  
10%). Both input voltages (V1 and V2) must be above  
predetermined thresholds for the reset not to be invoked.  
The LTC2904/LTC2905 assert the reset outputs during  
power-up,power-downandbrownoutconditionsoneither  
of the voltage inputs.  
LTC2904. Therefore, RST weakly pulls high when V1 or  
V2 reaches at least 1V.  
Threshold programming is complete when V1 reaches  
at least 2.17V. After programming, if either V1 or V2 falls  
below its programmed threshold, RST asserts low (RST  
weakly pulls high) as long as V is at least 1V.  
CC  
Once V1 and V2 rise above their thresholds, an internal  
timer is started. After the programmed delay time, RST  
weakly pulls high (RST asserts low).  
29045fd  
9
LTC2904/LTC2905  
APPLICATIONS INFORMATION  
Power-Down  
Tolerance Programming  
On power-down, once either V1 or V2 inputs drops below  
The three-state input pin, TOL programs the common  
supply tolerance for both V1 and V2 input voltages (5%,  
7.5% or 10%). The larger the tolerance the lower the trip  
threshold. Table 2 shows the tolerances selection corre-  
sponding to a particular connection at the TOL pin.  
its threshold, RST asserts logic low and RST weakly pulls  
high. V of at least 1V guarantees a logic low of 0.4V at  
CC  
RST.  
Programming Pins  
Table 2. Tolerance Programming  
The three 3-state input pins: S1, S2 and TOL should be  
connected to GND, V1 or left unconnected during normal  
operation. Notethatwhenleftunconnected, themaximum  
leakage current allowable from the pin to either GND or  
V1 is 10μA.  
Tolerance  
5%  
TOL  
V1  
7.5%  
Open  
GND  
10%  
Threshold Accuracy  
In margining applications, all the 3-state input pins can be  
driven using a tri-state buffer. Note however the low and  
Reset threshold accuracy is of the utmost importance in a  
supply sensitive system. Ideally such a system should not  
reset while supply voltages are within a specified margin  
belowtheratednominallevel.BothoftheLTC2904/LTC2905  
inputs have the same relative threshold accuracy. The  
specification for LTC2904/LTC2905 is 1.5% of the pro-  
grammed nominal input voltage (over the full operating  
temperature range).  
high output of the tri-state buffer has to satisfy the V and  
IL  
V of the 3-state pin listed in the Electrical Characteristics  
IH  
Table. Moreover, when the tri-state buffer is in the high  
impedance state, the maximum leakage current allowed  
from the pin to either GND or V1 is 10μA.  
Monitor Programming  
Connecting S1 and S2 to GND, V1 or leaving them open  
selects the LTC2904/LTC2905 input voltage combina-  
tions. Table 1 shows the nine possible combinations of  
nominal input voltages and their corresponding S1, S2  
connections.  
Forexample,whentheLTC2904/LTC2905areprogrammed  
to handle a 5V input with 10% tolerance (S1 = S2 = V1 and  
TOL = GND, refer to Table 1 and Table 2), it does not issue  
a reset command when V1 is above 4.5V. The typical 10%  
trip threshold is at 11.5% below the nominal input voltage  
level. Therefore, the typical trip threshold for the 5V input  
is4.425V. With 1.5%accuracy, thetripthresholdrangeis  
4.425V 75mV over temperature (i.e. 10% to 13% below  
5V). This implies that the monitored system must operate  
reliably down to 4.35V over temperature.  
Table 1. Voltage Threshold Programming  
V1  
5.0  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
V2  
3.3  
2.5  
1.8  
1.5  
1.2  
1.8  
1.5  
1.2  
1.0  
S1  
V1  
S2  
V1  
Open  
V1  
GND  
Open  
V1  
Open  
Open  
GND  
GND  
GND  
V1  
The same system using a supervisor with only 2.5%  
accuracy needs to work reliably down to 4.25V (4.375V  
125mV)or15%below5V,requiringthemonitoredsystem  
to work over a much wider operating voltage range.  
Open  
GND  
Open  
V1  
GND  
Note: Open = open circuit or driven by a three state buffer in high  
impedance state with leakage current less than 10μA.  
29045fd  
10  
LTC2904/LTC2905  
APPLICATIONS INFORMATION  
In any supervisory application, supply noise riding on  
the monitored DC voltage can cause spurious resets,  
particularly when the monitored voltage is near the reset  
threshold. A less desirable but common solution to this  
problem is to introduce hysteresis around the nominal  
threshold. Notice however, this hysteresis introduces an  
error term in the threshold accuracy. Therefore, a 2.5%  
accurate monitor with 1.0% hysteresis is equivalent to  
a 3.5% monitor with no hysteresis.  
Selecting the Reset Timing Capacitor  
TheresettimeoutperiodforLTC2905isadjustableinorder  
toaccommodateavarietyofmicroprocessorapplications.  
Connecting a capacitor, C  
, between the TMR pin and  
TMR  
ground sets the reset timeout period, t . The following  
RST  
formula determines the value of capacitor needed for a  
particular reset timeout period:  
–9  
C
= t  
• 110 • 10 [F/s]  
TMR  
RST  
For example, using a standard capacitor value of 22nF  
would give a 22000/110 = 200ms delay.  
The LTC2904/LTC2905 takes a different approach to solve  
this problem of supply noise causing spurious reset. The  
first line of defense against this spurious reset is a first  
order low pass filter at the output of the comparator. Thus,  
the comparator output goes through a form of integration  
before triggering the output logic. Therefore, any kind of  
transient at the input of the comparator needs to be of  
sufficient magnitude and duration before it can trigger a  
change in the output logic.  
Figure 1 shows the desired delay time as a function of the  
value of the timer capacitor that should be used:  
Leaving the TMR pin open with no external capacitor gen-  
erates a reset timeout of approximately 200μs. For long  
reset timeout, the only limitation is the availability of large  
value capacitor with low leakage. The TMR capacitor will  
never charge if the leakage current exceeds the minimum  
TMR charging current of 2.1μA (typical).  
The second line of defense is the programmed delay time  
tRST (200ms for LTC2904 and using an external capacitor  
for LTC2905). This delay will eliminate the effect of any  
10000  
1000  
100  
10  
supply noise whose frequency is above 1/t  
and RST output.  
on the RST  
RST  
WheneitherV1orV2dropsbelowitsprogrammedthresh-  
old, theRST pin asserts low (RST weakly pulls high). Then  
when the supply recovers above the programmed thresh-  
old, the reset-pulse-generator timer starts counting.  
1
If the supply remains above the programmed threshold  
when the timer finishes counting, the RST pin weakly  
pulls high (RST asserts low). However, if the supply falls  
below the programmed threshold any time during the  
period when the timer is still counting, the timer resets  
and it starts fresh when the supply next rises above the  
programmed threshold.  
0.1  
10p  
100p  
1n  
10n  
(FARAD)  
100n  
1μ  
C
TMR  
29045 F01  
Figure 1. Reset Timeout Period vs Capacitance  
Note that this second line of defense is only effective  
for a rising supply and does not affect the sensitivity of  
the system to a falling supply. Therefore, the first line of  
defense that works for both cases of rising and falling is  
necessary. These two approaches prevent spurious reset  
caused by supply noise without sacrificing the threshold  
accuracy.  
29045fd  
11  
LTC2904/LTC2905  
APPLICATIONS INFORMATION  
RST and RST Output Characteristics  
Output Rise and Fall Time Estimation  
The DC characteristics of the RST and RST pull-up and  
pull-down strength are shown in the Typical Performance  
Characteristics section. Both RST and RST have a weak  
The RST and RST outputs have strong pull-down capabil-  
ity. The following formula estimates the output fall time  
(90% to 10%) for a particular external load capacitance  
internal pull-up to V = Max (V1, V2) and a strong pull-  
(C  
):  
CC  
LOAD  
down to ground.  
t
≈ 2.2 • R • C  
PD LOAD  
FALL  
Theweakpull-upandstrongpull-downarrangementallow  
thesetwopinstohaveopen-drainbehaviorwhilepossess-  
ing several other beneficial characteristics.  
where R is the on-resistance of the internal pull-down  
PD  
transistor estimated to be typically 40Ω at room tempera-  
ture (25°C) and C  
is the external load capacitance on  
LOAD  
The weak pull-ups eliminate the need for external pull-up  
resistorswhentherisetimeonthesepinsisnotcritical.On  
the other hand, the open-drain RST configuration allows  
for wired-OR connections and can be useful when more  
than one signal needs to pull down on the RST line.  
the pin. Assuming a 150pF load capacitance, the fall time  
is about 13ns.  
The rise time, on the RST and RST pins is limited by weak  
internal pull-up current sources to V . The following  
CC  
formula estimates the output rise time (10% to 90%) at  
As noted in the Power-Up and Power-Down sections the  
the RST and RST pins:  
circuitsthatdriveRSTandRSTarepoweredbyV .During  
CC  
t
≈ 2.2 R • C  
PU LOAD  
RISE  
fault condition, V of at least 1V guarantees a maximum  
CC  
where R is the on-resistance of the pull-up transistor.  
V
OL  
= 0.4V at RST. However, at V = 1V the weak pull-up  
PU  
CC  
Notice that this pull-up transistor is modeled as a  
6μA current source in the Block Diagram as a typical  
representation.  
current on RST is barely turned on. Therefore, an external  
pull-up resistor of no more than 100k is recommended on  
the RST pin if the state and pull-up strength of the RST  
pin is crucial at very low V .  
CC  
The on-resistance as a function of the V = Max (V1, V2)  
CC  
voltage (for V > 1V) at room temperature is estimated  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the RST pin is increased. Therefore,  
if it is connected in a wired-OR connection, the pull-down  
strength of any single device needs to accommodate this  
additional pull-up strength.  
CC  
as follows:  
6•105  
MAX(V1,V2)1V  
RPU  
=
Ω
At V = 3.3V, R is about 260k. Using 150pF for load  
CC  
PU  
capacitance, the rise time is 86μs. An external pull-up  
resistor may be used if the output needs to pull up faster  
and/or to a higher voltage, for example: the rise time re-  
duces to 3.3μs for a 150pF load capacitance, when using  
a 10k pull-up resistor.  
29045fd  
12  
LTC2904/LTC2905  
TYPICAL APPLICATIONS  
2.5V, 1.2V Supply Monitor, 10% Tolerance  
3.3V, 1.2V Dual Supply Monitor with LED Power Good Indicator,  
7.5% Tolerance and Adjustable Timer  
3.3V  
510Ω  
V2  
V1  
S2  
V2  
V1  
RST  
RST  
TOL  
1.2V  
2.5V  
1.2V  
LTC2904  
LTC2904  
LED  
RST  
RST  
GND  
S2  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
SYSTEM  
RESET  
SYSTEM  
RESET  
S1  
S1  
TOL  
GND  
29045 TA02  
29045 TA03  
5V, 3.3V Dual Supply Monitor with Voltage  
Margining for Automated On-Board Testing  
5V  
DC/DC  
CONVERTER  
SYSTEM  
LOGIC  
3.3V  
V1  
V2  
TMR  
GND  
RST  
LTC2905  
V
IN  
0.1μF  
S1  
SUPPLY  
CONTROLLER  
0.1μF  
22nF  
THREE-STATE  
S2  
TOL  
29045 TA04  
3.3V, 1.2V Dual Supply Monitor with Asymmetric Hysteresis, 5%  
Tolerance (Supplies Rising), 10% Tolerance (After RST Goes Low)  
V2  
V1  
RST  
TOL  
RST  
1.2V  
3.3V  
LTC2904  
10k  
0.1μF  
S2  
0.1μF  
S1  
SYSTEM  
RESET  
GND  
29045 TA05  
29045fd  
13  
LTC2904/LTC2905  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 0.05  
(2 SIDES)  
R = 0.115  
0.40 0.10  
3.00 0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
8
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 × 45°  
PACKAGE  
OUTLINE  
0.56 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 0.05  
0.50 BSC  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.20 0.05  
(2 SIDES)  
2.15 0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
29045fd  
14  
LTC2904/LTC2905  
PACKAGE DESCRIPTION  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
29045fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC2904/LTC2905  
TYPICAL APPLICATION  
3.3V, 1.2V Dual Supply Monitor with LED Power Good Indicator,  
7.5% Tolerance and Adjustable Timer  
3.3V 1.8V  
2.5V  
V2  
V1  
V2  
V1  
1.2V  
LTC2905  
LTC2905  
0.1μF  
22nF  
TMR  
S2  
0.1μF  
TOL  
0.1μF  
510Ω  
TMR  
GND  
RST  
TOL  
S2  
0.1μF  
22nF  
S1  
LED  
S1  
GND  
RST  
29045 TA06  
RELATED PARTS  
PART NUMBER  
LTC690  
DESCRIPTION  
COMMENTS  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65V Threshold  
2.9V Threshold  
4.65V Threshold  
LTC694-3.3  
LTC699  
LTC1232  
5V Supply Monitor, Watchdog Timer and Pushbutton Reset  
4.37V/4.62V Threshold  
LTC1326/LTC1326-2.5  
Micropower Precision Triple Supply Monitor  
for 5V/2.5V, 3.3V and ADJ  
4.725V, 3.118V, 1V Threshold ( 0.75%)  
LTC1536  
Precision Triple Supply Monitor for PCI Applications  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Meets PCI t  
Timing Specifications  
FAIL  
LTC1726-2.5/LTC1726-5  
LTC1727-2.5/LTC1727-5  
Adjustable RESET and Watchdog Timeouts  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
LTC1728-1.8/LTC1728-3.3 Micropower Triple Supply Monitor with Open-Drain Reset  
LTC1728-2.5/LTC1728-5  
LTC1985-1.8  
LTC2900  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
Adjustable RESET, 10-Lead MSOP, DFN Packages  
LTC2901  
Programmable Quad Supply Monitor  
Adjustable RESET and Watchdog Timer,  
16-Lead SSOP Package  
LTC2902  
Programmable Quad Supply Monitor  
Precision Quad Supply Monitor  
Selectable Tolerance, RESET Disable for Margining  
Functions, 16-Lead SSOP Package  
LTC2903-1  
LTC2906  
Ultralow Voltage RESET, 6-Lead SOT-23 Package  
Dual Supply Monitor with One Pin-Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold and Three Supply  
Tolerances, 8-Lead SOT-23 and DFN Packages  
LTC2907  
LTC2908  
Dual Supply Monitor with One Pin-Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold, Adjustable RESET Timer  
and Three Supply Tolerances, 8-Lead SOT-23 and  
DFN Packages  
Precision Six Supply Monitors  
Ultralow Voltage RESET, 8-Lead SOT-23 and DFN  
Packages  
29045fd  
LT 1109 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY