LTC2905IDDB [Linear]

Precision Dual Supply Monitors with Pin-Selectable Thresholds; 精密双电源监视器与引脚可选门限
LTC2905IDDB
型号: LTC2905IDDB
厂家: Linear    Linear
描述:

Precision Dual Supply Monitors with Pin-Selectable Thresholds
精密双电源监视器与引脚可选门限

监视器 光电二极管
文件: 总16页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2904/LTC2905  
Precision Dual Supply Monitors  
with Pin-Selectable Thresholds  
U
FEATURES  
DESCRIPTIO  
The LTC®2904/LTC2905 are dual supply monitors in-  
tended for systems with two supply voltages. The dual  
supply monitors have a common reset output with delay  
(200ms for the LTC2904 and adjustable using an external  
capacitor for the LTC2905). This product provides a  
precise, space-conscious and micropower solution for  
supply monitoring.  
Monitors Two Inputs Simultaneously  
Nine Threshold Combinations  
Three Supply Tolerances (5%, 7.5%, 10%)  
Guaranteed Threshold Accuracy: ±1.5% of  
Monitored Voltage Over Temperature  
Internal VCC Auto Select  
Power Supply Glitch Immunity  
200ms Reset Time Delay (LTC2904 Only)  
The LTC2904/LTC2905 feature a tight 1.5% threshold  
accuracy over the whole operating temperature range,  
and glitch immunity to ensure reliable reset operation  
without false triggering. The open drain RST output is  
guaranteedtobeinthecorrectstateforinputsdownto1V.  
Adjustable Reset Time Delay (LTC2905 Only)  
Open Drain RST Output  
Guaranteed RST for V1 1V or V2 1V  
Low Profile (1mm) SOT-23 (ThinSOTTM) and Plastic  
(3mm x 2mm) DUFN Packages  
The LTC2904/LTC2905 also feature three programming  
input pins, which program the threshold and tolerance  
level without requiring any external components. These  
three programming pins provide a total of 27 different  
voltage level and tolerance combinations, eliminating  
the need to have different parts for development and  
implementationofdifferentsystemswithdifferentvoltage  
levels requiring monitoring function.  
APPLICATIO S  
Desktop and Notebook Computers  
Handheld Devices  
Network Servers  
Core, I/O Monitor  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Table 1. Voltage Threshold Programming  
5V, 3.3V Dual Supply Monitor with 5% Tolerance  
V1  
5.0  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
V2  
3.3  
2.5  
1.8  
1.5  
1.2  
1.8  
1.5  
1.2  
1.0  
S1  
V1  
S2  
V1  
5V  
DC/DC  
SYSTEM  
LOGIC  
3.3V  
CONVERTER  
Open  
V1  
GND  
Open  
V1  
V1  
V2  
TMR  
GND  
RST  
LTC2905  
0.1µF  
0.1µF  
Open  
Open  
GND  
GND  
GND  
V1  
S1  
Open  
GND  
Open  
V1  
22nF  
S2  
TOL  
29045 TA01  
GND  
sn29045 29045fs  
1
LTC2904/LTC2905  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1, 2)  
Terminal Voltages  
V1, V2 ..................................................... –0.3V to 7V  
S1, S2, TOL .............................. –0.3V to (VCC +0.3V)  
RST ......................................................... –0.3V to 7V  
RST (LTC2904) .......................................0.3V to 7V  
TMR (LTC2905) ...................................... –0.3V to 7V  
Operating Temperature Range  
LTC2904C/LTC2905C ................................ 0°C to 70°C  
LTC2904I/LTC2905I ..............................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
GND  
RST  
1
2
3
4
8
7
6
5
TOL  
S1  
TOP VIEW  
LTC2904CDDB  
LTC2904IDDB  
LTC2905CDDB  
LTC2905IDDB  
LTC2904CTS8  
V2 1  
RST/TMR* 2  
RST 3  
8 V1  
7 S2  
6 S1  
5 TOL  
LTC2904ITS8  
LTC2905CTS8  
LTC2905ITS8  
9
RST/TMR*  
V2  
S2  
V1  
GND 4  
TS8 PACKAGE  
DDB8 PACKAGE  
DDB8 PART MARKING  
TS8 PART MARKING  
8-LEAD PLASTIC TSOT-23  
8-LEAD (3mm × 2mm) PLASTIC DFN  
EXPOSED PAD IS GND (PIN 9),  
MUST BE SOLDERED TO PCB  
* RST FOR LTC2904  
TMR FOR LTC2905  
TJMAX = 125°C, θJA = 250°C/W  
LTBCJ  
LTBCK  
LTAJD  
LTAJE  
LBCZ  
LBDB  
LTAJF  
LBCY  
* RST FOR LTC2904  
TMR FOR LTC2905  
TJMAX = 125°C, θJA = 250°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V1 = 2.5V, V2 = 1V, S1 = TOL = V1, S2 = 0V, unless otherwise noted.  
(Notes 2, 3, 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
V
V
V
5V, 5% Reset Threshold  
5V, 7.5% Reset Threshold  
5V, 10% Reset Threshold  
V1 Input Threshold  
4.600  
4.475  
4.350  
4.675  
4.550  
4.425  
4.750  
4.625  
4.500  
V
V
V
RT50  
RT33  
RT25  
RT18  
RT15  
RT12  
RT10  
3.3V, 5% Reset Threshold  
3.3V, 7.5% Reset Threshold  
3.3V, 10% Reset Threshold  
V1, V2 Input Threshold  
V1, V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
V2 Input Threshold  
3.036  
2.954  
2.871  
3.086  
3.003  
2.921  
3.135  
3.053  
2.970  
V
V
V
2.5V, 5% Reset Threshold  
2.5V, 7.5% Reset Threshold  
2.5V, 10% Reset Threshold  
2.300  
2.238  
2.175  
2.338  
2.275  
2.213  
2.375  
2.313  
2.250  
V
V
V
1.8V, 5% Reset Threshold  
1.8V, 7.5% Reset Threshold  
1.8V, 10% Reset Threshold  
1.656  
1.611  
1.566  
1.683  
1.638  
1.593  
1.710  
1.665  
1.620  
V
V
V
1.5V, 5% Reset Threshold  
1.5V, 7.5% Reset Threshold  
1.5V, 10% Reset Threshold  
1.380  
1.343  
1.305  
1.403  
1.365  
1.328  
1.425  
1.388  
1.350  
V
V
V
1.2V, 5% Reset Threshold  
1.2V, 7.5% Reset Threshold  
1.2V, 10% Reset Threshold  
1.104  
1.074  
1.044  
1.122  
1.092  
1.062  
1.140  
1.110  
1.080  
V
V
V
1V, 5% Reset Threshold  
1V, 7.5% Reset Threshold  
1V, 10% Reset Threshold  
0.920  
0.895  
0.870  
0.935  
0.910  
0.885  
0.950  
0.925  
0.900  
V
V
V
sn29045 29045fs  
2
LTC2904/LTC2905  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V1 = 2.5V, V2 = 1V, S1 = TOL = V1, S2 = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
V
V
Minimum Internal Operating Voltage (Note 2) RST in Correct Logic State  
CCMIN  
I
I
I
I
t
t
t
V1 Input Current  
Includes Input Current to Three-State Pins  
65  
0.4  
130  
1.0  
µA  
V1  
V2 Input Current  
µA  
V2  
TMR Pull-Up Current  
TMR Pull-Down Current  
Reset Time-Out Period  
Reset Time-Out Period  
(LTC2905)  
(LTC2905)  
(LTC2904)  
(LTC2905)  
V
V
= 0V  
–1.5  
1.5  
–2.1  
2.1  
–2.7  
2.7  
µA  
TMR(UP)  
TMR(DOWN)  
RST  
TMR  
TMR  
= 1.4V  
µA  
140  
140  
200  
200  
150  
260  
260  
ms  
ms  
µs  
C
= 22nF  
RST  
TMR  
Vx Undervoltage Detect to  
RST or RST  
Vx Less than Reset Threshold V  
by More than 1%  
UV  
RTX  
V
V
Output Voltage Low RST, RST  
I = 2.5mA  
I = 100µA; V1 = 1V (RST Only)  
0.15  
0.05  
0.4  
0.3  
V
V
OL  
OH  
Output Voltage High RST, RST  
(Notes 2, 5)  
I = –1µA  
V
–1  
V
CC  
Three-State Inputs S1, S2, TOL  
V
V
V
Low Level Input Voltage  
0.4  
V
V
IL  
IH  
Z
High Level Input Voltage  
1.4  
0.7  
Pin Voltage when Left in Open State  
I = –10µA  
I = 0µA  
I = 10µA  
V
V
V
0.9  
1.1  
I
Programming Input Current (Note 6)  
±25  
µA  
VPG  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: The output pins RST and RST have an internal pull-up to V of  
CC  
of a device may be impaired.  
typically –6µA. However, an external pull-up resistor may be used when  
faster rise time is required or for V voltages greater than V .  
Note 2: The greater of V1, V2 is the internal supply voltage (V ).  
OH  
CC  
CC  
Note 6: The input current to the three-state input pins are the pull-up and  
the pull-down current when the pins are either set to V1 or GND  
respectively. In the open state, the maximum leakage current to V1 or GND  
permissible is 10µA.  
Note 3: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 4: For reset thresholds test conditions refer to the voltage threshold  
programming table in the Applications Information section.  
sn29045 29045fs  
3
LTC2904/LTC2905  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
2.5V Threshold Voltage vs  
Temperature  
5V Threshold Voltage vs  
Temperature  
3.3V Threshold Voltage vs  
Temperature  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
3.120  
3.070  
3.020  
2.970  
2.920  
2.870  
2.375  
2.325  
2.275  
2.225  
2.175  
5%  
5%  
5%  
7.5%  
7.5%  
10%  
7.5%  
10%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29045 G01  
29045 G02  
29045 G03  
1.2V Threshold Voltage vs  
Temperature  
1.8V Threshold Voltage vs  
Temperature  
1.5V Threshold Voltage vs  
Temperature  
1.705  
1.685  
1.665  
1.645  
1.625  
1.605  
1.585  
1.565  
1.135  
1.125  
1.115  
1.105  
1.095  
1.085  
1.075  
1.065  
1.055  
1.045  
1.425  
1.405  
1.385  
1.365  
1.345  
1.325  
1.305  
5%  
5%  
5%  
7.5%  
7.5%  
10%  
7.5%  
10%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29045 G04  
29045 G05  
29045 G06  
1V Threshold Voltage vs  
Temperature  
IV2 vs Temperature  
I
V1 vs Temperature  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
0.950  
0.940  
0.930  
0.920  
0.910  
0.900  
0.890  
0.880  
0.870  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
V1 = 5V  
V1 = 5V  
V2 = 3.3V  
V2 = 3.3V  
5%  
S1 S2  
=
S1 S2  
= = TOL = 1.4V  
= TOL = 1.4V  
7.5%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29045 G07  
29045 G08  
29045 G09  
sn29045 29045fs  
4
LTC2904/LTC2905  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
Reset Time Out Period (tRST  
vs Capacitance (CTMR  
)
Typical Transient Duration vs  
IV2 vs Temperature  
)
Comparator Overdrive (V1, V2)  
700  
600  
500  
400  
300  
200  
100  
0
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
10000  
1000  
100  
10  
V1 = 2.5V  
V2 = 3.3V  
S1 = S2 = TOL = 1.4V  
RESET OCCURS  
ABOVE CURVE  
1
0.1  
25  
50  
–50  
–25  
0
75  
100  
0.1  
1
10  
100  
10p  
100p  
1n  
10n  
(FARAD)  
100n  
1µ  
TEMPERATURE (°C)  
COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
RTX  
C
TMR  
29045 G10  
29045 G11  
29045 G12  
Reset Time-Out Period (tRST  
vs Temperature  
)
RST Output Voltage vs V1  
RST Output Voltage vs V1  
5
4
5
4
235  
230  
225  
220  
215  
210  
205  
200  
195  
CRT = 22nF  
(FILM)  
V2 = S1 = S2 = TOL = V1  
10k PULL-UP RESISTOR  
V2 = S1 = S2 = TOL = V1  
10k PULL-UP RESISTOR  
3
3
2
2
1
1
0
0
–1  
–1  
25  
50  
–50  
–25  
0
75  
100  
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
V1 (V)  
TEMPERATURE (°C)  
29045 G13  
29045 G15  
29045 G14  
RST Pull-Down Current (IRST  
vs Supply Voltage (VCC  
)
RST Pull-Down Current (IRST  
)
)
RST Output Voltage vs V1  
vs Supply Voltage (VCC  
)
5
4
S1  
V2 = S1 = S2 = TOL = V1  
NO PULL-UP R  
= V2 = V1  
V2 = S1 = S2 = TOL = V1  
10pF CAPACITOR AT RST  
5
4
3
2
1
0
5
4
3
2
1
0
TOL = S2 = GND  
NO PULL-UP R  
3
RST AT 150mV  
RST AT 50mV  
RST AT 150mV  
2
1
RST AT 50mV  
0
–1  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
29045 G16  
29045 G17  
29045 G18  
sn29045 29045fs  
5
LTC2904/LTC2905  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Output Voltage Low (VOL) vs  
RST Output Voltage Low (VOL) vs  
RST Pull-Up Current (IRST) vs  
RST Pull-Down Current (IRST  
)
RST Pull-Down Current (IRST  
)
Supply Voltage (VCC  
)
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–18  
–16  
–14  
–12  
–10  
–8  
V1 = 5V  
V2 = 3V  
S1 = S2 = TOL = V1  
NO PULL-UP R  
V1 = 5V  
TOL = GND  
25°C  
V2 = 3.3V  
85°C  
25°C  
85°C  
S1 = S2 = TOL = V1  
NO PULL-UP R  
–40°C  
–40°C  
–6  
–4  
–2  
V
RT25  
V
V
RT50  
RT33  
0
0
10  
30  
40  
50  
(mA)  
60  
0
10  
30  
40  
50  
60  
2.0  
2.5  
3.0  
3.5  
5.0  
20  
20  
4.0  
4.5  
RST PULL-DOWN CURRENT, I  
RST PULL-DOWN CURRENT, I  
(mA)  
SUPPLY VOLTAGE, V (V)  
CC  
RST  
RST  
29045 G19  
29045 G20  
29045 G21  
RST Pull-Up Current (IRST) vs  
RST Output Voltage High (VOH) vs  
RST Output Voltage High (VOH) vs  
RST Output Source Current (IRST)  
Supply Voltage (VCC  
)
RST Output Source Current (IRST  
)
–16  
–14  
–12  
–10  
–8  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
TOL = V1  
V1 = 3.3V  
V1 = 3.3V  
V2 = 1.8V  
V2 = 1.5V  
S1 = TOL =V1  
S2 = OPEN  
NO PULL-UP R  
S1 = TOL = V1  
S2 = OPEN  
NO PULL-UP R  
–40°C  
–6  
85°C  
85°C  
–4  
–40°C  
25°C  
25°C  
–2  
V
RT25  
V
V
RT33  
RT50  
0
2.0  
2.5  
3.0  
3.5  
5.0  
4.0  
4.5  
–12  
–8  
–6  
–4  
–2  
(µA)  
0
–8 –7 –6 –5 –4 –3 –2  
OUTPUT SOURCE CURRENT, I  
0
–10  
–1  
SUPPLY VOLTAGE, V (V)  
OUTPUT SOURCE CURRENT, I  
(µA)  
CC  
RST  
RST  
29045 G22  
29045 G23  
29045 G24  
IS1, IS2, ITOL vs Temperature  
IS1, IS2, ITOL vs Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–20  
S1 = S2 = TOL = 3.3V  
S1 = S2 = TOL = GND  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
25  
50  
–50  
–25  
0
75  
100  
25  
50  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29045 G25  
29045 G26  
sn29045 29045fs  
6
LTC2904/LTC2905  
U
U
U
PI FU CTIO S  
(TS8 Package/DDB8 Package)  
V2 (Pin 1/Pin 4): Voltage Input 2. Input for V2 monitor.  
Select from 3.3V, 2.5V, 1.8V, 1.5V, 1.2V or 1.0V. Refer to  
Table1fordetails. ThegreaterofV1, V2isalsotheinternal  
supplyvoltage,VCC.Bypassthispintogroundwitha0.1µF  
(or greater) capacitor.  
inputs are above threshold. This pin has a weak pull-up  
to VCC and may be pulled above VCC using an external  
pull-up.  
GND (Pin 4/Pin 1, Pin 9): Ground.  
TOL (Pin 5/Pin 8): Three-state Input for Supply Tolerance  
Selection (5%, 7.5% or 10%). See the Applications Infor-  
mation section for tolerance selection chart (Table 2).  
RST (Pin 2/Pin 3): (LTC2904 Only) Reset Logic Output.  
When all voltage inputs are above the reset threshold for  
atleasttheprogrammeddelaytime,thispinpullslow.This  
pin has a weak pull-up to VCC and may be pulled above VCC  
using an external pull-up.  
S1 (Pin 6/Pin 7): Voltage Threshold Select Three-State  
Input. Connect to V1, GND or leave unconnected in open  
state (See Table 1).  
TMR (Pin 2/Pin 3): (LTC2905 Only) Reset Delay Time  
Programming Pin. Attach an external capacitor (CTMR) to  
GND to set a reset delay time of 9ms/nF. Leaving the pin  
opengeneratesaminimumdelayofapproximately200µs.  
A 22nF capacitor will generate a 200ms reset delay time.  
S2 (Pin 7/Pin 6): The Second Voltage Threshold Select  
Three-State Input. Connect to V1, GND or leave uncon-  
nected in open state (See Table 1).  
V1 (Pin 8/Pin 5): Voltage Input 1. Input for V1 monitor.  
Select from 5V, 3.3V, or 2.5V. See Table 1 for details. The  
greater of V1, V2 is also the internal supply voltage, VCC.  
Bypass this pin to ground with a 0.1µF (or greater)  
capacitor.  
RST (Pin 3/Pin 2): Inverted Reset Logic Output. Pulls low  
when any voltage input is below the reset threshold and is  
held low for programmed delay time after all voltage  
W
BLOCK DIAGRA  
V
LTC2904  
CC  
6µA  
RST  
V1  
+
V
CC  
200ms  
RESET PULSE  
GENERATOR  
POWER  
DETECT  
RESISTOR  
NETWORK  
V
CC  
6µA  
+
V2  
RST  
GND  
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
2904 BD  
S1  
S2  
TOL  
sn29045 29045fs  
7
LTC2904/LTC2905  
W
BLOCK DIAGRA  
LTC2905  
+
TMR  
RST  
GND  
V
CC  
V1  
V
CC  
6µA  
POWER  
DETECT  
RESISTOR  
NETWORK  
RESET PULSE  
GENERATOR  
+
V2  
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
2905 BD  
S1  
S2  
TOL  
W U  
W
TI I G DIAGRA  
VX Monitor Timing  
V
RTX  
V
X
t
t
UV  
RST  
RST  
RST  
1V  
1V  
29045 TD  
sn29045 29045fs  
8
LTC2904/LTC2905  
U
W
U U  
APPLICATIO S I FOR ATIO  
Supply Monitoring  
leakage current allowable from the pin to either GND or V1  
is 10µA.  
The LTC2904/LTC2905 are low power, high accuracy dual  
supply monitors with a common reset output and select- In margining applications, all the 3-state input pins can be  
able thresholds. Reset delay is set to a nominal of 200ms driven using a tri-state buffer. Note however the low and  
high output of the tri-state buffer has to satisfy the VIL and  
VIH of the 3-state pin listed in the Electrical Characteristics  
Table. Moreover, when the tri-state buffer is in the high  
impedance state, the maximum leakage current allowed  
from the pin to either GND or V1 is 10µA.  
for the LTC2904 and is adjustable using an external  
capacitor for the LTC2905.  
The two three-state input pins (S1 and S2) select one of  
nine possible threshold voltage combinations. Another  
three-state input pin sets the supply tolerance (5%, 7.5%  
or 10%). Both input voltages (V1 and V2) must be above  
predetermined thresholds for the reset not to be invoked.  
The LTC2904/LTC2905 assert the reset outputs during  
power-up, power-down and brownout conditions on  
either of the voltage inputs.  
Monitor Programming  
Connecting S1 and S2 to GND, V1 or leaving them open  
selects the LTC2904/LTC2905 input voltage combina-  
tions. Table 1 shows the nine possible combinations of  
nominal input voltages and their corresponding S1, S2  
connections.  
Power-Up  
Table 1. Voltage Threshold Programming  
The greater of V1, V2 is the internal supply voltage (VCC).  
VCC powers the drive circuits for the RST pin. Therefore as  
soon as V1 or V2 reaches 1V during power-up, the RST  
output asserts low.  
V1  
5.0  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
V2  
3.3  
2.5  
1.8  
1.5  
1.2  
1.8  
1.5  
1.2  
1.0  
S1  
V1  
S2  
V1  
Open  
V1  
GND  
Open  
V1  
VCC also powers the drive circuits for the RST pin in the  
LTC2904. Therefore, RST weakly pulls high when V1 or V2  
reaches at least 1V.  
Open  
Open  
GND  
GND  
GND  
V1  
Open  
GND  
Open  
V1  
Threshold programming is complete when V1 reaches at  
least 2.17V. After programming, if either V1 or V2 falls  
below its programmed threshold, RST asserts low (RST  
weakly pulls high) as long as VCC is at least 1V.  
GND  
Note: Open = open circuit or driven by a three state buffer in high  
impedance state with leakage current less than 10µA.  
Once V1 and V2 rise above their thresholds, an internal  
timer is started. After the programmed delay time, RST  
weakly pulls high (RST asserts low).  
Tolerance Programming  
The three-state input pin, TOL programs the common  
supply tolerance for both V1 and V2 input voltages (5%,  
7.5% or 10%). The larger the tolerance the lower the trip  
threshold. Table 2 shows the tolerances selection corre-  
sponding to a particular connection at the TOL pin.  
Power-Down  
On power-down, once either V1 or V2 inputs drops below  
its threshold, RST asserts logic low and RST weakly pulls  
high. VCC of at least 1V guarantees a logic low of 0.4V at  
RST.  
Table 2. Tolerance Programming  
Tolerance  
5%  
TOL  
V1  
Programming Pins  
7.5%  
Open  
GND  
The three 3-state input pins: S1, S2 and TOL should be  
connected to GND, V1 or left unconnected during normal  
operation. Note that when left unconnected, the maximum  
10%  
sn29045 29045fs  
9
LTC2904/LTC2905  
W U U  
U
APPLICATIO S I FOR ATIO  
Threshold Accuracy  
transient at the input of the comparator needs to be of  
sufficient magnitude and duration before it can trigger a  
change in the output logic.  
Reset threshold accuracy is of the utmost importance in a  
supply sensitive system. Ideally such a system should not  
reset while supply voltages are within a specified margin  
below the rated nominal level. Both of the LTC2904/  
LTC2905 inputs have the same relative threshold accu-  
racy. The specification for LTC2904/LTC2905 is ±1.5% of  
the programmed nominal input voltage (over the full  
operating temperature range).  
The second line of defense is the programmed delay time  
tRST (200ms for LTC2904 and using an external capacitor  
for LTC2905). This delay will eliminate the effect of any  
supply noise whose frequency is above 1/tRST on the RST  
and RST output.  
When either V1 or V2 drops below its programmed  
threshold, the RST pin asserts low (RST weakly pulls  
high). Then when the supply recovers above the pro-  
grammedthreshold,thereset-pulse-generatortimerstarts  
counting.  
Forexample,whentheLTC2904/LTC2905areprogrammed  
to handle a 5V input with 10% tolerance (S1 = S2 = V1 and  
TOL = GND, refer to Table 1 and Table 2), it does not issue  
a reset command when V1 is above 4.5V. The typical 10%  
trip threshold is at 11.5% below the nominal input voltage  
level. Therefore, the typical trip threshold for the 5V input  
is 4.425V. With ±1.5% accuracy, the trip threshold range  
is 4.425V ±75mV over temperature (i.e. 10% to 13%  
below 5V). This implies that the monitored system must  
operate reliably down to 4.35V over temperature.  
If the supply remains above the programmed threshold  
whenthetimerfinishescounting, theRSTpinweaklypulls  
high (RST asserts low). However, if the supply falls below  
the programmed threshold any time during the period  
when the timer is still counting, the timer resets and it  
starts fresh when the supply next rises above the pro-  
grammed threshold.  
The same system using a supervisor with only ±2.5%  
accuracy needs to work reliably down to 4.25V (4.375V  
±125mV) or 15% below 5V, requiring the monitored  
system to work over a much wider operating voltage  
range.  
Note that this second line of defense is only effective for a  
rising supply and does not affect the sensitivity of the  
system to a falling supply. Therefore, the first line of  
defense that works for both cases of rising and falling is  
necessary. These two approaches prevent spurious reset  
caused by supply noise without sacrificing the threshold  
accuracy.  
In any supervisory application, supply noise riding on the  
monitored DC voltage can cause spurious resets, particu-  
larly when the monitored voltage is near the reset thresh-  
old. A less desirable but common solution to this problem  
is to introduce hysteresis around the nominal threshold.  
Notice however, this hysteresis introduces an error term  
in the threshold accuracy. Therefore, a ±2.5% accurate  
monitor with ±1.0% hysteresis is equivalent to a ±3.5%  
monitor with no hysteresis.  
Selecting the Reset Timing Capacitor  
The reset time-out period for LTC2905 is adjustable in  
order to accommodate a variety of microprocessor appli-  
cations. Connecting a capacitor, CTMR, between the TMR  
pin and ground sets the reset time-out period, tRST. The  
followingformuladeterminesthevalueofcapacitorneeded  
for a particular reset time-out period:  
TheLTC2904/LTC2905takesadifferentapproachtosolve  
this problem of supply noise causing spurious reset. The  
first line of defense against this spurious reset is a first  
order low pass filter at the output of the comparator. Thus,  
the comparator output goes through a form of integration  
before triggering the output logic. Therefore, any kind of  
C
TMR = tRST • 110 • 10–9 [F/s]  
For example, using a standard capacitor value of 22nF  
would give a 22000/110 = 200ms delay.  
sn29045 29045fs  
10  
LTC2904/LTC2905  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 1 shows the desired delay time as a function of the  
value of the timer capacitor that should be used:  
As noted in the Power-Up and Power-Down sections the  
circuits that drive RST and RST are powered by VCC.  
During fault condition, VCC of at least 1V guarantees a  
maximum VOL = 0.4V at RST. However, at VCC = 1V the  
weak pull-up current on RST is barely turned on. There-  
fore, an external pull-up resistor of no more than 100k is  
recommended on the RST pin if the state and pull-up  
strength of the RST pin is crucial at very low VCC.  
10000  
1000  
100  
10  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the RST pin is increased. Therefore, if  
it is connected in a wired-OR connection, the pull-down  
strength of any single device needs to accommodate this  
additional pull-up strength.  
1
0.1  
10p  
100p  
1n  
10n  
100n  
1µ  
C
(FARAD)  
TMR  
Output Rise and Fall Time Estimation  
29045 F01  
The RST and RST outputs have strong pull-down capabil-  
ity. The following formula estimates the output fall time  
(90% to 10%) for a particular external load capacitance  
(CLOAD):  
Figure 1. Reset Time-Out Period vs Capacitance  
Leaving the TMR pin open with no external capacitor  
generates a reset time-out of approximately 200µs. For  
long reset time-out, the only limitation is the availability of  
large value capacitor with low leakage. The TMR capacitor  
will never charge if the leakage current exceeds the mini-  
mum TMR charging current of 2.1µA (typical).  
tFALL 2.2 • RPD • CLOAD  
where RPD is the on-resistance of the internal pull-down  
transistor estimated to be typically 40at room tempera-  
ture (25°C) and CLOAD is the external load capacitance on  
the pin. Assuming a 150pF load capacitance, the fall time  
is about 13ns.  
RST and RST Output Characteristics  
The DC characteristics of the RST and RST pull-up and  
pull-down strength are shown in the Typical Performance  
Characteristics section. Both RST and RST have a weak  
internal pull-up to VCC = Max (V1, V2) and a strong pull-  
down to ground.  
The rise time, on the RST and RST pins is limited by weak  
internal pull-up current sources to VCC. The following  
formulaestimatestheoutputrisetime(10%to90%)atthe  
RST and RST pins:  
tRISE 2.2 RPU • CLOAD  
Theweakpull-upandstrongpull-downarrangementallow  
thesetwopinstohaveopen-drainbehaviorwhilepossess-  
ing several other beneficial characteristics.  
where RPU is the on-resistance of the pull-up transistor.  
Notice that this pull-up transistor is modeled as a 6µA  
current source in the Block Diagram as a typical represen-  
tation.  
The weak pull-ups eliminate the need for external pull-up  
resistorswhentherisetimeonthesepinsisnotcritical.On  
the other hand, the open-drain RST configuration allows  
for wired-OR connections and can be useful when more  
than one signal needs to pull down on the RST line.  
The on-resistance as a function of the VCC = Max (V1, V2)  
voltage (for VCC > 1V) at room temperature is estimated as  
sn29045 29045fs  
11  
LTC2904/LTC2905  
W U U  
U
APPLICATIO S I FOR ATIO  
follow:  
capacitance, the rise time is 86µs. An external pull-up  
resistor may be used if the output needs to pull up faster  
and/or to a higher voltage, for example: the rise time  
reducesto3.3µsfora150pFloadcapacitance,whenusing  
a 10k pull-up resistor.  
6•105  
MAX(V1,V2)1V  
RPU  
=
At VCC = 3.3V, RPU is about 260k. Using 150pF for load  
U
TYPICAL APPLICATIO S  
2.5V, 1.2V Supply Monitor, 10% Tolerance  
V2  
V1  
S2  
1.2V  
2.5V  
LTC2904  
RST  
RST  
GND  
0.1µF  
0.1µF  
SYSTEM  
RESET  
S1  
TOL  
2904 TA02  
3.3V, 1.2V Dual Supply Monitor with LED Power Good Indicator,  
7.5% Tolerance and Adjustable Timer  
3.3V  
510  
V2  
V1  
RST  
RST  
TOL  
1.2V  
LTC2904  
LED  
S2  
0.1µF  
0.1µF  
SYSTEM  
RESET  
S1  
GND  
2905 TA03  
sn29045 29045fs  
12  
LTC2904/LTC2905  
U
TYPICAL APPLICATIO S  
5V, 3.3V Dual Supply Monitor with Voltage  
Margining for Automated On-Board Testing  
5V  
DC/DC  
CONVERTER  
SYSTEM  
LOGIC  
3.3V  
V1  
V2  
TMR  
GND  
RST  
LTC2905  
V
IN  
0.1µF  
S1  
SUPPLY  
CONTROLLER  
0.1µF  
22nF  
THREE-STATE  
S2  
TOL  
29045 TA06  
3.3V, 1.2V Dual Supply Monitor with Asymmetric Hysteresis, 5%  
Tolerance (Supplies Rising), 10% Tolerance (After RST Goes Low)  
V2  
V1  
RST  
TOL  
RST  
1.2V  
3.3V  
LTC2904  
10k  
0.1µF  
S2  
0.1µF  
S1  
SYSTEM  
RESET  
GND  
2904 TA04  
sn29045 29045fs  
13  
LTC2904/LTC2905  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.38 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
8
0.56 ± 0.05  
(2 SIDES)  
0.675 ±0.05  
2.50 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
CHAMFER OF  
PACKAGE  
OUTLINE  
EXPOSED PAD  
4
1
(DDB8) DFN 1103  
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
sn29045 29045fs  
14  
LTC2904/LTC2905  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
sn29045 29045fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2904/LTC2905  
U
TYPICAL APPLICATIO  
Quad Supply Monitor with LED Undervoltage Indicator,  
5% Tolerance, 3.3V, 2.5V, 1.8V, 1.2V  
3.3V 1.8V  
2.5V  
V2  
V1  
V2  
V1  
1.2V  
LTC2905  
LTC2905  
0.1µF  
TMR  
S2  
0.1µF  
TOL  
0.1µF  
510  
TMR  
GND  
RST  
TOL  
22nF  
0.1µF  
22nF  
S2  
S1  
S1  
LED  
GND  
RST  
2905 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC690  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65V Threshold  
2.9V Threshold  
4.65V Threshold  
4.37V/4.62V Threshold  
LTC694-3.3  
LTC699  
LTC1232  
5V Supply Monitor, Watchdog Timer and Push-Button Reset  
LTC1326/LTC1326-2.5  
Micropower Precision Triple Supply Monitor  
for 5V/2.5V, 3.3V and ADJ  
4.725V, 3.118V, 1V Threshold (±0.75%)  
LTC1536  
Precision Triple Supply Monitor for PCI Applications  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Programmable Quad Supply Monitor  
Meets PCI t Timing Specifications  
FAIL  
LTC1726-2.5/LTC1726-5  
LTC1727-2.5/LTC1727-5  
LTC1728-1.8/LTC1728-3.3  
LTC1728-2.5/LTC1728-5  
LTC1985-1.8  
Adjustable RESET and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
LTC2900  
Adjustable RESET, 10-Lead MSOP, DFN Packages  
LTC2901  
Programmable Quad Supply Monitor  
Adjustable RESET and Watchdog Timer,  
16-Lead SSOP Package  
LTC2902  
Programmable Quad Supply Monitor  
Precision Quad Supply Monitor  
Selectable Tolerance, RESET Disable for Margining  
Functions, 16-Lead SSOP Package  
LTC2903-1  
Ultra Low Voltage RESET, 6-Lead SOT-23 Package  
sn29045 29045fs  
LT/TP 01/04 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
©LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY