LTC2907 [Linear]

Precision Dual Supply Monitors with One Pin-Selectable Threshold and One Adjustable Input; 精密双电源监视器与一引脚可选门限和一个可调输入
LTC2907
型号: LTC2907
厂家: Linear    Linear
描述:

Precision Dual Supply Monitors with One Pin-Selectable Threshold and One Adjustable Input
精密双电源监视器与一引脚可选门限和一个可调输入

监视器
文件: 总16页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2906/LTC2907  
Precision Dual Supply Monitors  
with One Pin-Selectable Threshold  
and One Adjustable Input  
U
FEATURES  
DESCRIPTIO  
The LTC®2906/LTC2907 are dual supply monitors in-  
tended for systems with multiple supply voltages. The  
dual supply monitors have a common reset output with  
delay (200ms for the LTC2906 and adjustable using an  
external capacitor for the LTC2907). These products pro-  
vide a precise, space-conscious and micropower solution  
for supply monitoring.  
Monitors Two Inputs Simultaneously  
Three Threshold Selections for 5V, 3.3V or 2.5V  
Supplies  
Low Voltage Adjustable Input (0.5V)  
Three Supply Tolerances (5%, 7.5%, 10%)  
Guaranteed Threshold Accuracy: ±1.5% of  
Monitored Voltage Over Temperature  
Internal VCC Auto Select  
Power Supply Glitch Immunity  
The LTC2906/LTC2907 feature a tight 1.5% threshold  
accuracy over the whole operating temperature range  
and glitch immunity to ensure reliable reset operation  
without false triggering. The open drain RST output state  
is guaranteed to be in the correct state for V1 and/or VCC  
down to 1V.  
200ms Reset Time Delay (LTC2906 Only)  
Adjustable Reset Time Delay (LTC2907 Only)  
Open Drain RST Output  
Guaranteed RST for V1 1V or VCC 1V  
Low Profile (1mm) SOT-23 (ThinSOTTM) and  
The LTC2906/LTC2907 also feature one adjustable input  
with a nominal threshold level at 0.5V, another input with  
three possible input threshold levels, and three supply  
tolerances for possible margining. These features provide  
versatility for any kind of system requiring dual supply  
monitors. Two three-state input pins program the thresh-  
old and tolerance level without requiring any external  
components.  
Plastic (3mm × 2Umm) DFN Packages  
APPLICATIO S  
Desktop and Notebook Computers  
Handheld Devices  
Network Servers  
Core, I/O Monitor  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Supply Selection Programming  
Dual Supply Monitor with Adjustable Tolerance (2.5V, 0.8V)  
V1  
5.0  
3.3  
2.5  
S1  
V1  
2.5V  
DC/DC  
SYSTEM  
LOGIC  
0.8V  
CONVERTER  
OPEN  
GND  
49.9k  
100k  
V1  
V
V
ADJ  
LTC2907  
0.1µF  
Tolerance Programming  
TOLERANCE  
TMR  
GND  
RST  
0.1µF  
CC  
22nF  
TOL  
V1  
S1  
5%  
7.5%  
10%  
OPEN  
GND  
TOL  
29067 TA01  
TOLERANCE = 10%  
29067f  
1
LTC2906/LTC2907  
W W U W  
ABSOLUTE AXI U RATI GS (Notes 1, 2)  
Operating Temperature Range  
Terminal Voltages  
LTC2906C/LTC2907C .............................. 0°C to 70°C  
LTC2906I/LTC2907I ............................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V1, VCC ........................................................0.3V to 7V  
S1, VADJ, TOL ............................ –0.3V to (VMAX + 0.3V)  
RST ............................................................. –0.3V to 7V  
RST (LTC2906)............................................0.3V to 7V  
TMR (LTC2907)...........................................0.3V to 7V  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
LTC2906CTS8  
LTC2906ITS8  
LTC2907CTS8  
LTC2907ITS8  
TOP VIEW  
NUMBER  
GND  
RST  
1
2
3
4
8
7
6
5
TOL  
S1  
TOP VIEW  
LTC2906CDDB  
LTC2906IDDB  
LTC2907CDDB  
LTC2907IDDB  
V
1
8 V1  
7 V  
6 S1  
CC  
9
RST/TMR*  
V
ADJ  
RST/TMR* 2  
RST 3  
ADJ  
V
V1  
CC  
GND 4  
5 TOL  
DDB8 PACKAGE  
TS8 PACKAGE  
DDB8 PART MARKING  
TS8 PART MARKING  
8-LEAD (3mm × 2mm) PLASTIC DFN  
EXPOSED PAD IS GND (PIN 9),  
MUST BE SOLDERED TO PCB  
*RST FOR LTC2906  
8-LEAD PLASTIC TSOT-23  
*RST FOR LTC2906  
TMR FOR LTC2907  
LBDC  
LBDD  
LBDF  
LBDG  
LTBCM  
LTBCN  
LTBCP  
LTBCQ  
TJMAX = 125°C, θJA = 250°C/W  
TMR FOR LTC2907  
TJMAX = 125°C, θJA = 250°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = V1 = 2.5V, VADJ = 0.55V, S1 = TOL = 0V, unless otherwise noted.  
(Notes 2, 3, 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
V
5V, 5% Reset Threshold  
5V, 7.5% Reset Threshold  
5V, 10% Reset Threshold  
V1 Input Threshold  
4.600  
4.475  
4.350  
4.675  
4.550  
4.425  
4.750  
4.625  
4.500  
V
V
V
RT50  
RT33  
RT25  
RTADJ  
3.3V, 5% Reset Threshold  
3.3V, 7.5% Reset Threshold  
3.3V, 10% Reset Threshold  
V1 Input Threshold  
V1 Input Threshold  
3.036  
2.954  
2.871  
3.086  
3.003  
2.921  
3.135  
3.053  
2.970  
V
V
V
2.5V, 5% Reset Threshold  
2.5V, 7.5% Reset Threshold  
2.5V, 10% Reset Threshold  
2.300  
2.238  
2.175  
2.338  
2.275  
2.213  
2.375  
2.313  
2.250  
V
V
V
ADJ, 5% Reset Threshold  
ADJ, 7.5% Reset Threshold  
ADJ, 10% Reset Threshold  
V
ADJ  
Input Threshold  
0.492  
0.479  
0.465  
0.500  
0.487  
0.473  
0.508  
0.495  
0.481  
V
V
V
Minimum V  
Operating Voltage (Note 2) RST, RST in Correct Logic State  
MAX  
1
V
MAX(MIN)  
VCC  
I
I
I
V
Input Current  
V
CC  
> V1  
54  
100  
±1  
µA  
µA  
CC  
V1 > V  
CC  
V1 Input Current  
Input Current  
V
CC  
> V1  
1
55  
3
100  
µA  
µA  
V1  
V1 > V  
CC  
V
±15  
nA  
VADJ  
ADJ  
29067f  
2
LTC2906/LTC2907  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3, 4)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = V1 = 2.5V, VADJ = 0.55V, S1 = TOL = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–1.5  
1.5  
TYP  
–2.1  
2.1  
MAX  
–2.7  
2.7  
UNITS  
µA  
I
I
t
t
t
TMR Pull-Up Current  
TMR Pull-Down Current  
Reset Time-Out Period  
Reset Time-Out Period  
(LTC2907)  
(LTC2907)  
(LTC2906)  
(LTC2907)  
V
V
= 0V  
TMR(UP)  
TMR(DOWN)  
RST  
TMR  
TMR  
= 1.4V  
µA  
140  
140  
200  
200  
150  
260  
260  
ms  
ms  
µs  
C
= 22nF  
RST  
TMR  
V Undervoltage Detect to  
X
V Less Than Reset Threshold V  
X
UV  
RTX  
RST or RST  
by More than 1%  
V
V
Output Voltage Low RST, RST  
I = 2.5mA  
0.15  
0.05  
0.4  
0.3  
V
V
OL  
OH  
I = 100µA; V1 and/or V = 1V (RST Only)  
CC  
Output Voltage High RST, RST  
(Notes 2, 5)  
I = –1µA  
V
– 1  
V
MAX  
Three-State Inputs S1, TOL  
V
V
V
Low Level Input Voltage  
0.4  
V
V
IL  
IH  
Z
High Level Input Voltage  
1.4  
0.7  
Pin Voltage when Left in Hi-Z State  
I = –10µA  
I = 0µA  
I = 10µA  
V
V
V
0.9  
1.1  
I
Programming Input Current (Note 6)  
±25  
µA  
VPG  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: The output pins RST and RST have an internal pull-up to V  
of  
MAX  
typically –6µA. However, an external pull-up resistor may be used when  
faster rise time is required or for V voltages greater than V  
.
MAX  
OH  
Note 2: The greater of V1, V is the internal supply voltage (V  
).  
MAX  
CC  
Note 6: The input current to the three-state input pins are the pull-up and  
the pull-down current when the pins are either set to V1 or GND  
respectively. In the open state, the maximum leakage current to V1 or GND  
permissible is 10µA.  
Note 3: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 4: For reset thresholds test conditions refer to the voltage threshold  
programming table in the Applications Information section.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
5V Threshold Voltage vs  
Temperature  
3.3V Threshold Voltage vs  
Temperature  
2.5V Threshold Voltage vs  
Temperature  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
3.12  
3.07  
3.02  
2.97  
2.92  
2.87  
2.375  
2.325  
2.275  
2.225  
2.175  
5%  
5%  
5%  
7.5%  
7.5%  
10%  
7.5%  
10%  
10%  
25  
50  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29067 G01  
29067 G02  
29067 G03  
29067f  
3
LTC2906/LTC2907  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
ADJ Threshold Voltage vs  
Temperature  
IVCC vs Temperature  
IV1 vs Temperature  
0.505  
0.500  
0.495  
0.490  
0.485  
0.480  
0.475  
0.470  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
15.8  
15.6  
V1 = 5V  
V1 = 2.5V  
5%  
V
V
= 3.3V  
V
V
= 3.3V  
CC  
ADJ  
CC  
ADJ  
=0.55V  
=0.55V  
S1 =TOL = 1.4V  
15.4 S1 =TOL = 1.4V  
15.2  
15.0  
14.8  
14.6  
14.4  
14.2  
14.0  
7.5%  
10%  
25  
50  
–50  
–25  
0
75  
100  
25  
50  
25  
50  
–50  
–25  
0
75  
100  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
29067 G04  
29067 G05  
29067 G06  
Reset Time Out Period (tRST  
vs Temperature  
)
Reset Time Out Period (tRST  
vs Capacitance (CTMR  
)
Typical Transient Duration vs  
Comparator Overdrive (V1, VADJ  
)
)
10000  
1000  
100  
10  
235  
230  
225  
220  
215  
210  
205  
200  
195  
700  
600  
500  
400  
300  
200  
100  
0
CRT = 22nF  
(FILM)  
RESET OCCURS  
ABOVE CURVE  
1
0.1  
25  
50  
–50  
–25  
0
75  
100  
10p  
100p  
1n  
10n  
(FARAD)  
100n  
1µ  
0.1  
1
10  
100  
C
COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
TMR  
TEMPERATURE (°C)  
RTX  
29067 G08  
29067 G09  
29067 G07  
RST Output Voltage vs V1  
RST Output Voltage vs V1  
RST Output Voltage vs V1  
5
4
5
4
5
4
S1 = TOL = V = V1  
S1 = TOL = V = V1  
S1 = TOL = V = V1  
CC  
CC  
CC  
V
= 0.55V  
V
= 0.55V  
V
= 0.55V  
ADJ  
ADJ  
ADJ  
10k PULL-UP RESISTOR  
10k PULL-UP RESISTOR  
10pF CAPACITOR AT RST  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–1  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
V1 (V)  
V1 (V)  
29067 G12  
29067 G10  
29067 G11  
29067f  
4
LTC2906/LTC2907  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Pull-Down Current (IRST  
vs VMAX  
)
RST Output Voltage Low (VOL  
)
RST Pull-Down Current (IRST  
vs VMAX  
)
vs RST Pull-Down Current (IRST  
)
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= V1  
V1  
V
S1 = TOL = V = V1  
CC  
ADJ  
NO PULL-UP R  
= V = 5V  
CC  
ADJ  
CC  
S1 = TOL = GND  
= 0.55V  
5
4
3
2
1
0
5
4
3
2
1
0
V
= 0.55V  
= 0.45V  
25°C  
85°C  
V
S1 = TOL = V1  
NO PULL-UP R  
ADJ  
NO PULL-UP R  
–40°C  
RST AT 150mV  
RST AT 150mV  
RST AT 50mV  
RST AT 50mV  
0
1
2
3
4
5
0
1
2
V
3
4
5
0
10  
30  
40  
50  
(mA)  
60  
20  
V
MAX  
(V)  
(V)  
RST PULL-DOWN CURRENT, I  
RST  
MAX  
29067 G13  
29067 G14  
29067G15  
RST Output Voltage Low (VOL  
)
RST Pull-Up Current (IRST  
vs VMAX  
)
RST Pull-Up Current (IRST  
vs VMAX  
)
vs RST Pull-Down Current (IRST  
)
–16  
–14  
–12  
–10  
–8  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–18  
TOL = V1  
V1  
V
TOL = GND  
= V = 5V  
CC  
ADJ  
= TOL = V1  
25°C  
85°C  
–16  
–14  
–12  
–10  
–8  
= 0.55V  
S1  
NO PULL-UP R  
–40°C  
–6  
–6  
–4  
–4  
–2  
–2  
V
RT25  
V
V
RT50  
V
RT25  
V
RT33  
V
RT50  
RT33  
0
0
2.0  
2.5  
3.0  
3.5  
(V)  
5.0  
4.0  
4.5  
0
10  
30  
40  
50  
(mA)  
60  
2.0  
2.5  
3.0  
3.5  
(V)  
5.0  
20  
4.0  
4.5  
V
RST PULL-DOWN CURRENT, I  
V
MAX  
MAX  
RST  
29067G17  
29067 G16  
29067 G18  
RST Output Voltage High (VOH  
)
RST Output Voltage High (VOH) vs  
vs RST Output Source Current (IRST  
)
RST Output Source Current (IRST  
)
IS1, ITOL vs Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
TOL = V1 = 3.3V  
TOL = V1 = 3.3V  
S1 = TOL = V1 = 3.3V  
V
= 0.55V  
V
= 0.45V  
ADJ  
ADJ  
S1 = OPEN  
S1 = OPEN  
NO PULL-UP R  
NO PULL-UP R  
–40°C  
25°C  
85°C  
85°C  
–40°C  
25°C  
25  
50  
–50  
–25  
0
75  
100  
–12  
–8  
–6  
–4  
–2  
(µA)  
0
–8 –7 –6 –5 –4 –3 –2  
OUTPUT SOURCE CURRENT, I  
0
–10  
–1  
(µA)  
OUTPUT SOURCE CURRENT, I  
TEMPERATURE (°C)  
RST  
RST  
29067 G21  
290467 G20  
29067 G19  
29067f  
5
LTC2906/LTC2907  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
IS1, ITOL vs Temperature  
–20  
S1 = TOL = GND  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
V1 = 3.3V  
25  
50  
–50  
–25  
0
75  
100  
TEMPERATURE (°C)  
29067 G22  
U
U
U
(TS8 Package/DDB8 Package)  
PI FU CTIO S  
VCC (Pin 1/Pin 4): Optional Power Supply Pin. VCC powers holds low for programmed delay time after all voltage  
and maintains the correct operation of the RST and RST inputs are above threshold. This pin has a weak pull up to  
pins in the complete absence of V1. If V1 is present, the VMAX and may be pulled above VMAX using an external  
greater of VCC or V1 (VMAX) powers the internal circuitry pull-up.  
and the reset outputs. Bypass this pin to ground with a  
GND (Pin 4/Pin 1 and Pin 9): Ground.  
0.1µF (or greater) capacitor. Tie to V1 when no optional  
TOL (Pin 5/Pin 8): Three-State Input for Supply Tolerance  
Selection (5%, 7.5% or 10%). Refer to Applications Infor-  
mation for tolerance selection chart (Table 3).  
power is available.  
RST (Pin 2/Pin 3): (LTC2906 Only) Reset Logic Output.  
When all voltage inputs are above the reset threshold for  
atleasttheprogrammeddelaytime,thispinpullslow.This  
pin has a weak pull up to VMAX and may be pulled above  
S1 (Pin 6/Pin 7): The Voltage Threshold Select Three-  
State Input. Connect to V1, GND or leave unconnected in  
open state to select one of three possible input threshold  
levels (refer to Table 1).  
V
MAX using an external pull-up.  
TMR (Pin 2/Pin 3): (LTC2907 Only) Reset Delay Time  
Programming Pin. Attach an external capacitor (CTMR) to  
GND to set a reset delay time of 9ms/nF. Leaving the pin  
opengeneratesaminimumdelayofapproximately200µs.  
A 22nF capacitor will generate a 200ms reset delay time.  
VADJ (Pin 7/Pin 6): Adjustable Voltage Input. Bypass this  
pin to ground with a 0.1µF (or greater) capacitor in a noisy  
environment.  
V1 (Pin 8/Pin 1): Voltage Input 1. Select from 5V, 3.3V or  
2.5V. Refer to Table 1 for details. The greater of (V1, VCC)  
is also the internal VCC (VMAX). Bypass this pin to ground  
with a 0.1µF (or greater) capacitor.  
RST (Pin 3/Pin 2): Inverted Reset Logic Output. Pulls low  
when either V1 or VADJ is below the reset threshold and  
29067f  
6
LTC2906/LTC2907  
W
BLOCK DIAGRA  
V
LTC2906  
MAX  
6µA  
+
RST  
V1  
V
MAX  
RESISTOR  
NETWORK  
POWER  
200ms  
RESET PULSE  
GENERATOR  
DETECT  
V
MAX  
6µA  
+
V
CC  
RST  
GND  
V
ADJ  
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
2906 BD  
S1  
TOL  
LTC2907  
V1  
+
TMR  
RST  
GND  
V
MAX  
V
MAX  
POWER  
DETECT  
RESISTOR  
NETWORK  
6µA  
200ms  
RESET PULSE  
GENERATOR  
V
CC  
+
V
ADJ  
BAND GAP  
REFERENCE  
THREE-STATE DECODER  
2907 BD  
S1  
TOL  
29067f  
7
LTC2906/LTC2907  
W U  
W
TI I G DIAGRA  
Vx Monitor Timing  
V
RTX  
V
X
t
t
RST  
UV  
RST  
RST  
1V  
1V  
29067 TD  
U
W
U U  
APPLICATIO S I FOR ATIO  
Supply Monitoring  
falls below its programmed threshold, RST asserts low  
(RST weakly pulls high) as long as VMAX is at least 1V.  
The LTC2906/LTC2907 are low power, high accuracy dual  
supply monitoring circuits with an adjustable input and  
another input with selectable threshold. Reset delay is set  
toanominalof200msforLTC2906andisadjustableusing  
an external capacitor for LTC2907.  
Once both V1 and VADJ inputs rise above their thresholds,  
an internal timer is started. After the programmed delay  
time, RST weakly pulls high (RST asserts low).  
Power-Down  
Thethree-stateinputpin(S1)selectsoneofthreepossible  
threshold voltage levels for V1. Another three-state input  
pin sets the supply tolerance (5%, 7.5% or 10%). Both  
input voltages (V1 and VADJ) must be above predeter-  
mined thresholds for the reset not to be invoked. The  
LTC2906/LTC2907asserttheresetoutputsduringpower-  
up, power-down and brownout conditions on any one of  
the voltage inputs.  
On power-down, once either V1 or VADJ drops below its  
threshold, RST asserts logic low and RST weakly pulls  
high. VMAX of at least 1V guarantees a logic low of 0.4V  
at RST.  
Auxiliary Power  
If an auxiliary power is available it can be connected to the  
VCC pin. Since the internal supply voltage (VMAX) is the  
greaterofV1, VCC;aVCC ofatleast1Vguaranteeslogiclow  
of 0.4V at RST for voltage inputs (V1 and/or VADJ) down  
to 0V.  
Power-Up  
The greater of V1, VCC is the internal supply voltage  
(VMAX). VMAX powers the drive circuits for the RST pin.  
Therefore, as soon as V1 or VCC reaches 1V during power  
up, the RST output asserts low.  
Programming Pins  
The two three-state input pins, S1 and TOL, should be  
connected to GND, V1 or left unconnected during normal  
operation. Notethatwhenleftunconnected, themaximum  
leakage current allowable from the pin to either GND or V1  
is 10µA.  
VMAX also powers the drive circuits for the RST pin in the  
LTC2906. Therefore, RST weakly pulls high when either  
V1 or VCC reaches at least 1V.  
Threshold programming is complete, when V1 reaches at  
least2.17V. Afterprogramming, ifanyoneoftheVxinputs  
29067f  
8
LTC2906/LTC2907  
W U U  
APPLICATIO S I FOR ATIO  
U
In margining application, the three-state input pins can be  
driven using a three-state buffer. Note however, the low  
and high output of the three-state buffer has to satisfy the  
VIL and VIH of the three-state pin listed in the Electrical  
Characteristics Table. Moreover, when the three-state  
buffer is in the high impedance state, the maximum  
leakage current allowed from the pin to either GND or V1  
is 10µA.  
R2 =100kis recommended. Once the resistor divider is  
set in the 5% tolerance mode, there is no need to change  
the divider for the other tolerance modes (7.5%, 10%)  
becausetheinternalreferenceatthenoninvertinginputon  
theVADJ comparatorisscaledaccordingly,movingthetrip  
point in 2.5% decrements.  
Table 2 shows suggested 1% resistor values for various  
adjustable applications.  
Monitor Programming  
Table 2. Suggested 1% Resistor Values for the VADJ Inputs  
Connecting S1 to either GND, or V1, or leaving it in open  
state selects the LTC2906/LTC2907 V1 input voltage  
threshold. Table 1 shows the three possible selections of  
V1 nominal input voltage and their corresponding S1  
connection.  
V
(V)  
V
(V)  
TRIP  
R1 (k)  
2150  
1780  
1400  
1300  
1020  
845  
R2 (k)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
12  
11.25  
9.4  
10  
8
7.5  
7.5  
6
7
Table 1. Supply Selection Programming  
5.6  
5
4.725  
3.055  
2.82  
V1  
5.0  
3.3  
2.5  
S1  
V1  
3.3  
3
511  
464  
OPEN  
2.5  
1.8  
1.5  
1.2  
1
2.325  
1.685  
1.410  
1.120  
0.933  
0.840  
0.750  
0.655  
0.561  
365  
GND  
Note: Open = open circuit or driven by a three-state buffer  
in high impedance state with leakage current less than 10µA.  
237  
182  
124  
The noninverting input on the VADJ comparator is set  
to 0.5V when the TOL pin is set high (5% tolerance)  
(Figure 1) and the high impedance inverting input directly  
ties to the VADJ pin.  
86.6  
68.1  
49.9  
30.9  
12.1  
0.9  
0.8  
0.7  
0.6  
V
TRIP  
LTC2906/LTC2907  
R1  
1%  
V
ADJ  
R2  
1%  
Tolerance Programming  
+
+
The three-state input pin TOL, programs the common  
supply tolerance for both V1 and VADJ input voltages (5%,  
7.5% or 10%). The larger the tolerance the lower the trip  
threshold. Table 3 shows the tolerances selection corre-  
sponding to a particular connection at the TOL pin.  
0.5V  
29067 F01  
Figure 1. Setting the Adjustable Trip Point  
Inatypicalapplication, theVADJ pinconnectstoatappoint  
on an external resistive divider between the positive volt-  
age being monitored and ground. The following formula  
obtains R1 resistor value for a particular value of R2 and  
a desired trip voltage at 5% tolerance:  
Table 3. Tolerance Programming  
TOLERANCE  
5%  
TOL  
V1  
7.5%  
OPEN  
GND  
10%  
VTRIP(5%)  
R1=  
– 1 R2  
0.5V  
29067f  
9
LTC2906/LTC2907  
W U U  
U
APPLICATIO S I FOR ATIO  
Threshold Accuracy  
sufficient magnitude and duration before it can trigger a  
change in the output logic.  
Reset threshold accuracy is of the utmost importance in a  
supply sensitive system. Ideally such a system should not  
reset while supply voltages are within a specified margin  
below the rated nominal level. Both of the LTC2906/  
LTC2907 inputs have the same relative threshold accu-  
racy. The specification for LTC2906/LTC2907 is ±1.5% of  
the programmed nominal input voltage (over the full  
operating temperature range).  
The second line of defense is the programmed delay time  
t
RST (200msforLTC2906andadjustableusinganexternal  
capacitor for LTC2907). This delay will eliminate the effect  
of any supply noise, whose frequency is above 1/ tRST, on  
the RST and RST output.  
When either V1 or VADJ drops below its programmed  
threshold, the RST pin asserts low (RST weakly pulls  
high). When the supply recovers above the programmed  
threshold, the reset-pulse-generator timer starts  
counting.  
Forexample,whentheLTC2906/LTC2907areprogrammed  
to handle a 5V input with 10% tolerance (S1 = V1 and TOL  
= GND, refer to Table 1 and Table 3), it does not issue a  
reset command when V1 is above 4.5V. The typical 10%  
trip threshold is at 11.5% below the nominal input voltage  
level. Therefore, the typical trip threshold for the 5V input  
is 4.425V. With ±1.5% accuracy, the trip threshold range  
is 4.425V ±75mV over temperature (i.e. 10% to 13%  
below 5V). This implies that the monitored system must  
operate reliably down to 4.35V or 13% below 5V over  
temperature.  
If the supply remains above the programmed threshold  
whenthetimerfinishescounting, theRSTpinweaklypulls  
high (RST asserts low). However, if the supply falls below  
the programmed threshold any time during the period  
when the timer is still counting, the timer resets and starts  
fresh when the supply next rises above the programmed  
threshold.  
Note that this second line of defense is only effective for a  
rising supply and does not affect the sensitivity of the  
system to a falling supply. Therefore, the first line of  
defense that works for both cases of rising and falling is  
necessary. These two approaches prevent spurious reset  
caused by supply noise without sacrificing the threshold  
accuracy.  
The same system using a supervisor with only ±2.5%  
accuracy needs to work reliably down to 4.25V (4.375V  
±125mV) or 15% below 5V, requiring the monitored  
system to work over a much wider operating voltage  
range.  
In any supervisory application, supply noise riding on the  
monitored DC voltage can cause spurious resets, particu-  
larly when the monitored voltage is near the reset thresh-  
old. A less desirable but common solution to this problem  
is to introduce hysteresis around the nominal threshold.  
Notice however, this hysteresis introduces an error term  
in the threshold accuracy. Therefore, a ±2.5% accurate  
monitor with ±1% hysteresis is equivalent to a ±3.5%  
monitor with no hysteresis.  
Selecting the Reset Timing Capacitor  
The reset time-out period for LTC2907 is adjustable in  
order to accommodate a variety of microprocessor appli-  
cations. Connecting a capacitor, CTMR, between the TMR  
pin and ground sets the reset time-out period, tRST. The  
followingformuladeterminesthevalueofcapacitorneeded  
for a particular reset time-out period:  
CTMR = tRST • 110 • 10–9 [F/s]  
The LTC2906/LTC2907 take a different approach to solve  
this problem of supply noise causing spurious reset. The  
first line of defense against this spurious reset is a first  
order low pass filter attheoutputofthe comparator. Thus,  
the comparator output goes through a form of integration  
before triggering the output logic. Therefore, any kind of  
transient at the input of the comparator needs to be of  
For example, using a standard capacitor value of 22nF  
gives a 200ms delay.  
The graph in Figure 2 shows the desired delay time as a  
function of the value of the timer capacitor that should be  
used:  
29067f  
10  
LTC2906/LTC2907  
W U U  
APPLICATIO S I FOR ATIO  
U
10000  
1000  
100  
10  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the RST pin is increased. Therefore, if  
it is connected in a wired-OR connection, the pull-down  
strength of any single device needs to accommodate this  
additional pull-up strength.  
Output Rise and Fall Time Estimation  
TheRSTandRSToutputhavestrongpull-downcapability.  
The following formula estimates the output fall time (90%  
to 10%) for a particular external load capacitance (CLOAD):  
1
0.1  
10p  
100p  
1n  
10n  
100n  
1µ  
C
(FARAD)  
TMR  
tFALL 2.2 • RPD • CLOAD  
29067 F02  
where RPD is the on-resistance of the internal pull-down  
transistor estimated to be typically 40at VMAX >1V, at  
room temperature (25°C), and CLOAD is the external load  
capacitance on the pin. Assuming a 150pF load capaci-  
tance, the fall time is about 13ns.  
Figure 2. Reset Time-Out Period vs Capacitance  
Leaving the TMR pin open with no external capacitor  
generates a reset time-out of approximately 200µs. For  
long reset time-out, the only limitation is the availability of  
a large value capacitor with low leakage. The TMR capaci-  
tor will never charge if the leakage current exceeds the  
TMR charging current of 2.1µA (typical).  
The rise time on the RST and RST pins is limited by weak  
internal pull-up current sources to VMAX. The following  
formulaestimatestheoutputrisetime(10%to90%)atthe  
RST and RST pins:  
RST and RST Output Characteristics  
t
RISE 2.2 • RPU • CLOAD  
The DC characteristics of the RST and RST pull-up and  
pull-down strength are shown in the Typical Performance  
Characteristics section. Both RST and RST have a weak  
internalpull-uptoVMAX andastrongpull-downtoground.  
where RPU is the on-resistance of the pull-up transistor.  
Notice that this pull-up transistor is modeled as a  
6µA current source in the Block Diagram as a typical  
representation.  
The weak pull-up and strong pull-down arrangement  
allows these two pins to have open-drain behavior while  
possessing several other beneficial characteristics.  
The on-resistance as a function of the VMAX = MAX (V1,  
VCC) voltage (for VMAX > 1V) at room temperature is  
estimated as follows:  
The weak pull-ups eliminate the need for external pull-up  
resistorswhentherisetimeonthesepinsisnotcritical.On  
the other hand, the open-drain RST configuration allows  
for wired-OR connections and can be useful when more  
than one signal needs to pull-down on the RST line.  
6•105  
RPU  
=
MAX(V1, VCC)1V  
At VMAX = 3.3V, RPU is about 260k. Using 150pF for load  
capacitance, the rise time is 86µs. A smaller external pull-  
upresistormaybeusediftheoutputneedstopullupfaster  
and/or to a higher voltage. For example, the rise time  
reducesto3.3µsfora150pFloadcapacitance,whenusing  
a 10k pull-up resistor.  
As noted in the Power-Up and Power-Down sections, the  
circuits that drive RST and RST are powered by VMAX  
=
MAX (V1, VCC). During fault condition, VMAX of at least 1V  
guarantees a maximum VOL = 0.4V at RST. However, at  
VMAX =1Vtheweakpull-upcurrentonRSTisbarelyturned  
on. Therefore, an external pull-up resistor of no more than  
100k is recommended on the RST pin if the state and pull-  
up strength of the RST pin is crucial at very low VMAX  
.
29067f  
11  
LTC2906/LTC2907  
U
TYPICAL APPLICATIO S  
5V, 3.3V Supply Monitor, 5% Tolerance  
with LED Power Good Indicator  
V1  
V
CC  
3.3V  
5V  
LTC2906  
499Ω  
0.1µF  
TOL  
S1  
845k  
100k  
P0WER  
GOOD  
LED  
0.1µF  
V
ADJ  
RST  
RST  
SYSTEM  
RESET  
GND  
2906 TA02  
3.3V, 1.8V Monitor, 7.5% Tolerance  
with an Auxiliary 5V Supply (5V Not Monitored)  
5V  
V1  
V
CC  
3.3V  
1.8V  
237k  
LTC2906  
0.1µF  
TOL  
S1  
0.1µF  
V
ADJ  
TMR  
RST  
100k  
22nF  
SYSTEM  
RESET  
GND  
2907 TA03  
29067f  
12  
LTC2906/LTC2907  
U
TYPICAL APPLICATIO S  
2.5V, 1V Monitor, 10% Tolerance with LED Undervoltage Indicator  
and 5V High Availability Auxiliary Supply (5V Not Monitored)  
1V  
86.6k  
V1  
V
ADJ  
2.5V  
LTC2907  
0.1µF  
100k  
V
TMR  
TOL  
CC  
22nF  
0.1µF  
499Ω  
5V  
RST  
S1  
0.1µF  
LED  
GND  
2907 TA04  
Dual Supply Monitor with Hysteresis, 5% Tolerance  
(Supplies Rising), 10% Tolerance (After RST Goes Low)  
3.3V  
511k  
5V  
V
V1  
ADJ  
LTC2906  
0.1µF  
100k  
V
CC  
GND  
RST  
S1  
10k  
RST  
TOL  
SYSTEM  
RESET  
2906 TA05  
Dual Supply Monitor for Tracked/Sequenced Supply  
3.3V  
0.1µF  
C
GATE  
10nF  
IN  
DC/DC  
R
ONB  
V
GATE  
RAMP  
CC  
154k  
2.5V  
FB  
OUT  
OUT  
ON  
FB1  
FB2  
SYSTEM  
R
ONA  
LTC2923  
100k  
R
FB1  
R
FA1  
0.1µF  
RAMPBUF  
TRACK1  
TRACK2  
R
R
TB1  
TA1  
V
CC  
IN  
V1  
R
R
TB2  
LTC2907  
DC/DC  
1.8V  
237k  
100k  
FB  
RST  
TOL  
GND  
TA2  
TMR  
V
R
FB2  
ADJ  
22nF  
R
FA2  
S1  
GND  
292067 TA06  
29067f  
13  
LTC2906/LTC2907  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.38 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
8
0.56 ± 0.05  
(2 SIDES)  
0.675 ±0.05  
2.50 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
CHAMFER OF  
PACKAGE  
OUTLINE  
EXPOSED PAD  
4
1
(DDB8) DFN 1103  
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
29067f  
14  
LTC2906/LTC2907  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
29067f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2906/LTC2907  
U
TYPICAL APPLICATIO  
Quad Supply Monitor with LED Undervoltage  
Indicator, 5% Tolerance, 3.3V, 2.5V, 0.8V, 0.6V  
0.8V  
3.3V  
2.5V  
0.6V  
12.1k  
V1  
V1  
49.9k  
LTC2907  
LTC2907  
V
CC  
TOL  
V
ADJ  
V
0.1µF  
0.1µF  
499Ω  
LED  
TOL  
V
ADJ  
CC  
TMR  
S1  
S1  
100k  
22nF  
100k  
22nF  
TMR  
GND  
RST  
GND  
RST  
2907 TA07  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC690  
5V Supply Monitor, Watchdog Timer and Battery Backup  
4.65V Threshold  
2.9V Threshold  
4.65V Threshold  
LTC694-3.3  
LTC699  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
LTC1232  
5V Supply Monitor, Watchdog Timer and Push-Button Reset 4.37V/4.62V Threshold  
LTC1326/LTC1326-2.5  
Micropower Precision Triple Supply Monitor for  
5V/2.5V, 3.3V and ADJ  
4.725V, 3.118V, 1V Threshold (±0.75%)  
LTC1536  
Precision Triple Supply Monitor for PCI Applications  
Meets PCI t Timing Specifications  
FAIL  
LTC1726-2.5/LTC1726-5  
Micropower Triple Supply Monitor for  
2.5V/5V, 3.3V and ADJ  
Adjustable RESET and Watchdog Time-Outs  
LTC1727-2.5/ LTC1727-5  
LTC1728-1.8/ LTC1728-3.3  
LTC1728-2.5/ LTC1728-5  
LTC1985-1.8  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
Micropower Triple Supply Monitor with  
Push-Pull Reset Output  
5-Lead SOT-23 Package  
LTC2900  
LTC2901  
LTC2902  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Adjustable RESET, 10-Lead MSOP and  
3mm X 3mm 10-Lead DFN Packages  
Adjustable RESET and Watchdog Timer,  
16-Lead SSOP Package  
Selectable Tolerance, RESET Disable for Margining  
Functions, 16-Lead SSOP Package  
LTC2903  
LTC2904  
Precision Quad Supply Monitor  
Ultralow Voltage RESET, 6-Lead SOT-23 Package  
Three-State Programmable Precision Dual Supply Monitor  
Adjustable Tolerance, 8-Lead SOT-23 and  
3mm × 2mm DFN Packages  
LTC2905  
Three-State Programmable Precision Dual Supply Monitor  
Adjustable RESET and Tolerance, 8-Lead SOT-23 and  
3mm × 2mm DFN Packages  
29067f  
LT/TP 0304 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY